
PRELIM
IN

ARY
ESP32­S3
Technical Reference Manual

Pre-release v0.1

Espressif Systems

Copyright © 2021

www.espressif.com

PRELIM
IN

ARY

About This Manual

The ESP32­S3 Technical Reference Manual is addressed to application developers. The manual provides

detailed and complete information on how to use the ESP32-S3 memory and peripherals.

For pin definition, electrical characteristics, and package information, please see ESP32-S3 Datasheet.

Document Updates

Please always refer to the latest version on https://www.espressif.com/en/support/download/documents.

Revision History

For revision history of this document, please refer to the last page.

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation.

Please subscribe at www.espressif.com/en/subscribe.

Certification

Download certificates for Espressif products from www.espressif.com/en/certificates.

http://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/en/support/download/documents
http://espressif.com/en/subscribe
http://espressif.com/en/certificates

PRELIM
IN

ARY

Contents

Contents

1 System and Memory 16

1.1 Overview 16

1.2 Features 16

1.3 Functional Description 17

1.3.1 Address Mapping 17

1.3.2 Internal Memory 18

1.3.3 External Memory 21

1.3.3.1 External Memory Address Mapping 21

1.3.3.2 Cache 21

1.3.3.3 Cache Operations 22

1.3.4 GDMA Address Space 23

1.3.5 Modules/Peripherals 24

1.3.5.1 Module/Peripheral Address Mapping 24

2 IO MUX and GPIO Matrix (GPIO, IO MUX) 27

2.1 Overview 27

2.2 Features 27

2.3 Architectural Overview 27

2.4 Peripheral Input via GPIO Matrix 29

2.4.1 Overview 29

2.4.2 Signal Synchronization 29

2.4.3 Functional Description 30

2.4.4 Simple GPIO Input 31

2.5 Peripheral Output via GPIO Matrix 31

2.5.1 Overview 31

2.5.2 Functional Description 32

2.5.3 Simple GPIO Output 33

2.5.4 Sigma Delta Modulated Output 33

2.5.4.1 Functional Description 33

2.5.4.2 SDM Configuration 34

2.6 Dedicated GPIO 34

2.7 Direct Input and Output via IO MUX 34

2.7.1 Overview 34

2.7.2 Functional Description 34

2.8 RTC IO MUX for Low Power and Analog Input/Output 34

2.8.1 Overview 34

2.8.2 Low Power Capabilities 35

2.8.3 Analog Functions 35

2.9 Pin Functions in Light-sleep 35

2.10 Pin Hold Feature 36

2.11 Power Supply and Management of GPIO Pins 36

2.11.1 Power Supply of GPIO Pins 36

Espressif Systems 3
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

Contents

2.11.2 Power Supply Management 36

2.12 Peripheral Signals via GPIO Matrix 36

2.13 IO MUX Function List 48

2.14 RTC IO MUX Pin List 49

2.15 Register Summary 51

2.15.1 GPIO Matrix Register Summary 51

2.15.2 IO MUX Register Summary 52

2.15.3 SDM Output Register Summary 54

2.15.4 RTC IO MUX Register Summary 54

2.16 Registers 55

2.16.1 GPIO Matrix Registers 56

2.16.2 IO MUX Registers 68

2.16.3 SDM Output Registers 70

2.16.4 RTC IO MUX Registers 71

3 Reset and Clock 80

3.1 Reset 80

3.1.1 Overview 80

3.1.2 Architectural Overview 80

3.1.3 Features 80

3.1.4 Functional Description 81

3.2 Clock 82

3.2.1 Overview 82

3.2.2 Architectural Overview 82

3.2.3 Features 82

3.2.4 Functional Description 83

3.2.4.1 CPU Clock 83

3.2.4.2 Peripheral Clocks 83

3.2.4.3 Wi-Fi and Bluetooth LE Clock 85

3.2.4.4 RTC Clock 85

4 Chip Boot Control 86

4.1 Overview 86

4.2 Boot Mode Control 86

4.3 ROM Code Printing Control 87

4.4 VDD_SPI Voltage Control 88

4.5 JTAG Signal Source Control 88

5 Interrupt Matrix (INTERRUPT) 90

5.1 Overview 90

5.2 Features 90

5.3 Functional Description 91

5.3.1 Peripheral Interrupt Sources 91

5.3.2 CPU Interrupts 95

5.3.3 Allocate Peripheral Interrupt Source to CPUx Interrupt 96

5.3.3.1 Allocate one peripheral interrupt source (Source_Y) to CPUx 96

Espressif Systems 4
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

Contents

5.3.3.2 Allocate multiple peripheral interrupt sources (Source_Yn) to CPUx 97

5.3.3.3 Disable CPUx peripheral interrupt source (Source_Y) 97

5.3.4 Disable CPUx NMI Interrupt 97

5.3.5 Query Current Interrupt Status of Peripheral Interrupt Source 97

5.4 Register Summary 97

5.4.1 CPU0 Interrupt Register Summary 98

5.4.2 CPU1 Interrupt Register Summary 101

5.5 Registers 106

5.5.1 CPU0 Interrupt Registers 106

5.5.2 CPU1 Interrupt Registers 110

6 Timer Group (TIMG) 116

6.1 Overview 116

6.2 Functional Description 117

6.2.1 16-bit Prescaler and Clock Selection 117

6.2.2 54-bit Time-base Counter 117

6.2.3 Alarm Generation 117

6.2.4 Timer Reload 118

6.2.5 SLOW_CLK Frequency Calculation 119

6.2.6 Interrupts 119

6.3 Configuration and Usage 120

6.3.1 Timer as a Simple Clock 120

6.3.2 Timer as One-shot Alarm 120

6.3.3 Timer as Periodic Alarm 120

6.3.4 SLOW_CLK Frequency Calculation 121

6.4 Register Summary 122

6.5 Registers 124

7 Watchdog Timers 134

7.1 Overview 134

7.2 Digital Watchdog Timers 135

7.2.1 Features 135

7.2.2 Functional Description 136

7.2.2.1 Clock Source and 32-Bit Counter 136

7.2.2.2 Stages and Timeout Actions 137

7.2.2.3 Write Protection 137

7.2.2.4 Flash Boot Protection 138

7.3 Super Watchdog 138

7.3.1 Features 138

7.3.2 Super Watchdog Controller 138

7.3.2.1 Structure 139

7.3.2.2 Workflow 139

7.4 Interrupts 139

7.5 Registers 140

8 XTAL32K Watchdog Timers (XTWDT) 141

Espressif Systems 5
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

Contents

8.1 Overview 141

8.2 Features 141

8.2.1 Interrupt and Wake-Up 141

8.2.2 BACKUP32K_CLK 141

8.3 Functional Description 141

8.3.1 Workflow 142

8.3.2 BACKUP32K_CLK Working Principle 142

8.3.3 Configuring the Divisor Component of BACKUP32K_CLK 142

9 SHA Accelerator (SHA) 144

9.1 Introduction 144

9.2 Features 144

9.3 Working Modes 144

9.4 Function Description 145

9.4.1 Preprocessing 145

9.4.1.1 Padding the Message 145

9.4.1.2 Parsing the Message 146

9.4.1.3 Initial Hash Value 146

9.4.2 Hash task Process 147

9.4.2.1 Typical SHA Mode Process 147

9.4.2.2 DMA-SHA Mode Process 149

9.4.3 Message Digest 151

9.4.4 Interrupt 152

9.5 Register Summary 152

9.6 Registers 153

10 AES Accelerator (AES) 158

10.1 Introduction 158

10.2 Features 158

10.3 AES Working Modes 158

10.4 Typical AES Working Mode 159

10.4.1 Key, Plaintext, and Ciphertext 159

10.4.2 Endianness 160

10.4.3 Operation Process 162

10.5 DMA-AES Working Mode 162

10.5.1 Key, Plaintext, and Ciphertext 163

10.5.2 Endianness 163

10.5.3 Standard Incrementing Function 164

10.5.4 Block Number 164

10.5.5 Initialization Vector 164

10.5.6 Block Operation Process 165

10.6 Memory Summary 165

10.7 Register Summary 166

10.8 Registers 167

11 RSA Accelerator (RSA) 171

Espressif Systems 6
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

Contents

11.1 Introduction 171

11.2 Features 171

11.3 Functional Description 171

11.3.1 Large Number Modular Exponentiation 171

11.3.2 Large Number Modular Multiplication 173

11.3.3 Large Number Multiplication 173

11.3.4 Options for Acceleration 174

11.4 Memory Summary 175

11.5 Register Summary 176

11.6 Registers 176

12 Digital Signature (DS) 180

12.1 Overview 180

12.2 Features 180

12.3 Functional Description 180

12.3.1 Overview 180

12.3.2 Private Key Operands 181

12.3.3 Software Prerequisites 181

12.3.4 DS Operation at the Hardware Level 182

12.3.5 DS Operation at the Software Level 183

12.4 Memory Summary 185

12.5 Register Summary 186

12.6 Registers 187

13 External Memory Encryption and Decryption (XTS_AES)189

13.1 Overview 189

13.2 Features 189

13.3 Module Structure 189

13.4 Functional Description 190

13.4.1 XTS Algorithm 190

13.4.2 Key 190

13.4.3 Target Memory Space 191

13.4.4 Data Padding 191

13.4.5 Manual Encryption Block 192

13.4.6 Auto Encryption Block 193

13.4.7 Auto Decryption Block 193

13.5 Software Process 194

13.6 Register Summary 195

13.7 Registers 196

14 Random Number Generator (RNG) 199

14.1 Introduction 199

14.2 Features 199

14.3 Functional Description 199

14.4 Programming Procedure 200

14.5 Register Summary 200

Espressif Systems 7
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

Contents

14.6 Register 200

15 Two­wire Automotive Interface® (TWAI) 201

15.1 Overview 201

15.2 Features 201

15.3 Functional Protocol 201

15.3.1 TWAI Properties 201

15.3.2 TWAI Messages 202

15.3.2.1 Data Frames and Remote Frames 203

15.3.2.2 Error and Overload Frames 205

15.3.2.3 Interframe Space 206

15.3.3 TWAI Errors 207

15.3.3.1 Error Types 207

15.3.3.2 Error States 207

15.3.3.3 Error Counters 208

15.3.4 TWAI Bit Timing 209

15.3.4.1 Nominal Bit 209

15.3.4.2 Hard Synchronization and Resynchronization 210

15.4 Architectural Overview 210

15.4.1 Registers Block 211

15.4.2 Bit Stream Processor 212

15.4.3 Error Management Logic 212

15.4.4 Bit Timing Logic 212

15.4.5 Acceptance Filter 212

15.4.6 Receive FIFO 212

15.5 Functional Description 213

15.5.1 Modes 213

15.5.1.1 Reset Mode 213

15.5.1.2 Operation Mode 213

15.5.2 Bit Timing 213

15.5.3 Interrupt Management 214

15.5.3.1 Receive Interrupt (RXI) 215

15.5.3.2 Transmit Interrupt (TXI) 215

15.5.3.3 Error Warning Interrupt (EWI) 215

15.5.3.4 Data Overrun Interrupt (DOI) 215

15.5.3.5 Error Passive Interrupt (TXI) 216

15.5.3.6 Arbitration Lost Interrupt (ALI) 216

15.5.3.7 Bus Error Interrupt (BEI) 216

15.5.3.8 Bus Status Interrupt (BSI) 216

15.5.4 Transmit and Receive Buffers 216

15.5.4.1 Overview of Buffers 216

15.5.4.2 Frame Information 217

15.5.4.3 Frame Identifier 218

15.5.4.4 Frame Data 219

15.5.5 Receive FIFO and Data Overruns 219

15.5.5.1 Single Filter Mode 220

Espressif Systems 8
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

Contents

15.5.5.2 Dual FIlter Mode 220

15.5.6 Error Management 221

15.5.6.1 Error Warning Limit 221

15.5.6.2 Error Passive 223

15.5.6.3 Bus-Off and Bus-Off Recovery 223

15.5.7 Error Code Capture 223

15.5.8 Arbitration Lost Capture 224

15.6 Register Summary 226

15.7 Registers 227

16 USB On­The­Go (USB) 240

16.1 Overview 240

16.2 Features 240

16.2.1 General Features 240

16.2.2 Device Mode Features 240

16.2.3 Host Mode Features 240

16.3 Functional Description 241

16.3.1 Controller Core and Interfaces 241

16.3.2 Memory Layout 242

16.3.2.1 Control & Status Registers 243

16.3.2.2 FIFO Access 243

16.3.3 FIFO and Queue Organization 243

16.3.3.1 Host Mode FIFOs and Queues 244

16.3.3.2 Device Mode FIFOs 245

16.3.4 Interrupt Hierarchy 245

16.3.5 DMA Modes and Slave Mode 247

16.3.5.1 Slave Mode 247

16.3.5.2 Buffer DMA Mode 247

16.3.5.3 Scatter/Gather DMA Mode 247

16.3.6 Transaction and Transfer Level Operation 248

16.3.6.1 Transaction and Transfer Level in DMA Mode 248

16.3.6.2 Transaction and Transfer Level in Slave Mode 248

16.4 OTG 250

16.4.1 OTG Interface 250

16.4.2 ID Pin Detection 251

16.4.3 Session Request Protocol (SRP) 251

16.4.3.1 A-Device SRP 251

16.4.3.2 B-Device SRP 252

16.4.4 Host Negotiation Protocol (HNP) 253

16.4.4.1 A-Device HNP 253

16.4.4.2 B-Device HNP 254

17 SD/MMC Host Controller (SDHOST) 256

17.1 Overview 256

17.2 Features 256

17.3 SD/MMC External Interface Signals 256

Espressif Systems 9
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

Contents

17.4 Functional Description 257

17.4.1 SD/MMC Host Controller Architecture 257

17.4.1.1 Bus Interface Unit (BIU) 258

17.4.1.2 Card Interface Unit (CIU) 258

17.4.2 Command Path 258

17.4.3 Data Path 259

17.4.3.1 Data Transmit Operation 259

17.4.3.2 Data Receive Operation 260

17.5 Software Restrictions for Proper CIU Operation 260

17.6 RAM for Receiving and Sending Data 262

17.6.1 TX RAM Module 262

17.6.2 RX RAM Module 262

17.7 DMA Descriptor Chain 262

17.8 The Structure of DMA descriptor chain 262

17.9 Initialization 265

17.9.1 DMA Initialization 265

17.9.2 DMA Transmission Initialization 265

17.9.3 DMA Reception Initialization 266

17.10 Clock Phase Selection 266

17.11 Interrupt 267

17.12 Register Summary 269

17.13 Registers 271

18 LED PWM Controller (LEDC) 297

18.1 Overview 297

18.2 Features 297

18.3 Functional Description 297

18.3.1 Architecture 297

18.3.2 Timers 298

18.3.2.1 Clock Source 298

18.3.2.2 Clock Divider Configuration 299

18.3.2.3 14-bit Counter 300

18.3.3 PWM Generators 300

18.3.4 Duty Cycle Fading 301

18.3.5 Interrupts 302

18.4 Register Summary 303

18.5 Registers 305

19 Pulse Count Controller (PCNT) 312

19.1 Features 312

19.2 Functional Description 313

19.3 Applications 315

19.3.1 Channel 0 Incrementing Independently 315

19.3.2 Channel 0 Decrementing Independently 316

19.3.3 Channel 0 and Channel 1 Incrementing Together 316

19.4 Register Summary 318

Espressif Systems 10
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

Contents

19.5 Registers 319

Glossary 325

Abbreviations for Peripherals 325

Abbreviations for Registers 325

Revision History 326

Espressif Systems 11
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

List of Tables

List of Tables

1-1 Address Mapping 18

1-2 Internal Memory Address Mapping 19

1-3 External Memory Address Mapping 21

1-4 Module/Peripheral Address Mapping 24

2-1 Bits Used to Control IO MUX Functions in Light-sleep Mode 35

2-2 Peripheral Signals via GPIO Matrix 38

2-3 IO MUX Pin Functions 48

2-4 RTC Functions of RTC IO MUX Pins 49

2-5 Analog Functions of RTC IO MUX Pins 50

3-1 Reset Sources 81

3-2 CPU Clock Source 83

3-3 CPU Clock Frequency 83

3-4 Peripheral Clocks 84

3-5 APB_CLK Fequency 85

3-6 CRYPTO_PWM_CLK Frequency 85

4-1 Default Configuration of Strapping Pins 86

4-2 Boot Mode Control 86

4-3 ROM Code Printing Control 88

4-4 JTAG Signal Source Control 89

5-1 CPU Peripheral Interrupt Configuration/Status Registers and Peripheral Interrupt Sources 92

