In the ESP32 technical reference it says that the decrypt block is disabled in Download mode when DISABLE_DL_DECRYPT is set, which the first flash does after enabling flash encryption.
So I have a couple of questions:
1. What steps/settings can I follow with a brand new device to enable flash encryption and then see on a run of esptool.py that the contents are, indeed, encrypted?
2. What is idf.py encrypted-flash doing different than idf.py flash? I thought the flash was updated with plaintext and then encrypted by the device on boot.
Here is the dump of my efuses for validation. The count is higher because I disabled and reenabled encryption but the results are the same. I can still see everything in plaintext in the dumped binary.
Code: Select all
EFUSE_NAME (Block) Description = [Meaningful Value] [Readable/Writeable] (Hex Value)
----------------------------------------------------------------------------------------
Calibration fuses:
BLK3_PART_RESERVE (BLOCK0): BLOCK3 partially served for ADC calibration data = False R/W (0b0)
ADC_VREF (BLOCK0): Voltage reference calibration = 1058 R/W (0b10110)
Config fuses:
XPD_SDIO_FORCE (BLOCK0): Ignore MTDI pin (GPIO12) for VDD_SDIO on reset = False R/W (0b0)
XPD_SDIO_REG (BLOCK0): If XPD_SDIO_FORCE, enable VDD_SDIO reg on reset = False R/W (0b0)
XPD_SDIO_TIEH (BLOCK0): If XPD_SDIO_FORCE & XPD_SDIO_REG = 1.8V R/W (0b0)
CLK8M_FREQ (BLOCK0): 8MHz clock freq override = 51 R/W (0x33)
SPI_PAD_CONFIG_CLK (BLOCK0): Override SD_CLK pad (GPIO6/SPICLK) = 0 R/W (0b00000)
SPI_PAD_CONFIG_Q (BLOCK0): Override SD_DATA_0 pad (GPIO7/SPIQ) = 0 R/W (0b00000)
SPI_PAD_CONFIG_D (BLOCK0): Override SD_DATA_1 pad (GPIO8/SPID) = 0 R/W (0b00000)
SPI_PAD_CONFIG_HD (BLOCK0): Override SD_DATA_2 pad (GPIO9/SPIHD) = 0 R/W (0b00000)
SPI_PAD_CONFIG_CS0 (BLOCK0): Override SD_CMD pad (GPIO11/SPICS0) = 0 R/W (0b00000)
DISABLE_SDIO_HOST (BLOCK0): Disable SDIO host = False R/W (0b0)
Efuse fuses:
WR_DIS (BLOCK0): Efuse write disable mask = 32896 R/W (0x8080)
RD_DIS (BLOCK0): Efuse read disable mask = 1 R/W (0x1)
CODING_SCHEME (BLOCK0): Efuse variable block length scheme
= NONE (BLK1-3 len=256 bits) R/W (0b00)
KEY_STATUS (BLOCK0): Usage of efuse block 3 (reserved) = False R/W (0b0)
Identity fuses:
MAC (BLOCK0): Factory MAC Address
= 24:0a:c4:c1:2e:88 (CRC 0x4b OK) R/W
MAC_CRC (BLOCK0): CRC8 for factory MAC address = 75 R/W (0x4b)
CHIP_VER_REV1 (BLOCK0): Silicon Revision 1 = True R/W (0b1)
CHIP_VER_REV2 (BLOCK0): Silicon Revision 2 = False R/W (0b0)
CHIP_VERSION (BLOCK0): Reserved for future chip versions = 2 R/W (0b10)
CHIP_PACKAGE (BLOCK0): Chip package identifier = 1 R/W (0b001)
CHIP_PACKAGE_4BIT (BLOCK0): Chip package identifier #4bit = False R/W (0b0)
MAC_VERSION (BLOCK3): Version of the MAC field = 0 R/W (0x00)
Security fuses:
FLASH_CRYPT_CNT (BLOCK0): Flash encryption mode counter = 7 R/W (0b0000111)
UART_DOWNLOAD_DIS (BLOCK0): Disable UART download mode (ESP32 rev3 only) = False R/W (0b0)
FLASH_CRYPT_CONFIG (BLOCK0): Flash encryption config (key tweak bits) = 15 R/W (0xf)
CONSOLE_DEBUG_DISABLE (BLOCK0): Disable ROM BASIC interpreter fallback = True R/- (0b1)
ABS_DONE_0 (BLOCK0): Secure boot V1 is enabled for bootloader image = False R/W (0b0)
ABS_DONE_1 (BLOCK0): Secure boot V2 is enabled for bootloader image = False R/W (0b0)
JTAG_DISABLE (BLOCK0): Disable JTAG = True R/W (0b1)
DISABLE_DL_ENCRYPT (BLOCK0): Disable flash encryption in UART bootloader = False R/- (0b0)
DISABLE_DL_DECRYPT (BLOCK0): Disable flash decryption in UART bootloader = True R/- (0b1)
DISABLE_DL_CACHE (BLOCK0): Disable flash cache in UART bootloader = True R/- (0b1)
BLOCK1 (BLOCK1): Flash encryption key
= ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? -/-
BLOCK2 (BLOCK2): Secure boot key
= 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W
BLOCK3 (BLOCK3): Variable Block 3
= 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W