5-2 CPU Interrupts 95

6-1 Alarm Generation When Up-Down Counter Increments 118

6-2 Alarm Generation When Up-Down Counter Decrements 118

9-1 SHA Accelerator Working Mode 145

9-2 SHA Hash Algorithm Selection 145

9-6 The Storage and Length of Message digest from Different Algorithms 151

10-1 AES Accelerator Working Mode 159

10-2 Key Length and Encryption / Decryption 159

10-3 Working Status under Typical AES Working Mode 159

10-4 Text Endianness Type for Typical AES 160

10-5 Key Endianness Type for AES-128 Encryption and Decryption 160

10-6 Key Endianness Type for AES-256 Encryption and Decryption 161

10-7 Block Cipher Mode 162

10-8 Working Status under DMA-AES Working mode 163

10-9 TEXT-PADDING 163

10-10 Text Endianness for DMA-AES 164

11-1 Acceleration Performance 175

11-2 RSA Accelerator Memory Blocks 175

13-1 Key generated based on KeyA, KeyB and KeyC 191

13-2 Mapping Between Offsets and Registers 192

15-1 Data Frames and Remote Frames in SFF and EFF 204

15-2 Error Frame 205

15-3 Overload Frame 206

Espressif Systems 12
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

List of Tables

15-4 Interframe Space 206

15-5 Segments of a Nominal Bit Time 209

15-6 Bit Information of TWAI_BUS_TIMING_0_REG (0x18) 214

15-7 Bit Information of TWAI_BUS_TIMING_1_REG (0x1c) 214

15-8 Buffer Layout for Standard Frame Format and Extended Frame Format 216

15-9 TX/RX Frame Information (SFF/EFF)�TWAI Address 0x40 217

15-10 TX/RX Identifier 1 (SFF); TWAI Address 0x44 218

15-11 TX/RX Identifier 2 (SFF); TWAI Address 0x48 218

15-12 TX/RX Identifier 1 (EFF); TWAI Address 0x44 218

15-13 TX/RX Identifier 2 (EFF); TWAI Address 0x48 218

15-14 TX/RX Identifier 3 (EFF); TWAI Address 0x4c 218

15-15 TX/RX Identifier 4 (EFF); TWAI Address 0x50 218

15-16 Bit Information of TWAI_ERR_CODE_CAP_REG (0x30) 223

15-17 Bit Information of Bits SEG.4 - SEG.0 224

15-18 Bit Information of TWAI_ARB LOST CAP_REG (0x2c) 225

16-1 IN and OUT Transactions in Slave Mode 249

16-2 UTMI OTG Interface 250

17-1 SD/MMC Signal Description 257

17-2 Word DES0 of SD/MMC GDMA Linked List 263

17-3 Word DES1 of SD/MMC GDMA Linked List 264

17-4 Word DES2 of SD/MMC GDMA Linked List 264

17-5 Word DES3 of SD/MMC GDMA Linked List 264

17-6 SDHOST Clk Phase Selection 267

19-1 Counter Mode. Positive Edge of Input Pulse Signal. Control Signal in Low State 314

19-2 Counter Mode. Positive Edge of Input Pulse Signal. Control Signal in High State 314

19-3 Counter Mode. Negative Edge of Input Pulse Signal. Control Signal in Low State 314

19-4 Counter Mode. Negative Edge of Input Pulse Signal. Control Signal in High State 314

Espressif Systems 13
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

List of Figures

List of Figures

1-1 System Structure and Address Mapping 17

1-2 Cache Structure 22

1-3 Peripherals/modules that can work with GDMA 24

2-1 Architecture of IO MUX, RTC IO MUX, and GPIO Matrix 28

2-2 Internal Structure of a Pad 29

2-3 GPIO Input Synchronized on APB Clock Rising Edge or on Falling Edge 30

2-4 Filter Timing of GPIO Input Signals 30

3-1 Reset Levels 80

3-2 Clock Structure 82

5-1 Interrupt Matrix Structure 90

6-1 Timer Units within Groups 116

6-2 Timer Group Architecture 117

7-1 Watchdog Timers Overview 134

7-2 Watchdog Timers in ESP32-S3 136

7-3 Super Watchdog Controller Structure 139

8-1 XTAL32K Watchdog Timer 141

12-1 Software Preparations and Hardware Working Process 181

13-1 External Memory Encryption and Decryption Operation Settings 189

14-1 Noise Source 199

15-1 Bit Fields in Data Frames and Remote Frames 203

15-2 Fields of an Error Frame 205

15-3 Fields of an Overload Frame 206

15-4 The Fields within an Interframe Space 208

15-5 Layout of a Bit 209

15-6 TWAI Overview Diagram 211

15-7 Acceptance Filter 220

15-8 Single Filter Mode 221

15-9 Dual Filter Mode 222

15-10 Error State Transition 222

15-11 Positions of Arbitration Lost Bits 225

16-1 OTG_FS System Architecture 241

16-2 OTG_FS Register Layout 242

16-3 Host Mode FIFOs 244

16-4 Device Mode FIFOs 245

16-5 OTG_FS Interrupt Hierarchy 246

16-6 Scatter/Gather DMA Descriptor List 247

16-7 A-Device SRP 252

16-8 B-Device SRP 252

16-9 A-Device HNP 253

16-10 B-Device HNP 254

17-1 SD/MMC Controller Topology 256

17-2 SD/MMC Controller External Interface Signals 257

17-3 SDIO Host Block Diagram 258

Espressif Systems 14
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

List of Figures

17-4 Command Path State Machine 259

17-5 Data Transmit State Machine 260

17-6 Data Receive State Machine 260

17-7 Descriptor Chain 262

17-8 The Structure of a Linked List 263

17-9 Clock Phase Selection 267

18-1 LED PWM Architecture 297

18-2 LED PWM Generator Diagram 298

18-3 Frequency Division When LEDC_CLK_DIV_TIMERx is a Non-Integer Value 299

18-4 LED_PWM Output Signal Diagram 301

18-5 Output Signal Diagram of Fading Duty Cycle 301

19-1 PCNT Block Diagram 312

19-2 PCNT Unit Architecture 313

19-3 Channel 0 Up Counting Diagram 315

19-4 Channel 0 Down Counting Diagram 316

19-5 Two Channels Up Counting Diagram 316

Espressif Systems 15
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

1 System and Memory

1 System and Memory

1.1 Overview

The ESP32-S3 is a dual-core system with two Harvard Architecture Xtensa® LX7 CPUs. All internal memory,

external memory, and peripherals are located on the CPU buses.

1.2 Features

• Address Space

– 848 KB of internal memory address space accessed from the instruction bus

– 560 KB of internal memory address space accessed from the data bus

– 836 KB of peripheral address space

– 32 MB of external memory virtual address space accessed from the instruction bus

– 32 MB external memory virtual address space accessed from the data bus

– 480 KB of internal DMA address space

– 32 MB of external DMA address space

• Internal Memory

– 384 KB Internal ROM

– 512 KB Internal SRAM

– 8 KB RTC FAST Memory

– 8 KB RTC SLOW Memory

• External Memory

– Supports up to 1 GB external flash

– Supports up to 1 GB external RAM

• Peripheral Space

– 45 modules/peripherals in total

• GDMA

– 11 GDMA-supported modules/peripherals

Figure 1-1 illustrates the system structure and address mapping.

Espressif Systems 16
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

1 System and Memory

Figure 1­1. System Structure and Address Mapping

Note:

• The address space with gray background is not available to users.

• The memory or peripheral marked with a red pentagram can be accessed by the ULP co-processor.

• The range of addresses available in the address space may be larger than the actual available memory of a particular

type.

1.3 Functional Description

1.3.1 Address Mapping

The system contains two Harvard Architecture Xtensa® LX7 CPUs, and both can access the same range of

address space.

Addresses below 0x4000_0000 are accessed using the data bus. Addresses in the range of 0x4000_0000 ~

Espressif Systems 17
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

1 System and Memory

0x4FFF_FFFF are accessed using the instruction bus. Addresses over and including 0x5000_0000 are shared by

both data bus and instruction bus.

Both data bus and instruction bus are little-endian. The CPU can access data via the data bus using single-byte,

double-byte, 4-byte and 16-byte alignment. The CPU can also access data via the instruction bus, but only in

4-byte aligned manner; non-aligned data access will cause a CPU exception.

The CPU can:

• directly access the internal memory via both data bus and instruction bus;

• directly access the external memory which is mapped into the address space via cache;

• directly access modules/peripherals via data bus.

Table 1-1 lists the address ranges on the data bus and instruction bus and their corresponding target

memory.

Some internal and external memory can be accessed via both data bus and instruction bus. In such cases, the

CPU can access the same memory using multiple addresses.

Table 1­1. Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target

0x0000_0000 0x3BFF_FFFF Reserved

Data bus 0x3C00_0000 0x3DFF_FFFF 32 MB External memory

0x3E00_0000 0x3FC8_7FFF Reserved

Data bus 0x3FC8_8000 0x3FCF_FFFF 480 KB Internal memory

0x3FD0_0000 0x3FEF_FFFF Reserved

Data bus 0x3FF0_0000 0x3FF1_FFFF 128 KB Internal memory

0x3FF2_0000 0x3FFF_FFFF Reserved

Instruction bus 0x4000_0000 0x4005_FFFF 384 KB Internal memory

0x4006_0000 0x4036_FFFF Reserved

Instruction bus 0x4037_0000 0x403D_FFFF 448 KB Internal memory

0x403E_0000 0x41FF_FFFF Reserved

Instruction bus 0x4200_0000 0x43FF_FFFF 32 MB External memory

0x4400_0000 0x4FFF_FFFF Reserved

Data/Instruction

bus

0x5000_0000 0x5000_1FFF 8 KB Internal memory

0x5000_2000 0x5FFF_FFFF Reserved

Data/Instruction

bus

0x6000_0000 0x600D_0FFF 836 KB Peripherals

0x600D_1000 0x600F_DFFF Reserved

0x600F_E000 0x600F_FFFF 8 KB Internal memory

0x6010_0000 0xFFFF_FFFF Reserved

1.3.2 Internal Memory

The ESP32-S3 consists of the following three types of internal memory:

Espressif Systems 18
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

1 System and Memory

• Internal ROM (384 KB): The internal ROM is a read-only memory and cannot be programmed. Internal

ROM contains the ROM code (software instructions and some software read-only data) of some low level

system software.

• Internal SRAM (512 KB): The Internal Static RAM (SRAM) is a volatile memory that can be quickly accessed

by the CPU (generally within a single CPU clock cycle).

– A part of the SRAM can be configured to operate as a cache for external memory access, which

cannot be accessed by CPU in such case.

– Some parts of the SRAM can only be accessed via the CPU’s instruction bus.

– Some parts of the SRAM can only be accessed via the CPU’s data bus.

– Some parts of the SRAM can be accessed via both the CPU’s instruction bus and the CPU’s data bus.

• RTC Memory (16 KB): The RTC (Real Time Clock) memory implemented as Static RAM (SRAM) and thus is

volatile. However, RTC memory has the added feature of being persistent throughout deep sleep (i.e., the

RTC memory retains its values throughout deep sleep).

– RTC FAST Memory (8 KB): RTC FAST memory can only be accessed by the CPU, and cannot be

accessed by the ULP co-processor. It is generally used to store instructions and data that needs to

persist across a deep sleep.

– RTC SLOW Memory (8 KB): The RTC SLOW memory can be accessed by both the CPU and the ULP

co-processor, and thus is generally used to store instructions and share data between the CPU and

the ULP co-processor.

Based on the three different types of internal memory described above, the internal memory of the ESP32-S3 is

split into four segments: Internal ROM (384 KB), Internal SRAM (512 KB), RTC FAST Memory (8 KB) and RTC

SLOW Memory (8 KB). However, within each segment, there may be different bus access restrictions (e.g., some

parts of the segment may only be accessible by the CPU’s instruction bus). Therefore, some segments are also

further divided down into parts. Table 1-2 describes each part of internal memory and their address ranges on

the data bus and/or instruction bus.

Table 1­2. Internal Memory Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target

Data bus

0x3FF0_0000 0x3FF1_FFFF 128 KB Internal ROM 1

0x3FC8_0000 0x3FCE_FFFF 416 KB Internal SRAM 1

0x3FCF_0000 0x3FCF_FFFF 64 KB Internal SRAM 2

Instruction bus

0x4000_0000 0x4003_FFFF 256 KB Internal ROM 0

0x4004_0000 0x4005_FFFF 128 KB Internal ROM 1

0x4037_0000 0x4037_7FFF 32 KB Internal SRAM 0

0x4037_8000 0x403D_FFFF 416 KB Internal SRAM 1

Data/Instruction bus
0x5000_0000 0x5000_1FFF 8 KB RTC SLOW Memory

0x600F_E000 0x600F_FFFF 8 KB RTC FAST Memory

Espressif Systems 19
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

1 System and Memory

Note:
All of the internal memories are managed by Permission Control module. An internal memory can only be accessed

when it is allowed by Permission Control, then the internal memory can be available to the CPU. For more information

about Permission Control, please refer to Chapter 7 Permission Control (PMS) [to be added later].

1. Internal ROM 0

Internal ROM 0 is a 256 KB, read-only memory space, addressed by the CPU only through the instruction bus,

as shown in Table 1-2.

2. Internal ROM 1

Internal ROM 1 is a 128 KB, read-only memory space, addressed by the CPU through the instruction bus via

0x4004_0000 ~ 0x4005_FFFF or through the data bus via 0x3FF0_0000 ~ 0x3FF1_FFFF in the same order, as

shown in Table 1-2.

This means, for example, address 0x4005_0000 and 0x3FF0_0000 correspond to the same word, 0x4005_0004

and 0x3FF0_0004 correspond to the same word, 0x4005_0008 and 0x3FF0_0008 correspond to the same

word, etc (same below).

3. Internal SRAM 0

Internal SRAM 0 is a 32 KB, read-and-write memory space, addressed by the CPU through the instruction bus,

as shown in Table 1-2.

A 16 KB or the total 32 KB of this memory space can be configured as instruction cache (ICache) to store

instructions or read-only data of the external memory. In this case, the occupied memory space cannot be

accessed by the CPU, while the remaining can still can be accessed by the CPU.

4. Internal SRAM 1

Internal SRAM 1 is a 416 KB, read-and-write memory space, addressed by the CPU through the data bus or

instruction bus in the same order, as shown in Table 1-2.

The total 416 KB memory space comprises multiple 8 KB and 16 KB memory (sub-memory) blocks. A memory

block (up to 16 KB) can be used as a Trace Memory, in which case this block can still be accessed by the

CPU.

5. Internal SRAM 2

Internal SRAM 2 is a 64 KB, read-and-write memory space, addressed by the CPU through the data bus, as

shown in Table 1-2.

A 32 KB or the total 64 KB can be configured as data cache (DCache) to cache data of the external memory. The

space used as DCache cannot be accessed by the CPU, while the remaining space can still be accessed by the

CPU.

6. RTC FAST Memory

RTC FAST Memory is a 8 KB, read-and-write SRAM, addressed by the CPU through the data/instruction bus via

the shared address 0x600F_E000 ~ 0x600F_FFFF, as described in Table 1-2.

7. RTC SLOW Memory

RTC SLOW Memory is a 8 KB, read-and-write SRAM, addressed by the CPU through the data/instruction bus

via shared address 0x5000_E000 ~ 0x5001_FFFF, as described in Table 1-2.

Espressif Systems 20
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

1 System and Memory

RTC SLOW Memory can also be used as a peripheral addressable to the CPU via 0x6002_1000 ~
0x6002_2FFF.

1.3.3 External Memory

ESP32-S3 supports SPI, Dual SPI, Quad SPI, Octal SPI, QPI, and OPI interfaces that allow connection to

external flash and RAM. It also supports hardware encryption and decryption based on XTS_AES algorithm to

protect users’ programs and data in the external flash and RAM.

1.3.3.1 External Memory Address Mapping

The CPU accesses the external memory via the cache. According to information inside the MMU (Memory

Management Unit), the cache maps the CPU’s instruction/data bus address into a physical address of the

external flash and RAM. Due to this address mapping, ESP32-S3 can address up to 1 GB external flash and 1

GB external RAM.

Using the cache, ESP32-S3 is able to support the following address space mappings at a time:

• Up to 32 MB instruction bus address space can be mapped to the external flash or RAM as individual 64

KB blocks via the ICache. 4-byte aligned reads and fetches are supported.

• Up to 32 MB data bus address space can be mapped to the external RAM as individual 64 KB blocks via

the DCache. Single-byte, double-byte, 4-byte, 16-byte aligned reads and writes are supported. This

address space can also be mapped to the external flash or RAM for read operations only.

Table 1-3 lists the mapping between the cache and the corresponding address ranges on the data bus and

instruction bus.

Table 1­3. External Memory Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target

Data bus 0x3C00_0000 0x3DFF_FFFF 32 MB DCache

Instruction

bus

0x4200_0000 0x43FF_FFFF 32 MB ICache

Note:
Only if the CPU obtains permission for accessing the external memory, can it be responded for memory access.

For more detailed information about permission control, please refer to Chapter 7 Permission Control (PMS) [to be

added later].

1.3.3.2 Cache

As shown in Figure 1-2, ESP32-S3 has a dual-core-shared ICache and DCache structure, which allows prompt

response upon simultaneous requests from the instruction bus and data bus. Some internal memory space can

be used as cache (see Internal SRAM 0 and Internal SRAM 2 in Section 1.3.2).

When the instruction bus of two cores initiate a request on ICache simultaneously, the arbiter determines which

core gets the access to the ICache first; when the data bus of two cores initiate a request on DCache

Espressif Systems 21
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

1 System and Memory

simultaneously, the arbiter determines which gets the access to the DCache first. When a cache miss occurs, the

cache controller will initiate a request to the external memory. When ICache and DCache initiate requests on the

external memory simultaneously, the arbiter determines which gets the access to the external memory first. The

size of ICache can be configured to 16 KB or 32 KB, while its block size can be configured to 16 B or 32 B.

When an ICache is configured to 32 KB, its block cannot be 16 B. The size of DCache can be configured to 32

KB or 64 KB, while its block size can be configured to 16 B, 32 B or 64 B. When a DCache is configured to 64

KB, its block cannot be 16 B.

Figure 1­2. Cache Structure

1.3.3.3 Cache Operations

ESP32-S3 caches support the following operations:

1. Write­Back: This operation is used to clear the dirty bits in dirty blocks and update the new data to the

external memory. After the write-back operation finished, both the external memory and the cache are

bearing the new data. The CPU can then read/write the data directly from the cache. Only DCache has this

function.

If the data in the cache is newer than the one stored in the external memory, then the new data will be

considered as a dirty block. The cache tracks these dirty blocks through their dirty bits. When the dirty bits

of a data are cleared, the cache will consider the data as new.

2. Clean: This operation is used to clear dirty bits in the dirty block, without updating data to the external

memory. After the clean operation finish, there will still be old data stored in the external memory, while the

cache keeps the new one (but the cache does not know about this). The CPU can then read/write the data

directly from the cache. Only DCache has this function.

3. Invalidate: This operation is used to remove valid data in the cache. Even if the data is a dirty block

mentioned above, it will not be updated to the external memory. But for the non-dirty data, it will be only

stored in the external memory after this operation. The CPU needs to access the external memory in order

to read/write this data. As for the dirty blocks, they will be totally lost with only old data in the external

memory after this operation. There are two types of invalidate operation: automatic invalidation

(Auto-Invalidate) and manual invalidation (Manual-Invalidate). Manual-Invalidate is performed only on data in

the specified area in the cache, while Auto-Invalidate is performed on all data in the cache. Both ICache

and DCache have this function.

Espressif Systems 22
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

1 System and Memory

4. Preload: This operation is to load instructions and data into the cache in advance. The minimum unit of

preload-operation is one block. There are two types of preload-operation: manual preload

(Manual-Preload) and automatic preload (Auto-Preload). Manual-Preload means that the hardware

prefetches a piece of continuous data according to the virtual address specified by the software.

Auto-Preload means the hardware prefetches a piece of continuous data according to the current address

where the cache hits or misses (depending on configuration). Both ICache and DCache have this function.

5. Lock/Unlock: The lock operation is used to prevent the data in the cache from being easily replaced.

There are two types of lock: prelock and manual lock. When prelock is enabled, the cache locks the data

in the specified area when filling the missing data to cache memory, while the data outside the specified

area will not be locked. When manual lock is enabled, the cache checks the data that is already in the

cache memory and locks the data only if it falls in the specified area, and leaves the data outside the

specified area unlocked. When there are missing data, the cache will replace the data in the unlocked way

first, so the data in the locked way is always stored in the cache and will not be replaced. But when all

ways within the cache are locked, the cache will replace data, as if it was not locked. Unlocking is the

reverse of locking, except that it only can be done manually. Both ICache and DCache have this function.

Please note that the writing-back, cleaning and Manual-Invalidate operations will only work on the unlocked

data. If you expect to perform such operations on the locked data, please unlock them first.

1.3.4 GDMA Address Space

The GDMA (General Direct Memory Access) peripheral in ESP32-S3 can provide DMA (Direct Memory Access)

services including:

• Data transfers between different locations of internal memory;

• Data transfers between internal memory and external memory;

• Data transfers between different locations of external memory.

GDMA uses the same addresses as the CPU’s data bus to access Internal SRAM 1 and Internal SRAM 2.

Specifically, GDMA uses address range 0x3FC8_8000 ~ 0x3FCE_FFFF to access Internal SRAM 1 and

0x3FCF_0000 ~ 0x3FCF_FFFF to access Internal SRAM 2. Note that GDMA cannot access the internal memory

occupied by cache.

In addition, GDMA can access the external memory (only RAM) via the same address as CPU accessing DCache

(0x3C00_0000 ~ 0x3DFF_FFFF). When DCache and GDMA access the external memory simultaneously, the

software needs to make sure the data is consistent.

Besides, some peripherals/modules of the ESP32-S3 can work together with GDMA. In these cases, GDMA can

provide the following powerful services for them:

• Data transfers between modules/peripherals and internal memory;

• Data transfers between modules/peripherals and external memory.

There are 11 peripherals/modules that can work together with GDMA. As shown in Figure 1-3, these 11 vertical

lines in turn correspond to these 11 peripherals/modules with GDMA function, the horizontal line represents a

certain channel of GDMA (can be any channel), and the intersection of the vertical line and the horizontal line

indicates that a peripheral/module has the ability to access the corresponding channel of GDMA. If there are

multiple intersections on the same line, it means that these peripherals/modules cannot enable the GDMA

function at the same time.

Espressif Systems 23
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

1 System and Memory

Figure 1­3. Peripherals/modules that can work with GDMA

These peripherals/modules can access any memory available to GDMA. For more information, please refer to

Chapter 9 GDMA Controller (DMA) [to be added later].

Note:
When accessing a memory via GDMA, a corresponding access permission is needed, otherwise this access may

fail. For more information about permission control, please refer to Chapter 7 Permission Control (PMS) [to be added

later].

1.3.5 Modules/Peripherals

The CPU can access modules/peripherals via 0x6000_0000 ~ 0x600D_0FFF shared by the data/instruction

bus.

1.3.5.1 Module/Peripheral Address Mapping

Table 1-4 lists all the modules/peripherals and their respective address ranges. Note that the address space of

specific modules/peripherals is defined by ”Boundary Address” (including both Low Address and High

Address).

Table 1­4. Module/Peripheral Address Mapping

Boundary Address
Target

Low Address High Address
Size Notes

UART Controller 0 0x6000_0000 0x6000_0FFF 4 KB

Reserved 0x6000_1000 0x6000_1FFF

SPI Controller 1 0x6000_2000 0x6000_2FFF 4 KB

SPI Controller 0 0x6000_3000 0x6000_3FFF 4 KB

GPIO 0x6000_4000 0x6000_4FFF 4 KB

Reserved 0x6000_5000 0x6000_6FFF

Espressif Systems 24
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

1 System and Memory

Boundary Address
Target

Low Address High Address
Size Notes

eFuse Controller 0x6000_7000 0x6000_7FFF 4 KB

Low-Power Management 0x6000_8000 0x6000_8FFF 4 KB

IO MUX 0x6000_9000 0x6000_9FFF 4 KB

Reserved 0x6000_A000 0x6000_EFFF

I2S Controller 0 0x6000_F000 0x6000_FFFF 4 KB

UART Controller 1 0x6001_0000 0x6001_0FFF 4 KB

Reserved 0x6001_1000 0x6001_2FFF

I2C Controller 0 0x6001_3000 0x6001_3FFF 4 KB

UHCI0 0x6001_4000 0x6001_4FFF 4 KB

Reserved 0x6001_5000 0x6001_5FFF

Remote Control Peripheral 0x6001_6000 0x6001_6FFF 4 KB

Pulse Count Controller 0x6001_7000 0x6001_7FFF 4 KB

Reserved 0x6001_8000 0x6001_8FFF

LED PWM Controller 0x6001_9000 0x6001_9FFF 4 KB

Reserved 0x6001_A000 0x6001_DFFF

Motor Control PWM 0 0x6001_E000 0x6001_EFFF 4 KB

Timer Group 0 0x6001_F000 0x6001_FFFF 4 KB

Timer Group 1 0x6002_0000 0x6002_0FFF 4 KB

RTC SLOW Memory 0x6002_1000 0x6002_2FFF 8 KB

System Timer 0x6002_3000 0x6002_3FFF 4 KB

SPI Controller 2 0x6002_4000 0x6002_4FFF 4 KB

SPI Controller 3 0x6002_5000 0x6002_5FFF 4 KB

APB Controller 0x6002_6000 0x6002_6FFF 4 KB

I2C Controller 1 0x6002_7000 0x6002_7FFF 4 KB

SD/MMC Host Controller 0x6002_8000 0x6002_8FFF 4 KB

Reserved 0x6002_9000 0x6002_AFFF

Two-wire Automotive Interface 0x6002_B000 0x6002_BFFF 4 KB

Motor Control PWM 1 0x6002_C000 0x6002_CFFF 4 KB

I2S Controller 1 0x6002_D000 0x6002_DFFF 4 KB

UART controller 2 0x6002_E000 0x6002_EFFF 4 KB

Reserved 0x6002_F000 0x6003_7FFF

USB Serial/JTAG Controller 0x6003_8000 0x6003_8FFF 4 KB

USB External Control registers 0x6003_9000 0x6003_9FFF 4 KB 1

AES Accelerator 0x6003_A000 0x6003_AFFF 4 KB

SHA Accelerator 0x6003_B000 0x6003_BFFF 4 KB

RSA Accelerator 0x6003_C000 0x6003_CFFF 4 KB

Digital Signature 0x6003_D000 0x6003_DFFF 4 KB

HMAC Accelerator 0x6003_E000 0x6003_EFFF 4 KB

GDMA Controller 0x6003_F000 0x6003_FFFF 4 KB

ADC Controller 0x6004_0000 0x6004_0FFF 4 KB

Camera-LCD Controller 0x6004_1000 0x6004_1FFF 4 KB

Reserved 0x6004_2000 0x6007_FFFF

Espressif Systems 25
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

1 System and Memory

Boundary Address
Target

Low Address High Address
Size Notes

USB core registers 0x6008_0000 0x600B_FFFF 256 KB 1

System Registers 0x600C_0000 0x600C_0FFF 4 KB

Sensitive Register 0x600C_1000 0x600C_1FFF 4 KB

Interrupt Matrix 0x600C_2000 0x600C_2FFF 4 KB

Reserved 0x600C_3000 0x600C_3FFF

Configure Cache 0x600C_4000 0x600C_BFFF 32 KB

External Memory Encryption and

Decryption

0x600C_C000 0x600C_CFFF 4 KB

Reserved 0x600C_D000 0x600C_DFFF

Debug Assist 0x600C_E000 0x600C_EFFF 4 KB

Reserved 0x600C_F000 0x600C_FFFF

World Controller 0x600D_0000 0x600D_0FFF 4 KB

Note:

1. The address space in this module/peripheral is not continuous.

2. The CPU needs to obtain the access permission to a certain module/peripheral when initiating a request to access

it, otherwise it may fail. For more information of permission control, please see Chapter 7 Permission Control (PMS)

[to be added later].

Espressif Systems 26
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

2.1 Overview

The ESP32-S3 chip features 45 physical GPIO pins. Each pin can be used as a general-purpose I/O, or be

connected to an internal peripheral signal. Through GPIO matrix, IO MUX, and RTC IO MUX, peripheral input

signals can be from any GPIO pin, and peripheral output signals can be routed to any GPIO pin. Together these

modules provide highly configurable I/O.

Note that the 45 GPIO pins are numbered from 0 ~ 21 and 26 ~ 48. All these pins can be configured either

as input or output.

2.2 Features

GPIO Matrix Features

• A full-switching matrix between the peripheral input/output signals and the GPIO pins.

• 175 digital peripheral input signals can be sourced from the input of any GPIO pins.

• The output of any GPIO pins can be from any of the 184 digital peripheral output signals.

• Supports signal synchronization for peripheral inputs based on APB clock bus.

• Provides input signal filter.

• Supports sigma delta modulated output.

• Supports GPIO simple input and output.

IO MUX Features

• Provides one configuration register IO_MUX_GPIOn_REG for each GPIO pin. The pin can be configured to

– perform GPIO function routed by GPIO matrix;

– or perform direct connection bypassing GPIO matrix.

• Supports some high-speed digital signals (SPI, JTAG, UART) bypassing GPIO matrix for better

high-frequency digital performance. In this case, IO MUX is used to connect these pins directly to

peripherals.

RTC IO MUX Features

• Controls low power feature of 22 RTC GPIO pins.

• Controls analog functions of 22 RTC GPIO pins.

• Redirects 22 RTC input/output signals to RTC system.

2.3 Architectural Overview

Figure 2-1 shows in details how IO MUX, RTC IO MUX, and GPIO matrix route signals from pins to peripherals,

and from peripherals to pins.

Espressif Systems 27
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Figure 2­1. Architecture of IO MUX, RTC IO MUX, and GPIO Matrix

1. Only part of peripheral input signals (Y: 0 ~ 3, 7 ~ 13, 15 ~ 16, 101 ~ 110, 120 ~ 123, 155 ~ 159) can

bypass GPIO matrix. The other input signals can only be routed to peripherals via GPIO matrix.

2. There are only 45 inputs from GPIO SYNC to GPIO matrix, since ESP32-S3 provides 45 GPIO pins in total.

3. The pins supplied by VDD3P3_CPU or by VDD3P3_RTC are controlled by the signals: IE, OE, WPU, and

WPD.

4. Only part of peripheral outputs (0 ~ 13, 15 ~ 16, 101 ~ 110, 120 ~ 126) can be routed to pins bypassing

GPIO matrix. See Table 2-2.

5. There are only 45 outputs (GPIO pin X: 0 ~ 21, 26 ~ 48) from GPIO matrix to IO MUX.

Figure 2-2 shows the internal structure of a pad, which is an electrical interface between the chip logic and the

GPIO pin. The structure is applicable to all 45 GPIO pins and can be controlled using IE, OE, WPU, and WPD

signals.

Espressif Systems 28
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Figure 2­2. Internal Structure of a Pad

Note:

• IE: input enable

• OE: output enable

• WPU: internal weak pull-up

• WPD: internal weak pull-down

• Bonding pad: a terminal point of the chip logic used to make a physical connection from the chip die to GPIO pin

in the chip package.

2.4 Peripheral Input via GPIO Matrix

2.4.1 Overview

To receive a peripheral input signal via GPIO matrix, the matrix is configured to source the peripheral input signal

from one of the 45 GPIOs (0 ~ 21, 26 ~ 48), see Table 2-2. Meanwhile, register corresponding to the peripheral

signal should be set to receive input signal via GPIO matrix.

2.4.2 Signal Synchronization

When signals are directed from pins using the GPIO matrix, the signals will be synchronized to the APB bus clock

by the GPIO SYNC hardware, then go to GPIO matrix. This synchronization applies to all GPIO matrix signals but

does not apply when using the IO MUX, see Figure 2-1.

Espressif Systems 29
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Figure 2­3. GPIO Input Synchronized on APB Clock Rising Edge or on Falling Edge

Figure 2-3 shows the functionality of GPIO SYNC. In the figure, negative sync and positive sync mean GPIO input

is synchronized on APB clock falling edge and on APB clock rising edge, respectively.

2.4.3 Functional Description

To read GPIO pin X1 into peripheral signal Y, follow the steps below:

1. Configure register GPIO_FUNCy_IN_SEL_CFG_REG corresponding to peripheral signal Y in GPIO matrix:

• Set GPIO_SIGy_IN_SEL to enable peripheral signal input via GPIO matrix.

• Set GPIO_FUNCy_IN_SEL to the desired GPIO pin, i.e. X here.

Note that some peripheral signals have no valid GPIO_SIGy_IN_SEL bit, namely, these peripherals can only

receive input signals via GPIO matrix.

2. Optionally enable the filter for pin input signals by setting the register IO_MUX_FILTER_EN. Only the signals

with a valid width of more than two APB clock cycles can be sampled, see Figure 2-4.

Figure 2­4. Filter Timing of GPIO Input Signals

3. Synchronize GPIO input. To do so, please set GPIO_PINx_REG corresponding to GPIO pin X as follows:

• Set GPIO_PINx_SYNC1_BYPASS to enable input signal synchronized on rising edge or on falling edge

in the first clock, see Figure 2-3.

Espressif Systems 30
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

• Set GPIO_PINx_SYNC2_BYPASS to enable input signal synchronized on rising edge or on falling edge

in the second clock, see Figure 2-3.

4. Configure IO MUX register to enable pin input. For this end, please set IO_MUX_X_REG corresponding to

GPIO pin x as follows:

• Set IO_MUX_FUN_IE to enable input2.

• Set or clear IO_MUX_FUN_WPU and IO_MUX_FUN_WPD, as desired, to enable or disable pull-up

and pull-down resistors.

For example, to connect RMT channel 0 input signal3 (rmt_sig_in0, signal index 81) to GPIO40, please follow the

steps below. Note that GPIO40 is also named as MTDO pin.

1. Set GPIO_SIG81_IN_SEL in register GPIO_FUNC81_IN_SEL_CFG_REG to enable peripheral signal input

via GPIO matrix.

2. Set GPIO_FUNC81_IN_SEL in register GPIO_FUNC81_IN_SEL_CFG_REG to 40, i.e. select GPIO40.

3. Set IO_MUX_FUN_IE in register IO_MUX_GPIO40_REG to enable pin input.

Note:

1. One pin input can be connected to multiple peripheral input signals.

2. The input signal can be inverted by configuring GPIO_FUNCy_IN_INV_SEL.

3. It is possible to have a peripheral read a constantly low or constantly high input value without connecting this input

to a pin. This can be done by selecting a special GPIO_FUNCy_IN_SEL input, instead of a GPIO number:

• When GPIO_FUNCy_IN_SEL is set to 0x3C, input signal is always 0.

• When GPIO_FUNCy_IN_SEL is set to 0x38, input signal is always 1.

2.4.4 Simple GPIO Input

GPIO_IN_REG/GPIO_IN1_REG holds the input values of each GPIO pin. The input value of any GPIO pin can be

read at any time without configuring GPIO matrix for a particular peripheral signal. However, it is necessary to

enable pin input by setting IO_MUX_FUN_IE in register IO_MUX_x_REG corresponding to pin X, as described in

Section 2.4.2.

2.5 Peripheral Output via GPIO Matrix

2.5.1 Overview

To output a signal from a peripheral via GPIO matrix, the matrix is configured to route peripheral output signals (0

~ 255) to one of the 45 GPIOs (0 ~ 21, 26 ~ 48). See Table 2-2.

The output signal is routed from the peripheral into GPIO matrix and then into IO MUX. IO MUX must be

configured to set the chosen pin to GPIO function. This enables the output GPIO signal to be connected to the

pin.

Note:

There is a range of peripheral output signals (208 ~ 212) which are not connected to any peripheral, but to the input

signals (208 ~ 212) directly. These can be used to input a signal from one GPIO pin and output directly to another GPIO

Espressif Systems 31
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

pin.

2.5.2 Functional Description

Some of the 256 output signals can be set to go through GPIO matrix into IO MUX and then to a pin. Figure 2-1

illustrates the configuration.

To output peripheral signal Y to a particular GPIO pin X1 , 2, follow these steps:

1. Configure GPIO_FUNCx_OUT_SEL_CFG_REG and GPIO_ENABLE_REG[x] corresponding to GPIO pin X in

GPIO matrix. Recommended operation: use corresponding W1TS (write 1 to set) and W1TC (write 1 to

clear) registers to set or clear GPIO_ENABLE_REG.

• Set the GPIO_FUNCx_OUT_SEL field in register GPIO_FUNCx_OUT_SEL_CFG_REG to the index of

the desired peripheral output signal Y.

• If the signal should always be enabled as an output, set the bit GPIO_FUNCx_OEN_SEL in register

GPIO_FUNCx_OUT_SEL_CFG_REG and the bit in register GPIO_ENABLE/ENABLE1_W1TS_REG,

corresponding to GPIO pin X. To have the output enable signal decided by internal logic (for example,

the SPIQ_oe in column “Output enable signal when GPIO_FUNCn_OEN_SEL = 0” in Table 2-2), clear

the bit GPIO_FUNCx_OEN_SEL instead.

• Set the corresponding bit in register GPIO_ENABLE/ENABLE1_W1TC_REG to disable the output

from the GPIO pin.

2. For an open drain output, set the bit GPIO_PINx_PAD_DRIVER in register GPIO_PINx_REG corresponding

to GPIO pin X.

3. Configure IO MUX register to enable output via GPIO matrix. Set the IO_MUX_x_REG corresponding to

GPIO pin X as follows:

• Set the field IO_MUX_MCU_SEL to desired IO MUX function corresponding to GPIO pin X. This is

Function 1 (GPIO function), numeric value 1, for all pins.

• Set the field IO_MUX_FUN_DRV to the desired value for output strength (0 ~ 3). The higher the driver

strength, the more current can be sourced/sunk from the pin.

– 0: ~5 mA

– 1: ~10 mA

– 2: ~20 mA (default value)

– 3: ~40 mA

• If using open drain mode, set/clear IO_MUX_FUN_WPU and IO_MUX_FUN_WPD to enable/disable

the internal pull-up/pull-down resistors.

Note:

1. The output signal from a single peripheral can be sent to multiple pins simultaneously.

2. The output signal can be inverted by setting GPIO_FUNCx_OUT_INV_SEL.

Espressif Systems 32
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

2.5.3 Simple GPIO Output

GPIO matrix can also be used for simple GPIO output. This can be done as below:

• Set GPIO matrix GPIO_FUNCn_OUT_SEL with a special peripheral index 256 (0x100);

• Set the corresponding bit in GPIO_OUT_REG[31:0] or GPIO_OUT1_REG[21:0] to the desired GPIO output

value.

Note:

• GPIO_OUT_REG[21:0] and GPIO_OUT_REG[31:26] correspond to GPIO0 ~ 21 and GPIO26 ~ 31, respectively.

GPIO_OUT_REG[25:22] are invalid.

• GPIO_OUT1_REG[16:0] correspond to GPIO32 ~ 48, and GPIO_OUT1_REG[21:17] are invalid.

• Recommended operation: use corresponding W1TS and W1TC registers, such as GPIO_OUT_W1TS/GPIO_OUT_

W1TC to set or clear the registers GPIO_OUT_REG/GPIO_OUT1_REG.

2.5.4 Sigma Delta Modulated Output

2.5.4.1 Functional Description

Eight out of the 256 peripheral outputs (index: 93 ~ 100) support 1-bit second-order sigma delta modulation. By

default output is enabled for these eight channels. This Sigma Delta modulator can also output PDM (pulse

density modulation) signal with configurable duty cycle. The transfer function is:

H(z) = X(z)z−1 + E(z)(1-z−1)2

E(z) is quantization error and X(z) is the input.

This modulator supports scaling down of APB_CLK by divider 1 ~ 256:

• Set GPIO_FUNCTION_CLK_EN to enable the modulator clock.

• Configure GPIO_SDn_PRESCALE (n is 0 ~ 7 for eight channels).

After scaling, the clock cycle is equal to one pulse output cycle from the modulator.

GPIO_SDn_IN is a signed number with a range of [-128, 127] and is used to control the duty cycle 1 of PDM

output signal.

• GPIO_SDn_IN = -128, the duty cycle of the output signal is 0%.

• GPIO_SDn_IN = 0, the duty cycle of the output signal is near 50%.

• GPIO_SDn_IN = 127, the duty cycle of the output signal is close to 100%.

The formula for calculating PDM signal duty cycle is shown as below:

Duty_Cycle =
GPIO_SDn_IN + 128

256

Note:

For PDM signals, duty cycle refers to the percentage of high level cycles to the whole statistical period (several pulse

Espressif Systems 33
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

cycles, for example 256 pulse cycles).

2.5.4.2 SDM Configuration

The configuration of SDM is shown below:

• Route one of SDM outputs to a pin via GPIO matrix, see Section 2.5.2.

• Enable the modulator clock by setting GPIO_FUNCTION_CLK_EN.

• Configure the divider value by setting GPIO_SDn_PRESCALE.

• Configure the duty cycle of SDM output signal by setting GPIO_SDn_IN.

2.6 Dedicated GPIO

2.7 Direct Input and Output via IO MUX

2.7.1 Overview

Some high-speed signals (SPI and JTAG) can bypass GPIO matrix for better high-frequency digital performance.

In this case, IO MUX is used to connect these pins directly to the peripherals.

This option is less flexible than routing signals via GPIO matrix, as the IO MUX register for each GPIO pin can only

select from a limited number of functions, but high-frequency digital performance can be improved.

2.7.2 Functional Description

Two registers must be configured in order to bypass GPIO matrix for peripheral input signals:

1. IO_MUX_MCU_SEL for the GPIO pin must be set to the required pin function. For the list of pin functions,

please refer to Section 2.13.

2. Clear GPIO_SIGn_IN_SEL to route the input directly to the peripheral.

To bypass GPIO matrix for peripheral output signals, IO_MUX_MCU_SEL for the GPIO pin must be set to the

required pin function. For the list of pin functions, please refer to Section 2.13.

Note:

Not all signals can be connected to peripheral via IO MUX. Some input/output signals can only be connected to peripheral

via GPIO matrix.

2.8 RTC IO MUX for Low Power and Analog Input/Output

2.8.1 Overview

ESP32-S3 provides 22 GPIO pins with low power capabilities (RTC) and analog functions, which are handled by

the RTC subsystem of ESP32-S3. IO MUX and GPIO matrix are not used for these functions, rather, RTC IO

MUX is used to redirect 22 RTC input/output signals to the RTC subsystem.

When configured as RTC GPIOs, the output pins can still retain the output level value when the chip is in

Deep-sleep mode, and the input pins can wake up the chip from Deep-sleep.

Espressif Systems 34
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

2.8.2 Low Power Capabilities

The pins with RTC functions are controlled by RTC_IO_TOUCH/RTC_PADn_MUX_SEL bit in register

RTC_IO_

TOUCH/RTC_PADn_REG. By default all bits in these registers are set to 0, routing all input/output signals via IO

MUX.

If RTC_IO_TOUCH/RTC_PADn_MUX_SEL is set to 1, then input/output signals to and from that pin is routed to

the RTC subsystem. In this mode, RTC_IO_TOUCH/RTC_PADn_REG is used to control RTC low power pins.

Note that RTC_IO_TOUCH/RTC_PADn_REG applies the RTC GPIO pin numbering, not the GPIO pin numbering.

See Table 2-4 for RTC functions of RTC IO MUX pins.

2.8.3 Analog Functions

When the pin is used for analog purpose, make sure this pin is left floating by configuring the register

RTC_IO_TOUCH

/RTC_PADn_REG. By such way, external analog signal is connected to internal analog signal via GPIO pin. The

configuration is as follows:

• Set RTC_IO_TOUCH/RTC_PADn_MUX_SEL, to select RTC IO MUX to route input and output signals.

• Clear RTC_IO_TOUCH/RTC_PADn_FUN_IE, RTC_IO_TOUCH/RTC_PADn_

FUN_RUE, and RTC_IO_TOUCH/RTC_PADn_FUN_RDE, to set this pin floating.

• Configure RTC_IO_TOUCH/RTC_PADn_FUN_SEL to 0, to enable analog function 0.

• Write 1 to RTC_GPIO_ENABLE_W1TC, to clear output enable.

See Table 2-5 for analog functions of RTC IO MUX pins.

2.9 Pin Functions in Light­sleep

Pins may provide different functions when ESP32-S3 is in Light-sleep mode. If IO_MUX_SLP_SEL in register

IO_MUX_n_REG for a GPIO pin is set to 1, a different set of bits will be used to control the pin when the chip is in

Light-sleep mode.

Table 2­1. Bits Used to Control IO MUX Functions in Light­sleep Mode

Normal Execution Light­sleep Mode
IO MUX Functions

OR IO_MUX_SLP_SEL = 0 AND IO_MUX_SLP_SEL = 1

Output Drive Strength IO_MUX_FUN_DRV IO_MUX_FUN_DRV

Pull-up Resistor IO_MUX_FUN_WPU IO_MUX_MCU_WPU

Pull-down Resistor IO_MUX_FUN_WPD IO_MUX_MCU_WPD

Output Enable OEN_SEL from GPIO matrix ∗ IO_MUX_MCU_OE

Note:

If IO_MUX_SLP_SEL is set to 0, pin functions remain the same in both normal execution and Light-sleep mode. Please

refer to Section 2.5.2 for how to enable output in normal execution.

Espressif Systems 35
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

2.10 Pin Hold Feature

Each GPIO pin (including the RTC pins) has an individual hold function controlled by an RTC register. When the

pin is set to hold, the state is latched at that moment and will not change no matter how the internal signals

change or how the IO MUX/GPIO configuration is modified. Users can use the hold function for the pins to retain

the pin state through a core reset and system reset triggered by watchdog time-out or Deep-sleep events.

Note:

• For digital pins, to maintain pin input/output status in Deep-sleep mode, users can set RTC_CNTL_DG_PAD_

FORCE_UNHOLD to 0 before powering down. For RTC pins, the input and output values are controlled by the

corresponding bits of register RTC_CNTL_PAD_HOLD_REG, and users can set it to 1 to hold the value or set it to

0 to unhold the value.

• To disable the hold function after the chip is woken up, users can set RTC_CNTL_DG_PAD_FORCE_UNHOLD to

1. To maintain the hold function of the pin, users can set the corresponding bit in register RTC_CNTL_PAD_

HOLD_REG to 1.

2.11 Power Supply and Management of GPIO Pins

2.11.1 Power Supply of GPIO Pins

For more information on the power supply for GPIO pins, please refer to Pin Definition in ESP32-S3

Datasheet.

2.11.2 Power Supply Management

Each ESP32-S3 pin is connected to one of the three different power domains.

• VDD3P3_RTC: the input power supply for both RTC and CPU

• VDD3P3_CPU: the input power supply for CPU

• VDD_SPI: configurable input/output power supply

VDD_SPI can be configured to use an internal LDO. The LDO input and output both are 1.8 V. If the LDO is not

enabled, VDD_SPI is connected directly to the same power supply as VDD3P3_RTC.

The VDD_SPI configuration is determined by the value of strapping pin GPIO45, or can be overriden by eFuse

and/or register settings. See ESP32-S3 Datasheet sections Power Scheme and Strapping Pins for more

details.

Note that GPIO33 ~ GPIO37 can be powered either by VDD_SPI or VDD3P3_CPU.

2.12 Peripheral Signals via GPIO Matrix

Table 2-2 shows the peripheral input/output signals via GPIO matrix.

Please pay attention to the configuration of the bit GPIO_FUNCn_OEN_SEL:

• GPIO_FUNCn_OEN_SEL = 1: the output enable is controlled by the corresponding bit n of

GPIO_ENABLE_REG:

– GPIO_ENABLE_REG = 0: output is disabled;

Espressif Systems 36
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

– GPIO_ENABLE_REG = 1: output is enabled;

• GPIO_FUNCn_OEN_SEL = 0: use the output enable signal from peripheral, for example SPIQ_oe in the

column “Output enable signal when GPIO_FUNCn_OEN_SEL = 0” of Table 2-2. Note that the signals such

as SPIQ_oe can be 1 (1’d1) or 0 (1’d0), depending on the configuration of corresponding peripherals. If it’s

1’d1 in the “Output enable signal when GPIO_FUNCn_OEN_SEL = 0”, it indicates that once the register

GPIO_FUNCn_OEN_SEL is cleared, the output signal is always enabled by default.

Note:

Signals are numbered consecutively, but not all signals are valid.

• For input signals, only 0 ~ 3, 7 ~ 48, 51 ~ 54, 58 ~ 62, 66 ~ 71, 73, 81 ~ 84, 89 ~ 92, 101 ~ 110, 116, 120 ~ 123,

129 ~ 131, 133 ~ 152, 155 ~ 187, 192 ~ 199, 208 ~ 228, and 251 ~ 255 are valid.

• For output signals, only 0 ~ 32, 54, 60 ~ 84, 89 ~ 187, 208 ~ 228, and 251 ~ 250 are valid.

Espressif Systems 37
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

2
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Table 2­2. Peripheral Signals via GPIO Matrix

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

0 SPIQ_in 0 yes SPIQ_out SPIQ_oe yes

1 SPID_in 0 yes SPID_out SPID_oe yes

2 SPIHD_in 0 yes SPIHD_out SPIHD_oe yes

3 SPIWP_in 0 yes SPIWP_out SPIWP_oe yes

4 - - - SPICLK_out_mux SPICLK_oe yes

5 - - - SPICS0_out SPICS0_oe yes

6 - - - SPICS1_out SPICS1_oe yes

7 SPID4_in 0 yes SPID4_out SPID4_oe yes

8 SPID5_in 0 yes SPID5_out SPID5_oe yes

9 SPID6_in 0 yes SPID6_out SPID6_oe yes

10 SPID7_in 0 yes SPID7_out SPID7_oe yes

11 SPIDQS_in 0 yes SPIDQS_out SPIDQS_oe yes

12 U0RXD_in 0 yes U0TXD_out 1’d1 yes

13 U0CTS_in 0 yes U0RTS_out 1’d1 yes

14 U0DSR_in 0 no U0DTR_out 1’d1 no

15 U1RXD_in 0 yes U1TXD_out 1’d1 yes

16 U1CTS_in 0 yes U1RTS_out 1’d1 yes

17 U1DSR_in 0 no U1DTR_out 1’d1 no

18 U2RXD_in 0 no U2TXD_out 1’d1 no

19 U2CTS_in 0 no U2RTS_out 1’d1 no

20 U2DSR_in 0 no U2DTR_out 1’d1 no

21 I2S1_MCLK_in 0 no I2S1_MCLK_out 1’d1 no

22 I2S0O_BCK_in 0 no I2S0O_BCK_out 1’d1 no

23 I2S0_MCLK_in 0 no I2S0_MCLK_out 1’d1 no

24 I2S0O_WS_in 0 no I2S0O_WS_out 1’d1 no

E
spressifS

ystem
s

38
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

2
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

25 I2S0I_SD_in 0 no I2S0O_SD_out 1’d1 no

26 I2S0I_BCK_in 0 no I2S0I_BCK_out 1’d1 no

27 I2S0I_WS_in 0 no I2S0I_WS_out 1’d1 no

28 I2S1O_BCK_in 0 no I2S1O_BCK_out 1’d1 no

29 I2S1O_WS_in 0 no I2S1O_WS_out 1’d1 no

30 I2S1I_SD_in 0 no I2S1O_SD_out 1’d1 no

31 I2S1I_BCK_in 0 no I2S1I_BCK_out 1’d1 no

32 I2S1I_WS_in 0 no I2S1I_WS_out 1’d1 no

33 pcnt_sig_ch0_in0 0 no - 1’d1 no

34 pcnt_sig_ch1_in0 0 no - 1’d1 no

35 pcnt_ctrl_ch0_in0 0 no - 1’d1 -

36 pcnt_ctrl_ch1_in0 0 no - 1’d1 -

37 pcnt_sig_ch0_in1 0 no - 1’d1 -

38 pcnt_sig_ch1_in1 0 no - 1’d1 -

39 pcnt_ctrl_ch0_in1 0 no - 1’d1 -

40 pcnt_ctrl_ch1_in1 0 no - 1’d1 -

41 pcnt_sig_ch0_in2 0 no - 1’d1 -

42 pcnt_sig_ch1_in2 0 no - 1’d1 -

43 pcnt_ctrl_ch0_in2 0 no - 1’d1 -

44 pcnt_ctrl_ch1_in2 0 no - 1’d1 -

45 pcnt_sig_ch0_in3 0 no - 1’d1 -

46 pcnt_sig_ch1_in3 0 no - 1’d1 -

47 pcnt_ctrl_ch0_in3 0 no - 1’d1 -

48 pcnt_ctrl_ch1_in3 0 no - 1’d1 -

49 - - - - 1’d1 -

50 - - - - 1’d1 -

51 I2S0I_SD1_in 0 no - 1’d1 -

E
spressifS

ystem
s

39
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

2
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

52 I2S0I_SD2_in 0 no - 1’d1 -

53 I2S0I_SD3_in 0 no - 1’d1 -

54 Core1_gpio_in7 0 no Core1_gpio_out7 1’d1 no

55 - - - - 1’d1 -

56 - - - - 1’d1 -

57 - - - - 1’d1 -

58 usb_otg_iddig_in 0 no - 1’d1 -

59 usb_otg_avalid_in 0 no - 1’d1 -

60 usb_srp_bvalid_in 0 no usb_otg_idpullup 1’d1 no

61 usb_otg_vbusvalid_in 0 no usb_otg_dppulldown 1’d1 no

62 usb_srp_sessend_in 0 no usb_otg_dmpulldown 1’d1 no

63 - - - usb_otg_drvvbus 1’d1 no

64 - - - usb_srp_chrgvbus 1’d1 no

65 - - - usb_srp_dischrgvbus 1’d1 no

66 SPI3_CLK_in 0 no SPI3_CLK_out_mux SPI3_CLK_oe no

67 SPI3_Q_in 0 no SPI3_Q_out SPI3_Q_oe no

68 SPI3_D_in 0 no SPI3_D_out SPI3_D_oe no

69 SPI3_HD_in 0 no SPI3_HD_out SPI3_HD_oe no

70 SPI3_WP_in 0 no SPI3_WP_out SPI3_WP_oe no

71 SPI3_CS0_in 0 no SPI3_CS0_out SPI3_CS0_oe no

72 - - - SPI3_CS1_out SPI3_CS1_oe no

73 ext_adc_start 0 no ledc_ls_sig_out0 1’d1 no

74 - - - ledc_ls_sig_out1 1’d1 no

75 - - - ledc_ls_sig_out2 1’d1 no

76 - - - ledc_ls_sig_out3 1’d1 no

77 - - - ledc_ls_sig_out4 1’d1 no

78 - - - ledc_ls_sig_out5 1’d1 no

E
spressifS

ystem
s

40
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

2
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

79 - - - ledc_ls_sig_out6 1’d1 no

80 - - - ledc_ls_sig_out7 1’d1 no

81 rmt_sig_in0 0 no rmt_sig_out0 1’d1 no

82 rmt_sig_in1 0 no rmt_sig_out1 1’d1 no

83 rmt_sig_in2 0 no rmt_sig_out2 1’d1 no

84 rmt_sig_in3 0 no rmt_sig_out3 1’d1 no

85 - - - - 1’d1 -

86 - - - - 1’d1 -

87 - - - - 1’d1 -

88 - - - - 1’d1 -

89 I2CEXT0_SCL_in 1 no I2CEXT0_SCL_out I2CEXT0_SCL_oe no

90 I2CEXT0_SDA_in 1 no I2CEXT0_SDA_out I2CEXT0_SDA_oe no

91 I2CEXT1_SCL_in 1 no I2CEXT1_SCL_out I2CEXT1_SCL_oe no

92 I2CEXT1_SDA_in 1 no I2CEXT1_SDA_out I2CEXT1_SDA_oe no

93 - - - gpio_sd0_out 1’d1 no

94 - - - gpio_sd1_out 1’d1 no

95 - - - gpio_sd2_out 1’d1 no

96 - - - gpio_sd3_out 1’d1 no

97 - - - gpio_sd4_out 1’d1 no

98 - - - gpio_sd5_out 1’d1 no

99 - - - gpio_sd6_out 1’d1 no

100 - - - gpio_sd7_out 1’d1 no

101 FSPICLK_in 0 yes FSPICLK_out_mux FSPICLK_oe yes

102 FSPIQ_in 0 yes FSPIQ_out FSPIQ_oe yes

103 FSPID_in 0 yes FSPID_out FSPID_oe yes

104 FSPIHD_in 0 yes FSPIHD_out FSPIHD_oe yes

105 FSPIWP_in 0 yes FSPIWP_out FSPIWP_oe yes

E
spressifS

ystem
s

41
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

2
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

106 FSPIIO4_in 0 yes FSPIIO4_out FSPIIO4_oe yes

107 FSPIIO5_in 0 yes FSPIIO5_out FSPIIO5_oe yes

108 FSPIIO6_in 0 yes FSPIIO6_out FSPIIO6_oe yes

109 FSPIIO7_in 0 yes FSPIIO7_out FSPIIO7_oe yes

110 FSPICS0_in 0 yes FSPICS0_out FSPICS0_oe yes

111 - - - FSPICS1_out FSPICS1_oe no

112 - - - FSPICS2_out FSPICS2_oe no

113 - - - FSPICS3_out FSPICS3_oe no

114 - - - FSPICS4_out FSPICS4_oe no

115 - - - FSPICS5_out FSPICS5_oe no

116 twai_rx 1 no twai_tx 1’d1 no

117 - - - twai_bus_off_on 1’d1 no

118 - - - twai_clkout 1’d1 no

119 - - - SUBSPICLK_out_mux SUBSPICLK_oe no

120 SUBSPIQ_in 0 yes SUBSPIQ_out SUBSPIQ_oe yes

121 SUBSPID_in 0 yes SUBSPID_out SUBSPID_oe yes

122 SUBSPIHD_in 0 yes SUBSPIHD_out SUBSPIHD_oe yes

123 SUBSPIWP_in 0 yes SUBSPIWP_out SUBSPIWP_oe yes

124 - - - SUBSPICS0_out SUBSPICS0_oe yes

125 - - - SUBSPICS1_out SUBSPICS1_oe yes

126 - - - FSPIDQS_out FSPIDQS_oe yes

127 - - - SPI3_CS2_out SPI3_CS2_oe no

128 - - - I2S0O_SD1_out 1’d1 no

129 Core1_gpio_in0 0 no Core1_gpio_out0 1’d1 no

130 Core1_gpio_in1 0 no Core1_gpio_out1 1’d1 no

131 Core1_gpio_in2 0 no Core1_gpio_out2 1’d1 no

132 - - - LCD_CS 1’d1 no

E
spressifS

ystem
s

42
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

2
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

133 CAM_DATA_in0 0 no LCD_DATA_out0 1’d1 no

134 CAM_DATA_in1 0 no LCD_DATA_out1 1’d1 no

135 CAM_DATA_in2 0 no LCD_DATA_out2 1’d1 no

136 CAM_DATA_in3 0 no LCD_DATA_out3 1’d1 no

137 CAM_DATA_in4 0 no LCD_DATA_out4 1’d1 no

138 CAM_DATA_in5 0 no LCD_DATA_out5 1’d1 no

139 CAM_DATA_in6 0 no LCD_DATA_out6 1’d1 no

140 CAM_DATA_in7 0 no LCD_DATA_out7 1’d1 no

141 CAM_DATA_in8 0 no LCD_DATA_out8 1’d1 no

142 CAM_DATA_in9 0 no LCD_DATA_out9 1’d1 no

143 CAM_DATA_in10 0 no LCD_DATA_out10 1’d1 no

144 CAM_DATA_in11 0 no LCD_DATA_out11 1’d1 no

145 CAM_DATA_in12 0 no LCD_DATA_out12 1’d1 no

146 CAM_DATA_in13 0 no LCD_DATA_out13 1’d1 no

147 CAM_DATA_in14 0 no LCD_DATA_out14 1’d1 no

148 CAM_DATA_in15 0 no LCD_DATA_out15 1’d1 no

149 CAM_PCLK 0 no CAM_CLK 1’d1 no

150 CAM_H_ENABLE 0 no LCD_H_ENABLE 1’d1 no

151 CAM_H_SYNC 0 no LCD_H_SYNC 1’d1 no

152 CAM_V_SYNC 0 no LCD_V_SYNC 1’d1 no

153 - - - LCD_DC 1’d1 no

154 - - - LCD_PCLK 1’d1 no

155 SUBSPID4_in 0 yes SUBSPID4_out SUBSPID4_oe no

156 SUBSPID5_in 0 yes SUBSPID5_out SUBSPID5_oe no

157 SUBSPID6_in 0 yes SUBSPID6_out SUBSPID6_oe no

158 SUBSPID7_in 0 yes SUBSPID7_out SUBSPID7_oe no

159 SUBSPIDQS_in 0 yes SUBSPIDQS_out SUBSPIDQS_oe no

E
spressifS

ystem
s

43
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

2
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

160 pwm0_sync0_in 0 no pwm0_out0a 1’d1 no

161 pwm0_sync1_in 0 no pwm0_out0b 1’d1 no

162 pwm0_sync2_in 0 no pwm0_out1a 1’d1 no

163 pwm0_f0_in 0 no pwm0_out1b 1’d1 no

164 pwm0_f1_in 0 no pwm0_out2a 1’d1 no

165 pwm0_f2_in 0 no pwm0_out2b 1’d1 no

166 pwm0_cap0_in 0 no pwm1_out0a 1’d1 no

167 pwm0_cap1_in 0 no pwm1_out0b 1’d1 no

168 pwm0_cap2_in 0 no pwm1_out1a 1’d1 no

169 pwm1_sync0_in 0 no pwm1_out1b 1’d1 no

170 pwm1_sync1_in 0 no pwm1_out2a 1’d1 no

171 pwm1_sync2_in 0 no pwm1_out2b 1’d1 no

172 pwm1_f0_in 0 no sdhost_cclk_out_1 1’d1 no

173 pwm1_f1_in 0 no sdhost_cclk_out_2 1’d1 no

174 pwm1_f2_in 0 no sdhost_rst_n_1 1’d1 no

175 pwm1_cap0_in 0 no sdhost_rst_n_2 1’d1 no

176 pwm1_cap1_in 0 no
sd-

host_ccmd_od_pullup_en_n
1’d1 no

177 pwm1_cap2_in 0 no sdio_tohost_int_out 1’d1 no

178 sdhost_ccmd_in_1 1 no sdhost_ccmd_out_1 sdhost_ccmd_out_en_1 no

179 sdhost_ccmd_in_2 1 no sdhost_ccmd_out_2 sdhost_ccmd_out_en_2 no

180 sdhost_cdata_in_10 1 no sdhost_cdata_out_10 sdhost_cdata_out_en_10 no

181 sdhost_cdata_in_11 1 no sdhost_cdata_out_11 sdhost_cdata_out_en_11 no

182 sdhost_cdata_in_12 1 no sdhost_cdata_out_12 sdhost_cdata_out_en_12 no

183 sdhost_cdata_in_13 1 no sdhost_cdata_out_13 sdhost_cdata_out_en_13 no

184 sdhost_cdata_in_14 1 no sdhost_cdata_out_14 sdhost_cdata_out_en_14 no

185 sdhost_cdata_in_15 1 no sdhost_cdata_out_15 sdhost_cdata_out_en_15 no

E
spressifS

ystem
s

44
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

2
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

186 sdhost_cdata_in_16 1 no sdhost_cdata_out_16 sdhost_cdata_out_en_16 no

187 sdhost_cdata_in_17 1 no sdhost_cdata_out_17 sdhost_cdata_out_en_17 no

188 - - - - 1’d1 -

189 - - - - 1’d1 -

190 - - - - 1’d1 -

191 - - - - 1’d1 -

192 sdhost_data_strobe_1 0 no - 1’d1 -

193 sdhost_data_strobe_2 0 no - 1’d1 -

194 sdhost_card_detect_n_1 0 no - 1’d1 -

195 sdhost_card_detect_n_2 0 no - 1’d1 -

196 sdhost_card_write_prt_1 0 no - 1’d1 -

197 sdhost_card_write_prt_2 0 no - 1’d1 -

198 sdhost_card_int_n_1 0 no - 1’d1 -

199 sdhost_card_int_n_2 0 no - 1’d1 -

200 - - - - 1’d1 no

201 - - - - 1’d1 no

202 - - - - 1’d1 no

203 - - - - 1’d1 no

204 - - - - 1’d1 no

205 - - - - 1’d1 no

206 - - - - 1’d1 no

207 - - - - 1’d1 no

208 sig_in_func_208 0 no sig_in_func208 1’d1 no

209 sig_in_func_209 0 no sig_in_func209 1’d1 no

210 sig_in_func_210 0 no sig_in_func210 1’d1 no

211 sig_in_func_211 0 no sig_in_func211 1’d1 no

212 sig_in_func_212 0 no sig_in_func212 1’d1 no

E
spressifS

ystem
s

45
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

2
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

213 sdhost_cdata_in_20 1 no sdhost_cdata_out_20 sdhost_cdata_out_en_20 no

214 sdhost_cdata_in_21 1 no sdhost_cdata_out_21 sdhost_cdata_out_en_21 no

215 sdhost_cdata_in_22 1 no sdhost_cdata_out_22 sdhost_cdata_out_en_22 no

216 sdhost_cdata_in_23 1 no sdhost_cdata_out_23 sdhost_cdata_out_en_23 no

217 sdhost_cdata_in_24 1 no sdhost_cdata_out_24 sdhost_cdata_out_en_24 no

218 sdhost_cdata_in_25 1 no sdhost_cdata_out_25 sdhost_cdata_out_en_25 no

219 sdhost_cdata_in_26 1 no sdhost_cdata_out_26 sdhost_cdata_out_en_26 no

220 sdhost_cdata_in_27 1 no sdhost_cdata_out_27 sdhost_cdata_out_en_27 no

221 pro_alonegpio_in0 0 no pro_alonegpio_out0 1’d1 no

222 pro_alonegpio_in1 0 no pro_alonegpio_out1 1’d1 no

223 pro_alonegpio_in2 0 no pro_alonegpio_out2 1’d1 no

224 pro_alonegpio_in3 0 no pro_alonegpio_out3 1’d1 no

225 pro_alonegpio_in4 0 no pro_alonegpio_out4 1’d1 no

226 pro_alonegpio_in5 0 no pro_alonegpio_out5 1’d1 no

227 pro_alonegpio_in6 0 no pro_alonegpio_out6 1’d1 no

228 pro_alonegpio_in7 0 no pro_alonegpio_out7 1’d1 no

229 - - - - 1’d1 -

230 - - - - 1’d1 -

231 - - - - 1’d1 -

232 - - - - 1’d1 -

233 - - - - 1’d1 -

234 - - - - 1’d1 -

235 - - - - 1’d1 -

236 - - - - 1’d1 -

237 - - - - 1’d1 -

238 - - - - 1’d1 -

239 - - - - 1’d1 -

E
spressifS

ystem
s

46
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

2
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

240 - - - - 1’d1 -

241 - - - - 1’d1 -

242 - - - - 1’d1 -

243 - - - - 1’d1 -

244 - - - - 1’d1 -

245 - - - - 1’d1 -

246 - - - - 1’d1 -

247 - - - - 1’d1 -

248 - - - - 1’d1 -

249 - - - - 1’d1 -

250 - - - - 1’d1 -

251 usb_jtag_tdo_bridge 0 no usb_jtag_trst 1’d1 no

252 Core1_gpio_in3 0 no Core1_gpio_out3 1’d1 no

253 Core1_gpio_in4 0 no Core1_gpio_out4 1’d1 no

254 Core1_gpio_in5 0 no Core1_gpio_out5 1’d1 no

255 Core1_gpio_in6 0 no Core1_gpio_out6 1’d1 no

E
spressifS

ystem
s

47
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

2.13 IO MUX Function List

Table 2-3 shows the IO MUX functions of each GPIO pin.

Table 2­3. IO MUX Pin Functions

GPIO Pin Name Function 0 Function 1 Function 2 Function 3 Function 4 DRV RST Notes

0 GPIO0 GPIO0 GPIO0 - - - 2 3 R

1 GPIO1 GPIO1 GPIO1 - - - 2 1 R

2 GPIO2 GPIO2 GPIO2 - - - 2 1 R

3 GPIO3 GPIO3 GPIO3 - - - 2 1 R

4 GPIO4 GPIO4 GPIO4 - - - 2 0 R

5 GPIO5 GPIO5 GPIO5 - - - 2 0 R

6 GPIO6 GPIO6 GPIO6 - - - 2 0 R

7 GPIO7 GPIO7 GPIO7 - - - 2 0 R

8 GPIO8 GPIO8 GPIO8 - SUBSPICS1 - 2 0 R

9 GPIO9 GPIO9 GPIO9 - SUBSPIHD FSPIHD 2 1 R

10 GPIO10 GPIO10 GPIO10 FSPIIO4 SUBSPICS0 FSPICS0 2 1 R

11 GPIO11 GPIO11 GPIO11 FSPIIO5 SUBSPID FSPID 2 1 R

12 GPIO12 GPIO12 GPIO12 FSPIIO6 SUBSPICLK FSPICLK 2 1 R

13 GPIO13 GPIO13 GPIO13 FSPIIO7 SUBSPIQ FSPIQ 2 1 R

14 GPIO14 GPIO14 GPIO14 FSPIDQS SUBSPIWP FSPIWP 2 1 R

15 XTAL_32K_P GPIO15 GPIO15 U0RTS - - 2 0 R

16 XTAL_32K_N GPIO16 GPIO16 U0CTS - - 2 0 R

17 GPIO17 GPIO17 GPIO17 U1TXD - - 2 1 R

18 GPIO18 GPIO18 GPIO18 U1RXD CLK_OUT3 - 2 1 R

19 GPIO19 GPIO19 GPIO19 U1RTS CLK_OUT2 - 2 0 R

20 GPIO20 GPIO20 GPIO20 U1CTS CLK_OUT1 - 2 0 R

21 GPIO21 GPIO21 GPIO21 - - - 2 0 R

26 SPICS1 SPICS1 GPIO26 - - - 2 3 -

27 SPIHD SPIHD GPIO27 - - - 3 3 -

28 SPIWP SPIWP GPIO28 - - - 3 3 -

29 SPICS0 SPICS0 GPIO29 - - - 3 3 -

30 SPICLK SPICLK GPIO30 - - - 3 3 -

31 SPIQ SPIQ GPIO31 - - - 3 3 -

32 SPID SPID GPIO32 - - - 3 3 -

33 GPIO33 GPIO33 GPIO33 FSPIHD SUBSPIHD SPIIO4 2 1 -

34 GPIO34 GPIO34 GPIO34 FSPICS0 SUBSPICS0 SPIIO5 2 1 -

35 GPIO35 GPIO35 GPIO35 FSPID SUBSPID SPIIO6 2 1 -

36 GPIO36 GPIO36 GPIO36 FSPICLK SUBSPICLK SPIIO7 2 1 -

37 GPIO37 GPIO37 GPIO37 FSPIQ SUBSPIQ SPIDQS 2 1 -

38 GPIO38 GPIO38 GPIO38 FSPIWP SUBSPIWP - 2 1 -

39 MTCK MTCK GPIO39 CLK_OUT3 SUBSPICS1 - 2 1* -

40 MTDO MTDO GPIO40 CLK_OUT2 - - 2 1 -

41 MTDI MTDI GPIO41 CLK_OUT1 - - 2 1 -

42 MTMS MTMS GPIO42 - - - 2 1 -

Espressif Systems 48
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

GPIO Pin Name Function 0 Function 1 Function 2 Function 3 Function 4 DRV RST Notes

43 U0TXD U0TXD GPIO43 CLK_OUT1 - - 2 4 -

44 U0RXD U0RXD GPIO44 CLK_OUT2 - - 2 3 -

45 GPIO45 GPIO45 GPIO45 - - - 2 2 -

46 GPIO46 GPIO46 GPIO46 - - - 2 2 -

47 SPICLK_P SPICLK_DIFF GPIO47 SUBSPICLK_P_DIFF - - 2 1 -

48 SPICLK_N SPICLK_DIFF GPIO48 SUBSPICLK_N_DIFF - - 2 1 -

Drive Strength

“DRV” column shows the drive strength of each pin after reset:

• 0 - Drive current = ~5 mA

• 1 - Drive current = ~10 mA

• 2 - Drive current = ~20 mA

• 3 - Drive current = ~40 mA

Reset Configurations

“RST” column shows the default configuration of each pin after reset:

• 0 - IE = 0 (input disabled)

• 1 - IE = 1 (input enabled)

• 2 - IE = 1, WPD = 1 (input enabled, pull-down resistor enabled)

• 3 - IE = 1, WPU = 1 (input enabled, pull-up resistor enabled)

• 4 - OE = 1, WPU = 1 (output enabled, pull-up resistor enabled)

• 1* - If EFUSE_DIS_JTAG = 1, the pin MTCK is left floating after reset, i.e. IE = 1. If EFUSE_DIS_JTAG = 0,

the pin MTCK is connected to internal pull-up resistor, i.e. IE = 1, WPU = 1.

Note:

• R - Pin has RTC/analog functions via RTC IO MUX.

Please refer to Appendix A – ESP32-S3 Pin Lists in ESP32-S3 Datasheet for more details.

2.14 RTC IO MUX Pin List

Table 2-4 shows the RTC pins, their corresponding GPIO pins and RTC functions.

Table 2­4. RTC Functions of RTC IO MUX Pins

RTC Function
RTC GPIO Num GPIO Num Pin Name

0 1 2 3

0 0 GPIO0 RTC_GPIO0 - - sar_i2c_scl_0a

1 1 GPIO1 RTC_GPIO1 - - sar_i2c_sda_0a

2 2 GPIO2 RTC_GPIO2 - - sar_i2c_scl_1a

3 3 GPIO3 RTC_GPIO3 - - sar_i2c_sda_1a

Cont’d on next page

Espressif Systems 49
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Table 2­4 – cont’d from previous page

RTC Function
RTC GPIO Num GPIO Num Pin Name

0 1 2 3

4 4 GPIO4 RTC_GPIO4 - - -

5 5 GPIO5 RTC_GPIO5 - - -

6 6 GPIO6 RTC_GPIO6 - - -

7 7 GPIO7 RTC_GPIO7 - - -

8 8 GPIO8 RTC_GPIO8 - - -

9 9 GPIO9 RTC_GPIO9 - - -

10 10 GPIO10 RTC_GPIO10 - - -

11 11 GPIO11 RTC_GPIO11 - - -

12 12 GPIO12 RTC_GPIO12 - - -

13 13 GPIO13 RTC_GPIO13 - - -

14 14 GPIO14 RTC_GPIO14 - - -

15 15 XTAL_32K_P RTC_GPIO15 - - -

16 16 XTAL_32K_N RTC_GPIO16 - - -

17 17 GPIO17 RTC_GPIO17 - - -

18 18 GPIO18 RTC_GPIO18 - - -

19 19 GPIO19 RTC_GPIO19 - - -

20 20 GPIO20 RTC_GPIO20 - - -

21 21 GPIO21 RTC_GPIO21 - - -

a For more information on the configuration of sar_i2c_xx, see Section RTC I2C Controller in

Chapter 14 ULP Coprocessor (ULP-FSM, ULP-RISC-V) [to be added later].

Table 2-5 shows the RTC pins, their corresponding GPIO pins and analog functions.

Table 2­5. Analog Functions of RTC IO MUX Pins

Analog Function
RTC GPIO Num GPIO Num Pin Name

0 1

0 0 GPIO0 - -

1 1 GPIO1 TOUCH1 ADC1_CH0

2 2 GPIO2 TOUCH2 ADC1_CH1

3 3 GPIO3 TOUCH3 ADC1_CH2

4 4 GPIO4 TOUCH4 ADC1_CH3

5 5 GPIO5 TOUCH5 ADC1_CH4

6 6 GPIO6 TOUCH6 ADC1_CH5

7 7 GPIO7 TOUCH7 ADC1_CH6

8 8 GPIO8 TOUCH8 ADC1_CH7

9 9 GPIO9 TOUCH9 ADC1_CH8

10 10 GPIO10 TOUCH10 ADC1_CH9

11 11 GPIO11 TOUCH11 ADC2_CH0

12 12 GPIO12 TOUCH12 ADC2_CH1

13 13 GPIO13 TOUCH13 ADC2_CH2

14 14 GPIO14 TOUCH14 ADC2_CH3

Espressif Systems 50
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Analog Function
RTC GPIO Num GPIO Num Pin Name

0 1

15 15 XTAL_32K_P XTAL_32K_P ADC2_CH4

16 16 XTAL_32K_N XTAL_32K_N ADC2_CH5

17 17 GPIO17 - ADC2_CH6

18 18 GPIO18 - ADC2_CH7

19 19 GPIO19 USB_D- ADC2_CH8

20 20 GPIO20 USB_D+ ADC2_CH9

21 21 GPIO21 - -

2.15 Register Summary

2.15.1 GPIO Matrix Register Summary

The addresses in this section are relative to the GPIO base address provided in Table 1-4 in Chapter 1 System

and Memory.

Name Description Address Access

GPIO Configuration Registers

GPIO_BT_SELECT_REG GPIO bit select register 0x0000 R/W

GPIO_OUT_REG GPIO0 ~ 31 output register 0x0004 R/W

GPIO_OUT_W1TS_REG GPIO0 ~ 31 output bit set register 0x0008 WO

GPIO_OUT_W1TC_REG GPIO0 ~ 31 output bit clear register 0x000C WO

GPIO_OUT1_REG GPIO32 ~ 48 output register 0x0010 R/W

GPIO_OUT1_W1TS_REG GPIO32 ~ 48 output bit set register 0x0014 WO

GPIO_OUT1_W1TC_REG GPIO32 ~ 48 output bit clear register 0x0018 WO

GPIO_SDIO_SELECT_REG GPIO SDIO selection register 0x001C R/W

GPIO_ENABLE_REG GPIO0 ~ 31 output enable register 0x0020 R/W

GPIO_ENABLE_W1TS_REG GPIO0 ~ 31 output enable bit set register 0x0024 WO

GPIO_ENABLE_W1TC_REG GPIO0 ~ 31 output enable bit clear register 0x0028 WO

GPIO_ENABLE1_REG GPIO32 ~ 48 output enable register 0x002C R/W

GPIO_ENABLE1_W1TS_REG GPIO32 ~ 48 output enable bit set register 0x0030 WO

GPIO_ENABLE1_W1TC_REG GPIO32 ~ 48 output enable bit clear register 0x0034 WO

GPIO_STRAP_REG Strapping pin value register 0x0038 RO

GPIO_IN_REG GPIO0 ~ 31 input register 0x003C RO

GPIO_IN1_REG GPIO32 ~ 48 input register 0x0040 RO

GPIO_PIN0_REG Configuration for GPIO pin 0 0x0074 R/W

GPIO_PIN1_REG Configuration for GPIO pin 1 0x0078 R/W

GPIO_PIN2_REG Configuration for GPIO pin 2 0x007C R/W

...

GPIO_PIN46_REG Configuration for GPIO pin 46 0x012C R/W

GPIO_PIN47_REG Configuration for GPIO pin 47 0x0130 R/W

GPIO_PIN48_REG Configuration for GPIO pin 48 0x0134 R/W

GPIO_FUNC0_IN_SEL_CFG_REG Peripheral function 0 input selection register 0x0154 R/W

GPIO_FUNC1_IN_SEL_CFG_REG Peripheral function 1 input selection register 0x0158 R/W

Espressif Systems 51
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Name Description Address Access

GPIO_FUNC2_IN_SEL_CFG_REG Peripheral function 2 input selection register 0x015C R/W

...

GPIO_FUNC253_IN_SEL_CFG_REG Peripheral function 253 input selection register 0x0548 R/W

GPIO_FUNC254_IN_SEL_CFG_REG Peripheral function 254 input selection register 0x054C R/W

GPIO_FUNC255_IN_SEL_CFG_REG Peripheral function 255 input selection register 0x0550 R/W

GPIO_FUNC0_OUT_SEL_CFG_REG Peripheral output selection for GPIO0 0x0554 R/W

GPIO_FUNC1_OUT_SEL_CFG_REG Peripheral output selection for GPIO1 0x0558 R/W

GPIO_FUNC2_OUT_SEL_CFG_REG Peripheral output selection for GPIO2 0x055C R/W

...

GPIO_FUNC47_OUT_SEL_CFG_REG Peripheral output selection for GPIO47 0x0610 R/W

GPIO_FUNC48_OUT_SEL_CFG_REG Peripheral output selection for GPIO47 0x0614 R/W

GPIO_CLOCK_GATE_REG GPIO clock gating register 0x062C R/W

Interrupt Status Registers

GPIO_STATUS_REG GPIO0 ~ 31 interrupt status register 0x0044 R/W

GPIO_STATUS1_REG GPIO32 ~ 48 interrupt status register 0x0050 R/W

GPIO_PCPU_INT_REG GPIO0 ~ 31 PRO_CPU interrupt status register 0x005C RO

GPIO_PCPU_NMI_INT_REG GPIO0 ~ 31 PRO_CPU non-maskable interrupt

status register

0x0060 RO

GPIO_PCPU_INT1_REG GPIO32 ~ 48 PRO_CPU interrupt status register 0x0068 RO

GPIO_PCPU_NMI_INT1_REG GPIO32 ~ 48 PRO_CPU non-maskable interrupt

status register

0x006C RO

Interrupt Configuration Registers

GPIO_STATUS_W1TS_REG GPIO0 ~ 31 interrupt status bit set register 0x0048 WO

GPIO_STATUS_W1TC_REG GPIO0 ~ 31 interrupt status bit clear register 0x004C WO

GPIO_STATUS1_W1TS_REG GPIO32 ~ 48 interrupt status bit set register 0x0054 WO

GPIO_STATUS1_W1TC_REG GPIO32 ~ 48 interrupt status bit clear register 0x0058 WO

GPIO Interrupt Source Registers

GPIO_STATUS_NEXT_REG GPIO0 ~ 31 interrupt source register 0x014C RO

GPIO_STATUS_NEXT1_REG GPIO32 ~ 48 interrupt source register 0x0150 RO

Version Register

GPIO_DATE_REG Version control register 0x06FC R/W

2.15.2 IO MUX Register Summary

The addresses in this section are relative to the IO MUX base address provided in Table 1-4 in Chapter 1 System

and Memory.

Name Description Address Access

IO_MUX_PIN_CTRL Clock output configuration register 0x0000 R/W

IO_MUX_GPIO0_REG Configuration register for pin GPIO0 0x0004 R/W

IO_MUX_GPIO1_REG Configuration register for pin GPIO1 0x0008 R/W

IO_MUX_GPIO2_REG Configuration register for pin GPIO2 0x000C R/W

IO_MUX_GPIO3_REG Configuration register for pin GPIO3 0x0010 R/W

IO_MUX_GPIO4_REG Configuration register for pin GPIO4 0x0014 R/W

Espressif Systems 52
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Name Description Address Access

IO_MUX_GPIO5_REG Configuration register for pin GPIO5 0x0018 R/W

IO_MUX_GPIO6_REG Configuration register for pin GPIO6 0x001C R/W

IO_MUX_GPIO7_REG Configuration register for pin GPIO7 0x0020 R/W

IO_MUX_GPIO8_REG Configuration register for pin GPIO8 0x0024 R/W

IO_MUX_GPIO9_REG Configuration register for pin GPIO9 0x0028 R/W

IO_MUX_GPIO10_REG Configuration register for pin GPIO10 0x002C R/W

IO_MUX_GPIO11_REG Configuration register for pin GPIO11 0x0030 R/W

IO_MUX_GPIO12_REG Configuration register for pin GPIO12 0x0034 R/W

IO_MUX_GPIO13_REG Configuration register for pin GPIO13 0x0038 R/W

IO_MUX_GPIO14_REG Configuration register for pin GPIO14 0x003C R/W

IO_MUX_GPIO15_REG Configuration register for pad XTAL_32K_P 0x0040 R/W

IO_MUX_GPIO16_REG Configuration register for pad XTAL_32K_N 0x0044 R/W

IO_MUX_GPIO17_REG Configuration register for pad DAC_1 0x0048 R/W

IO_MUX_GPIO18_REG Configuration register for pad DAC_2 0x004C R/W

IO_MUX_GPIO19_REG Configuration register for pin GPIO19 0x0050 R/W

IO_MUX_GPIO20_REG Configuration register for pin GPIO20 0x0054 R/W

IO_MUX_GPIO21_REG Configuration register for pin GPIO21 0x0058 R/W

IO_MUX_GPIO26_REG Configuration register for pad SPICS1 0x006C R/W

IO_MUX_GPIO27_REG Configuration register for pad SPIHD 0x0070 R/W

IO_MUX_GPIO28_REG Configuration register for pad SPIWP 0x0074 R/W

IO_MUX_GPIO29_REG Configuration register for pad SPICS0 0x0078 R/W

IO_MUX_GPIO30_REG Configuration register for pad SPICLK 0x007C R/W

IO_MUX_GPIO31_REG Configuration register for pad SPIQ 0x0080 R/W

IO_MUX_GPIO32_REG Configuration register for pad SPID 0x0084 R/W

IO_MUX_GPIO33_REG Configuration register for pin GPIO33 0x0088 R/W

IO_MUX_GPIO34_REG Configuration register for pin GPIO34 0x008C R/W

IO_MUX_GPIO35_REG Configuration register for pin GPIO35 0x0090 R/W

IO_MUX_GPIO36_REG Configuration register for pin GPIO36 0x0094 R/W

IO_MUX_GPIO37_REG Configuration register for pin GPIO37 0x0098 R/W

IO_MUX_GPIO38_REG Configuration register for pin GPIO38 0x009C R/W

IO_MUX_GPIO39_REG Configuration register for pad MTCK 0x00A0 R/W

IO_MUX_GPIO40_REG Configuration register for pad MTDO 0x00A4 R/W

IO_MUX_GPIO41_REG Configuration register for pad MTDI 0x00A8 R/W

IO_MUX_GPIO42_REG Configuration register for pad MTMS 0x00AC R/W

IO_MUX_GPIO43_REG Configuration register for pad U0TXD 0x00B0 R/W

IO_MUX_GPIO44_REG Configuration register for pad U0RXD 0x00B4 R/W

IO_MUX_GPIO45_REG Configuration register for pin GPIO45 0x00B8 R/W

IO_MUX_GPIO46_REG Configuration register for pin GPIO46 0x00BC R/W

IO_MUX_GPIO47_REG Configuration register for pin GPIO47 0x00C0 R/W

IO_MUX_GPIO48_REG Configuration register for pin GPIO48 0x00C4 R/W

Espressif Systems 53
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

2.15.3 SDM Output Register Summary

The addresses in this section are relative to (GPIO base address provided in Table 1-4 in Chapter 1 System and

Memory + 0x0F00).

Name Description Address Access

Configuration Registers

GPIO_SIGMADELTA0_REG Duty Cycle Configure Register of SDM0 0x0000 R/W

GPIO_SIGMADELTA1_REG Duty Cycle Configure Register of SDM1 0x0004 R/W

GPIO_SIGMADELTA2_REG Duty Cycle Configure Register of SDM2 0x0008 R/W

GPIO_SIGMADELTA3_REG Duty Cycle Configure Register of SDM3 0x000C R/W

GPIO_SIGMADELTA4_REG Duty Cycle Configure Register of SDM4 0x0010 R/W

GPIO_SIGMADELTA5_REG Duty Cycle Configure Register of SDM5 0x0014 R/W

GPIO_SIGMADELTA6_REG Duty Cycle Configure Register of SDM6 0x0018 R/W

GPIO_SIGMADELTA7_REG Duty Cycle Configure Register of SDM7 0x001C R/W

GPIO_SIGMADELTA_CG_REG Clock Gating Configure Register 0x0020 R/W

GPIO_SIGMADELTA_MISC_REG MISC Register 0x0024 R/W

GPIO_SIGMADELTA_VERSION_REG Version Control Register 0x0028 R/W

2.15.4 RTC IO MUX Register Summary

The addresses in this section are relative to (Low-Power Management base address provided in Table 1-4 in

Chapter 1 System and Memory + 0x0400).

Name Description Address Access

GPIO configuration/data registers

RTC_GPIO_OUT_REG RTC GPIO output register 0x0000 R/W

RTC_GPIO_OUT_W1TS_REG RTC GPIO output bit set register 0x0004 WO

RTC_GPIO_OUT_W1TC_REG RTC GPIO output bit clear register 0x0008 WO

RTC_GPIO_ENABLE_REG RTC GPIO output enable register 0x000C R/W

RTC_GPIO_ENABLE_W1TS_REG RTC GPIO output enable bit set register 0x0010 WO

RTC_GPIO_ENABLE_W1TC_REG RTC GPIO output enable bit clear register 0x0014 WO

RTC_GPIO_STATUS_REG RTC GPIO interrupt status register 0x0018 R/W

RTC_GPIO_STATUS_W1TS_REG RTC GPIO interrupt status bit set register 0x001C WO

RTC_GPIO_STATUS_W1TC_REG RTC GPIO interrupt status bit clear register 0x0020 WO

RTC_GPIO_IN_REG RTC GPIO input register 0x0024 RO

RTC_GPIO_PIN0_REG RTC configuration for pin 0 0x0028 R/W

RTC_GPIO_PIN1_REG RTC configuration for pin 1 0x002C R/W

RTC_GPIO_PIN2_REG RTC configuration for pin 2 0x0030 R/W

RTC_GPIO_PIN3_REG RTC configuration for pin 3 0x0034 R/W

RTC_GPIO_PIN4_REG RTC configuration for pin 4 0x0038 R/W

RTC_GPIO_PIN5_REG RTC configuration for pin 5 0x003C R/W

RTC_GPIO_PIN6_REG RTC configuration for pin 6 0x0040 R/W

RTC_GPIO_PIN7_REG RTC configuration for pin 7 0x0044 R/W

RTC_GPIO_PIN8_REG RTC configuration for pin 8 0x0048 R/W

RTC_GPIO_PIN9_REG RTC configuration for pin 9 0x004C R/W

Espressif Systems 54
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Name Description Address Access

RTC_GPIO_PIN10_REG RTC configuration for pin 10 0x0050 R/W

RTC_GPIO_PIN11_REG RTC configuration for pin 11 0x0054 R/W

RTC_GPIO_PIN12_REG RTC configuration for pin 12 0x0058 R/W

RTC_GPIO_PIN13_REG RTC configuration for pin 13 0x005C R/W

RTC_GPIO_PIN14_REG RTC configuration for pin 14 0x0060 R/W

RTC_GPIO_PIN15_REG RTC configuration for pin 15 0x0064 R/W

RTC_GPIO_PIN16_REG RTC configuration for pin 16 0x0068 R/W

RTC_GPIO_PIN17_REG RTC configuration for pin 17 0x006C R/W

RTC_GPIO_PIN18_REG RTC configuration for pin 18 0x0070 R/W

RTC_GPIO_PIN19_REG RTC configuration for pin 19 0x0074 R/W

RTC_GPIO_PIN20_REG RTC configuration for pin 20 0x0078 R/W

RTC_GPIO_PIN21_REG RTC configuration for pin 21 0x007C R/W

GPIO RTC function configuration registers

RTC_IO_TOUCH_PAD0_REG Touch pin 0 configuration register 0x0084 R/W

RTC_IO_TOUCH_PAD1_REG Touch pin 1 configuration register 0x0088 R/W

RTC_IO_TOUCH_PAD2_REG Touch pin 2 configuration register 0x008C R/W

RTC_IO_TOUCH_PAD3_REG Touch pin 3 configuration register 0x0090 R/W

RTC_IO_TOUCH_PAD4_REG Touch pin 4 configuration register 0x0094 R/W

RTC_IO_TOUCH_PAD5_REG Touch pin 5 configuration register 0x0098 R/W

RTC_IO_TOUCH_PAD6_REG Touch pin 6 configuration register 0x009C R/W

RTC_IO_TOUCH_PAD7_REG Touch pin 7 configuration register 0x00A0 R/W

RTC_IO_TOUCH_PAD8_REG Touch pin 8 configuration register 0x00A4 R/W

RTC_IO_TOUCH_PAD9_REG Touch pin 9 configuration register 0x00A8 R/W

RTC_IO_TOUCH_PAD10_REG Touch pin 10 configuration register 0x00AC R/W

RTC_IO_TOUCH_PAD11_REG Touch pin 11 configuration register 0x00B0 R/W

RTC_IO_TOUCH_PAD12_REG Touch pin 12 configuration register 0x00B4 R/W

RTC_IO_TOUCH_PAD13_REG Touch pin 13 configuration register 0x00B8 R/W

RTC_IO_TOUCH_PAD14_REG Touch pin 14 configuration register 0x00BC R/W

RTC_IO_XTAL_32P_PAD_REG 32 kHz crystal P-pin configuration register 0x00C0 R/W

RTC_IO_XTAL_32N_PAD_REG 32 kHz crystal N-pin configuration register 0x00C4 R/W

RTC_IO_RTC_PAD17_REG RTC pin 17 configuration register 0x00C8 R/W

RTC_IO_RTC_PAD18_REG RTC pin 18 configuration register 0x00CC R/W

RTC_IO_RTC_PAD19_REG RTC pin 19 configuration register 0x00D0 R/W

RTC_IO_RTC_PAD20_REG RTC pin 20 configuration register 0x00D4 R/W

RTC_IO_RTC_PAD21_REG RTC pin 21 configuration register 0x00D8 R/W

RTC_IO_XTL_EXT_CTR_REG Crystal power down enable GPIO source 0x00E0 R/W

RTC_IO_SAR_I2C_IO_REG RTC I2C pin selection 0x00E4 R/W

Version Register

RTC_IO_DATE_REG Version control register 0x01FC R/W

2.16 Registers

Espressif Systems 55
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

2.16.1 GPIO Matrix Registers

Register 2.1. GPIO_BT_SELECT_REG (0x0000)

GPIO
_B

T_
SEL

0x000000

31 0

Reset

GPIO_BT_SEL Reserved (R/W)

Register 2.2. GPIO_OUT_REG (0x0004)

GPIO
_O

UT_
DAT

A_O
RIG

0x000000

31 0

Reset

GPIO_OUT_DATA_ORIG GPIO0 ~ 21 and GPIO26 ~ 31 output values in simple GPIO output mode.

The values of bit0 ~ bit21 correspond to the output values of GPIO0 ~ 21, and bit26 ~ bit31 to

GPIO26 ~ 31. Bit22 ~ bit25 are invalid. (R/W)

Register 2.3. GPIO_OUT_W1TS_REG (0x0008)

GPIO
_O

UT_
W

1T
S

0x000000

31 0

Reset

GPIO_OUT_W1TS GPIO0 ~ 31 output set register. If the value 1 is written to a bit here, the corre-

sponding bit in GPIO_OUT_REG will be set to 1. Recommended operation: use this register to set

GPIO_OUT_REG. (WO)

Espressif Systems 56
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.4. GPIO_OUT_W1TC_REG (0x000C)

GPIO
_O

UT_
W

1T
C

0x000000

31 0

Reset

GPIO_OUT_W1TC GPIO0 ~ 31 output clear register. If the value 1 is written to a bit here, the cor-

responding bit in GPIO_OUT_REG will be cleared. Recommended operation: use this register to

clear GPIO_OUT_REG. (WO)

Register 2.5. GPIO_OUT1_REG (0x0010)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_O

UT1
_D

AT
A_O

RIG

0x0000

21 0

Reset

GPIO_OUT1_DATA_ORIG GPIO32 ~ 48 output value in simple GPIO output mode. The values of

bit0 ~ bit16 correspond to GPIO32 ~ GPIO48. Bit17 ~ bit21 are invalid. (R/W)

Register 2.6. GPIO_OUT1_W1TS_REG (0x0014)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_O

UT1
_W

1T
S

0x0000

21 0

Reset

GPIO_OUT1_W1TS GPIO32 ~ 48 output value set register. If the value 1 is written to a bit here, the

corresponding bit in GPIO_OUT1_REG will be set to 1. Recommended operation: use this register

to set GPIO_OUT1_REG. (WO)

Espressif Systems 57
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.7. GPIO_OUT1_W1TC_REG (0x0018)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_O

UT1
_W

1T
C

0x0000

21 0

Reset

GPIO_OUT1_W1TC GPIO32 ~ 48 output value clear register. If the value 1 is written to a bit here, the

corresponding bit in GPIO_OUT1_REG will be cleared. Recommended operation: use this register

to clear GPIO_OUT1_REG. (WO)

Register 2.8. GPIO_SDIO_SELECT_REG (0x001C)

(re
se

rve
d)

0 0

31 8

GPIO
_S

DIO
_S

EL

0x0

7 0

Reset

GPIO_SDIO_SEL Reserved (R/W)

Register 2.9. GPIO_ENABLE_REG (0x0020)

GPIO
_E

NABLE
_D

AT
A

0x000000

31 0

Reset

GPIO_ENABLE_DATA GPIO0~31 output enable register. (R/W)

Espressif Systems 58
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.10. GPIO_ENABLE_W1TS_REG (0x0024)

GPIO
_E

NABLE
_W

1T
S

0x000000

31 0

Reset

GPIO_ENABLE_W1TS GPIO0 ~ 31 output enable set register. If the value 1 is written to a bit here,

the corresponding bit in GPIO_ENABLE_REG will be set to 1. Recommended operation: use this

register to set GPIO_ENABLE_REG. (WO)

Register 2.11. GPIO_ENABLE_W1TC_REG (0x0028)

GPIO
_E

NABLE
_W

1T
C

0x000000

31 0

Reset

GPIO_ENABLE_W1TC GPIO0 ~ 31 output enable clear register. If the value 1 is written to a bit here,

the corresponding bit in GPIO_ENABLE_REG will be cleared. Recommended operation: use this

register to clear GPIO_ENABLE_REG. (WO)

Register 2.12. GPIO_ENABLE1_REG (0x002C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_E

NABLE
1_

DAT
A

0x0000

21 0

Reset

GPIO_ENABLE1_DATA GPIO32 ~ 48 output enable register. (R/W)

Espressif Systems 59
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.13. GPIO_ENABLE1_W1TS_REG (0x0030)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_E

NABLE
1_

W
1T

S

0x0000

21 0

Reset

GPIO_ENABLE1_W1TS GPIO32 ~ 48 output enable set register. If the value 1 is written to a bit here,

the corresponding bit in GPIO_ENABLE1_REG will be set to 1. Recommended operation: use this

register to set GPIO_ENABLE1_REG. (WO)

Register 2.14. GPIO_ENABLE1_W1TC_REG (0x0034)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_E

NABLE
1_

W
1T

C

0x0000

21 0

Reset

GPIO_ENABLE1_W1TC GPIO32 ~ 48 output enable clear register. If the value 1 is written to a bit

here, the corresponding bit in GPIO_ENABLE1_REG will be cleared. Recommended operation:

use this register to clear GPIO_ENABLE1_REG. (WO)

Register 2.15. GPIO_STRAP_REG (0x0038)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

GPIO
_S

TR
APPIN

G

0

15 0

Reset

GPIO_STRAPPING GPIO strapping values: bit5 ~ bit2 correspond to stripping pins GPIO3, GPIO45,

GPIO0, and GPIO46 respectively. (RO)

Espressif Systems 60
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.16. GPIO_IN_REG (0x003C)

GPIO
_IN

_D
AT

A_N
EXT

0

31 0

Reset

GPIO_IN_DATA_NEXT GPIO0 ~ 31 input value. Each bit represents a pin input value, 1 for high level

and 0 for low level. (RO)

Register 2.17. GPIO_IN1_REG (0x0040)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_IN

_D
AT

A1_
NEXT

0

21 0

Reset

GPIO_IN_DATA1_NEXT GPIO32 ~ 48 input value. Each bit represents a pin input value. (RO)

Espressif Systems 61
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.18. GPIO_PINn_REG (n: 0­48) (0x0074+0x4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

GPIO
_P

IN
n_

IN
T_

ENA

0x0

17 13

GPIO
_P

IN
n_

CONFIG

0x0

12 11

GPIO
_P

IN
n_

W
AKEUP_E

NABLE

0

10

GPIO
_P

IN
n_

IN
T_

TY
PE

0x0

9 7

(re
se

rve
d)

0 0

6 5

GPIO
_P

IN
n_

SYNC1_
BYPA

SS

0x0

4 3

GPIO
_P

IN
n_

PA
D_D

RIVER

0

2

GPIO
_P

IN
n_

SYNC2_
BYPA

SS

0x0

1 0

Reset

GPIO_PINn_SYNC2_BYPASS For the second stage synchronization, GPIO input data can be syn-

chronized on either edge of the APB clock. 0: no synchronization; 1: synchronized on falling edge;

2 and 3: synchronized on rising edge. (R/W)

GPIO_PINn_PAD_DRIVER Pin driver selection. 0: normal output; 1: open drain output. (R/W)

GPIO_PINn_SYNC1_BYPASS For the first stage synchronization, GPIO input data can be synchro-

nized on either edge of the APB clock. 0: no synchronization; 1: synchronized on falling edge; 2

and 3: synchronized on rising edge. (R/W)

GPIO_PINn_INT_TYPE Interrupt type selection. 0: GPIO interrupt disabled; 1: rising edge trigger; 2:

falling edge trigger; 3: any edge trigger; 4: low level trigger; 5: high level trigger. (R/W)

GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable bit, only wakes up the CPU from Light-sleep.

(R/W)

GPIO_PINn_CONFIG Reserved (R/W)

GPIO_PINn_INT_ENA Interrupt enable bits. bit13: CPU interrupt enabled; bit14: CPU non-maskable

interrupt enabled. (R/W)

Register 2.19. GPIO_FUNCy_IN_SEL_CFG_REG (y: 0­255) (0x0154+0x4*y)

(re
se

rve
d)

0 0

31 8

GPIO
_S

IG
y_

IN
_S

EL

0

7

GPIO
_F

UNCy
_IN

_IN
V_S

EL

0

6

GPIO
_F

UNCy
_IN

_S
EL

0x0

5 0

Reset

GPIO_FUNCy_IN_SEL Selection control for peripheral input signal Y, selects a pin from the 48 GPIO

matrix pins to connect this input signal. Or selects 0x38 for a constantly high input or 0x3C for a

constantly low input. (R/W)

GPIO_FUNCy_IN_INV_SEL 1: Invert the input value; 0: Do not invert the input value. (R/W)

GPIO_SIGy_IN_SEL Bypass GPIO matrix. 1: route signals via GPIO matrix, 0: connect signals directly

to peripheral configured in IO MUX. (R/W)

Espressif Systems 62
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.20. GPIO_FUNCx_OUT_SEL_CFG_REG (x: 0­48) (0x0554+0x4*x)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

GPIO
_F

UNCx
_O

EN_IN
V_S

EL

0

11

GPIO
_F

UNCx
_O

EN_S
EL

0

10

GPIO
_F

UNCx
_O

UT_
IN

V_S
EL

0

9

GPIO
_F

UNCx
_O

UT_
SEL

0x100

8 0

Reset

GPIO_FUNCx_OUT_SEL Selection control for GPIO output X. If a value Y (0<=Y<256) is writ-

ten to this field, the peripheral output signal Y will be connected to GPIO output X.

If a value 256 is written to this field, bit X of GPIO_OUT_REG/GPIO_OUT1_REG and

GPIO_ENABLE_REG/GPIO_ENABLE1_REG will be selected as the output value and output en-

able. (R/W)

GPIO_FUNCx_OUT_INV_SEL 0: Do not invert the output value; 1: Invert the output value. (R/W)

GPIO_FUNCx_OEN_SEL 0: Use output enable signal from peripheral; 1: Force the output enable

signal to be sourced from GPIO_ENABLE_REG[x]. (R/W)

GPIO_FUNCn_OEN_INV_SEL 0: Do not invert the output enable signal; 1: Invert the output enable

signal. (R/W)

Register 2.21. GPIO_CLOCK_GATE_REG (0x062C)

(re
se

rve
d)

0 0

31 1

GPIO
_C

LK
_E

N

1

0

Reset

GPIO_CLK_EN Clock gating enable bit. If set to 1, the clock is free running. (R/W)

Register 2.22. GPIO_STATUS_REG (0x0044)

GPIO
_S

TA
TU

S_IN
TE

RRUPT

0x000000

31 0

Reset

GPIO_STATUS_INTERRUPT GPIO0 ~ 31 interrupt status register. (R/W)

Espressif Systems 63
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.23. GPIO_STATUS1_REG (0x0050)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_S

TA
TU

S1_
IN

TE
RRUPT

0x0000

21 0

Reset

GPIO_STATUS1_INTERRUPT GPIO32 ~ 48 interrupt status register. (R/W)

Register 2.24. GPIO_PCPU_INT_REG (0x005C)

GPIO
_P

ROCPU_IN
T

0x000000

31 0

Reset

GPIO_PROCPU_INT GPIO0 ~ 31 PRO_CPU interrupt status. This interrupt status is corresponding

to the bit in GPIO_STATUS_REG when assert (high) enable signal (bit13 of GPIO_PINn_REG). (RO)

Register 2.25. GPIO_PCPU_NMI_INT_REG (0x0060)

GPIO
_P

ROCPU_N
M

I_I
NT

0x000000

31 0

Reset

GPIO_PROCPU_NMI_INT GPIO0 ~ 31 PRO_CPU non-maskable interrupt status. This interrupt sta-

tus is corresponding to the bit in GPIO_STATUS_REG when assert (high) enable signal (bit 14 of

GPIO_PINn_REG). (RO)

Espressif Systems 64
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.26. GPIO_PCPU_INT1_REG (0x0068)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_P

ROCPU1_
IN

T

0x0000

21 0

Reset

GPIO_PROCPU1_INT GPIO32 ~ 48 PRO_CPU interrupt status. This interrupt status is correspond-

ing to the bit in GPIO_STATUS1_REG when assert (high) enable signal (bit 13 of GPIO_PINn_REG).

(RO)

Register 2.27. GPIO_PCPU_NMI_INT1_REG (0x006C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_P

ROCPU_N
M

I1_
IN

T

0x0000

21 0

Reset

GPIO_PROCPU_NMI1_INT GPIO32 ~ 48 PRO_CPU non-maskable interrupt status. This interrupt

status is corresponding to bit in GPIO_STATUS1_REG when assert (high) enable signal (bit 14 of

GPIO_PINn_REG). (RO)

Register 2.28. GPIO_STATUS_W1TS_REG (0x0048)

GPIO
_S

TA
TU

S_W
1T

S

0x000000

31 0

Reset

GPIO_STATUS_W1TS GPIO0 ~ 31 interrupt status set register. If the value 1 is written to a bit here,

the corresponding bit in GPIO_STATUS_INTERRUPT will be set to 1. Recommended operation:

use this register to set GPIO_STATUS_INTERRUPT. (WO)

Espressif Systems 65
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.29. GPIO_STATUS_W1TC_REG (0x004C)

GPIO
_S

TA
TU

S_W
1T

C

0x000000

31 0

Reset

GPIO_STATUS_W1TC GPIO0 ~ 31 interrupt status clear register. If the value 1 is written to a bit here,

the corresponding bit in GPIO_STATUS_INTERRUPT will be cleared. Recommended operation:

use this register to clear GPIO_STATUS_INTERRUPT. (WO)

Register 2.30. GPIO_STATUS1_W1TS_REG (0x0054)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_S

TA
TU

S1_
W

1T
S

0x0000

21 0

Reset

GPIO_STATUS1_W1TS GPIO32 ~ 48 interrupt status set register. If the value 1 is written to a bit here,

the corresponding bit in GPIO_STATUS1_REG will be set to 1. Recommended operation: use this

register to set GPIO_STATUS1_REG. (WO)

Register 2.31. GPIO_STATUS1_W1TC_REG (0x0058)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_S

TA
TU

S1_
W

1T
C

0x0000

21 0

Reset

GPIO_STATUS1_W1TC GPIO32 ~ 48 interrupt status clear register. If the value 1 is written to a bit

here, the corresponding bit in GPIO_STATUS1_REG will be cleared. Recommended operation:

use this register to clear GPIO_STATUS1_REG. (WO)

Espressif Systems 66
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.32. GPIO_STATUS_NEXT_REG (0x014C)

GPIO
_S

TA
TU

S_IN
TE

RRUPT_
NEXT

0x000000

31 0

Reset

GPIO_STATUS_INTERRUPT_NEXT Interrupt source signal of GPIO0 ~ 31, could be rising edge in-

terrupt, falling edge interrupt, level sensitive interrupt and any edge interrupt. (RO)

Register 2.33. GPIO_STATUS_NEXT1_REG (0x0150)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

GPIO
_S

TA
TU

S1_
IN

TE
RRUPT_

NEXT

0x0000

21 0

Reset

GPIO_STATUS1_INTERRUPT_NEXT Interrupt source signal of GPIO32 ~ 48. (RO)

Register 2.34. GPIO_DATE_REG (0x06FC)

(re
se

rve
d)

0 0 0 0

31 28

GPIO
_D

AT
E

0x1907040

27 0

Reset

GPIO_DATE Version control register (R/W)

Espressif Systems 67
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

2.16.2 IO MUX Registers

Register 2.35. IO_MUX_PIN_CTRL (0x0000)

(re
se

rve
d)

0x0

31 16

IO
_M

UX_
PA

D_P
OW

ER_C
TR

L

0x0

15

IO
_M

UX_
SW

ITC
H_P

RT_
NUM

0x2

14 12

IO
_M

UX_
PIN

_C
TR

L_
CLK

3

0x0

11 8

IO
_M

UX_
PIN

_C
TR

L_
CLK

2

0x0

7 4

IO
_M

UX_
PIN

_C
TR

L_
CLK

1

0x0

3 0

Reset

IO_MUX_PIN_CTRL_CLKx If you want to output clock for I2S0 to:

CLK_OUT1�then set IO_MUX_PIN_CTRL_CLK1 = 0x0�

CLK_OUT2�then set IO_MUX_PIN_CTRL_CLK2 = 0x0;

CLK_OUT3�then set IO_MUX_PIN_CTRL_CLK3 = 0x0.

If you want to output clock for I2S1 to:

CLK_OUT1�then set IO_MUX_PIN_CTRL_CLK1 = 0xF�

CLK_OUT2�then set IO_MUX_PIN_CTRL_CLK2 = 0xF;

CLK_OUT3�then set IO_MUX_PIN_CTRL_CLK3 = 0xF.

Note:

Only the above mentioned combinations of clock source and clock output pins are possible.

The CLK_OUT1 ~ 3 can be found in IO_MUX Pin Function List.

IO_MUX_SWITCH_PRT_NUM GPIO pin power switch delay, delay unit is one APB clock.

IO_MUX_PAD_POWER_CTRL Select power voltage for GPIO33 ~ 37. 1: select VDD_SPI 1.8 V; 0:

select VDD3P3_CPU 3.3 V.

Espressif Systems 68
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.36. IO_MUX_n_REG (n: GPIO0­GPIO21, GPIO26­GPIO48) (0x0010+4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

IO
_M

UX_
FIL

TE
R_E

N

0x0

15

IO
_M

UX_
M

CU_S
EL

0x0

14 12

IO
_M

UX_
FU

N_D
RV

0x2

11 10

IO
_M

UX_
FU

N_IE

0

9

IO
_M

UX_
FU

N_W
PU

0

8

IO
_M

UX_
FU

N_W
PD

0

7

(re
se

rve
d)

00

6 5

IO
_M

UX_
M

CU_IE

0

4

IO
_M

UX_
M

CU_W
PU

0

3

IO
_M

UX_
M

CU_W
PD

0

2

IO
_M

UX_
SLP

_S
EL

0

1

IO
_M

UX_
M

CU_O
E

0

0

Reset

IO_MUX_MCU_OE Output enable of the pin in sleep mode. 1: Output enabled; 0: Output disabled.

(R/W)

IO_MUX_SLP_SEL Sleep mode selection of this pin. Set to 1 to put the pin in sleep mode. (R/W)

IO_MUX_MCU_WPD Pull-down enable of the pin during sleep mode. 1: Internal pull-down enabled;

0: Internal pull-down disabled. (R/W)

IO_MUX_MCU_WPU Pull-up enable of the pin during sleep mode. 1: Internal pull-up enabled; 0:

Internal pull-up disabled.

IO_MUX_MCU_IE Input enable of the pin during sleep mode. 1: Input enabled; 0: Input disabled.

(R/W)

IO_MUX_FUN_WPD Pull-down enable of the pin. 1: Pull-down enabled; 0: Pull-down disabled.

(R/W)

IO_MUX_FUN_WPU Pull-up enable of the pin. 1: Internal pull-up enabled; 0: Internal pull-up dis-

abled. (R/W)

IO_MUX_FUN_IE Input enable of the pin. 1: Input enabled; 0: Input disabled. (R/W)

IO_MUX_FUN_DRV Select the drive strength of the pin. 0: ~5 mA: 1: ~10 mA: 2: ~20 mA; 3: ~40

mA. (R/W)

IO_MUX_MCU_SEL Select IO MUX function for this signal. 0: Select Function 0; 1: Select Function

1, etc. (R/W)

IO_MUX_FILTER_EN Enable filter for pin input signals. 1: Filter enabled; 2: Filter disabled. (R/W)

Espressif Systems 69
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

2.16.3 SDM Output Registers

Register 2.37. GPIO_SIGMADELTAn_REG (n: 0­7) (0x0000+4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

GPIO
_S

Dn
_P

RESCALE

0xff

15 8

GPIO
_S

Dn
_IN

0x0

7 0

Reset

GPIO_SDn_IN This field is used to configure the duty cycle of sigma delta modulation output. (R/W)

GPIO_SDn_PRESCALE This field is used to set a divider value to divide APB clock. (R/W)

Register 2.38. GPIO_SIGMADELTA_CG_REG (0x0020)

GPIO
_S

D_C
LK

_E
N

0

31

(re
se

rve
d)

0 0

30 0

Reset

GPIO_SD_CLK_EN Clock enable bit of configuration registers for sigma delta modulation. (R/W)

Register 2.39. GPIO_SIGMADELTA_MISC_REG (0x0024)

GPIO
_S

PI_S
W

AP

0

31

GPIO
_F

UNCTIO
N_C

LK
_E

N

0

30

(re
se

rve
d)

0 0

29 0

Reset

GPIO_FUNCTION_CLK_EN Clock enable bit of sigma delta modulation. (R/W)

GPIO_SPI_SWAP Reserved. (R/W)

Espressif Systems 70
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.40. GPIOSD_SIGMADELTA_VERSION_REG (0x0028)

(re
se

rve
d)

0 0 0 0

31 28

GPIO
_S

D_D
AT

E

0x1802260

27 0

Reset

GPIO_SD_DATE Version control register. (R/W)

2.16.4 RTC IO MUX Registers

Register 2.41. RTC_GPIO_OUT_REG (0x0000)

RTC
_G

PIO
_O

UT_
DAT

A

0

31 10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

9 0

Reset

RTC_GPIO_OUT_DATA GPIO0 ~ 21 output register. Bit10 corresponds to GPIO0, bit11 corresponds

to GPIO1, etc. (R/W)

Register 2.42. RTC_GPIO_OUT_W1TS_REG (0x0004)

RTC
_G

PIO
_O

UT_
DAT

A_W
1T

S

0

31 10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

9 0

Reset

RTC_GPIO_OUT_DATA_W1TS GPIO0 ~ 21 output set register. If the value 1 is written to a bit here,

the corresponding bit in RTC_GPIO_OUT_REG will be set to 1. Recommended operation: use

this register to set RTC_GPIO_OUT_REG. (WO)

Espressif Systems 71
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.43. RTC_GPIO_OUT_W1TC_REG (0x0008)

RTC
_G

PIO
_O

UT_
DAT

A_W
1T

C

0

31 10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

9 0

Reset

RTC_GPIO_OUT_DATA_W1TC GPIO0 ~ 21 output clear register. If the value 1 is written to a bit here,

the corresponding bit in RTC_GPIO_OUT_REG will be cleared. Recommended operation: use this

register to clear RTC_GPIO_OUT_REG. (WO)

Register 2.44. RTC_GPIO_ENABLE_REG (0x000C)

RTC
_G

PIO
_E

NABLE

0

31 10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

9 0

Reset

RTC_GPIO_ENABLE GPIO0 ~ 21 output enable. Bit10 corresponds to GPIO0, bit11 corresponds to

GPIO1, etc. If the bit is set to 1, it means this GPIO pin is output. (R/W)

Register 2.45. RTC_GPIO_ENABLE_W1TS_REG (0x0010)

RTC
_G

PIO
_E

NABLE
_W

1T
S

0

31 10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

9 0

Reset

RTC_GPIO_ENABLE_W1TS GPIO0 ~ 21 output enable set register. If the value 1 is written to a bit

here, the corresponding bit in RTC_GPIO_ENABLE_REG will be set to 1. Recommended opera-

tion: use this register to set RTC_GPIO_ENABLE_REG. (WO)

Espressif Systems 72
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.46. RTC_GPIO_ENABLE_W1TC_REG (0x0014)

RTC
_G

PIO
_E

NABLE
_W

1T
C

0

31 10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

9 0

Reset

RTC_GPIO_ENABLE_W1TC GPIO0 ~ 21 output enable clear register. If the value 1 is written to

a bit here, the corresponding bit in RTC_GPIO_ENABLE_REG will be cleared. Recommended

operation: use this register to clear RTC_GPIO_ENABLE_REG. (WO)

Register 2.47. RTC_GPIO_STATUS_REG (0x0018)

RTC
_G

PIO
_S

TA
TU

S_IN
T

0

31 10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

9 0

Reset

RTC_GPIO_STATUS_INT GPIO0 ~ 21 interrupt status register. Bit10 corresponds to

GPIO0, bit11 corresponds to GPIO1, etc. This register should be used together with

RTC_GPIO_PINn_INT_TYPE in RTC_GPIO_PINn_REG. 0: no interrupt; 1: corresponding

interrupt. (R/W)

Register 2.48. RTC_GPIO_STATUS_W1TS_REG (0x001C)

RTC
_G

PIO
_S

TA
TU

S_IN
T_

W
1T

S

0

31 10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

9 0

Reset

RTC_GPIO_STATUS_INT_W1TS GPIO0 ~ 21 interrupt set register. If the value 1 is written to a bit

here, the corresponding bit in RTC_GPIO_STATUS_INT will be set to 1. Recommended operation:

use this register to set RTC_GPIO_STATUS_INT. (WO)

Espressif Systems 73
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.49. RTC_GPIO_STATUS_W1TC_REG (0x0020)

RTC
_G

PIO
_S

TA
TU

S_IN
T_

W
1T

C

0

31 10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

9 0

Reset

RTC_GPIO_STATUS_INT_W1TC GPIO0 ~ 21 interrupt clear register. If the value 1 is written to a bit

here, the corresponding bit in RTC_GPIO_STATUS_INT will be cleared. Recommended operation:

use this register to clear RTC_GPIO_STATUS_INT. (WO)

Register 2.50. RTC_GPIO_IN_REG (0x0024)

RTC
_G

PIO
_IN

_N
EXT

0

31 10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

9 0

Reset

RTC_GPIO_IN_NEXT GPIO0 ~ 21 input value. Bit10 corresponds to GPIO0, bit11 corresponds to

GPIO1, etc. Each bit represents a pin input value, 1 for high level, and 0 for low level. (RO)

Register 2.51. RTC_GPIO_PINn_REG (n: 0­21) (0x0028+0x4*n)

(re
se

rve
d)

0 0

31 11

RTC
_G

PIO
_P

IN
n_

W
AKEUP_E

NABLE

0

10

RTC
_G

PIO
_P

IN
n_

IN
T_

TY
PE

0

9 7

(re
se

rve
d)

0 0 0 0

6 3

RTC
_G

PIO
_P

IN
n_

PA
D_D

RIVER

0

2

(re
se

rve
d)

0 0

1 0

Reset

RTC_GPIO_PINn_PAD_DRIVER Pin driver selection. 0: normal output; 1: open drain. (R/W)

RTC_GPIO_PINn_INT_TYPE GPIO interrupt type selection. 0: GPIO interrupt disabled; 1: rising

edge trigger; 2: falling edge trigger; 3: any edge trigger; 4: low level trigger; 5: high level trigger.

(R/W)

RTC_GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable. This will only wake up the chip from

Light-sleep. (R/W)

Espressif Systems 74
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.52. RTC_IO_TOUCH_PADn_REG (n: 0­14) (0x0084+0x4*n)

(re
se

rve
d)

0

31

RTC
_IO

_T
OUCH_P

ADn
_D

RV

2

30 29

RTC
_IO

_T
OUCH_P

ADn
_R

DE

1

28

RTC
_IO

_T
OUCH_P

ADn
_R

UE

0

27

(re
se

rve
d)

0

26 23

RTC
_IO

_T
OUCH_P

ADn
_S

TA
RT

0

22

RTC
_IO

_T
OUCH_P

ADn
_T

IE_O
PT

0

21

RTC
_IO

_T
OUCH_P

ADn
_X

PD

0

20

RTC
_IO

_T
OUCH_P

ADn
_M

UX_
SEL

0

19

RTC
_IO

_T
OUCH_P

ADn
_F

UN_S
EL

0

18 17

RTC
_IO

_T
OUCH_P

ADn
_S

LP
_S

EL

0

16

RTC
_IO

_T
OUCH_P

ADn
_S

LP
_IE

0

15

RTC
_IO

_T
OUCH_P

ADn
_S

LP
_O

E

0

14

RTC
_IO

_T
OUCH_P

ADn
_F

UN_IE

0

13

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

12 0

Reset

RTC_IO_TOUCH_PADn_FUN_IE Input enable in normal execution. (R/W)

RTC_IO_TOUCH_PADn_SLP_OE Output enable in sleep mode. (R/W)

RTC_IO_TOUCH_PADn_SLP_IE Input enable in sleep mode. (R/W)

RTC_IO_TOUCH_PADn_SLP_SEL 0: no sleep mode; 1: enable sleep mode. (R/W)

RTC_IO_TOUCH_PADn_FUN_SEL Function selection. (R/W)

RTC_IO_TOUCH_PADn_MUX_SEL Connect the RTC pin input or digital pin input. 0 is available, i.e.

select digital pin input. (R/W)

RTC_IO_TOUCH_PADn_XPD Touch sensor power on. (R/W)

RTC_IO_TOUCH_PADn_TIE_OPT The tie option of touch sensor. 0: tie low; 1: tie high. (R/W)

RTC_IO_TOUCH_PADn_START Start touch sensor. (R/W)

RTC_IO_TOUCH_PADn_RUE Pull-up enable of the pin. 1: internal pull-up enabled; 0: internal pull-

up disabled. (R/W)

RTC_IO_TOUCH_PADn_RDE Pull-down enable of the pin. 1: internal pull-down enabled, 0: internal

pull-down disabled. (R/W)

RTC_IO_TOUCH_PADn_DRV Select the drive strength of the pin. 0: ~5 mA: 1: ~10 mA: 2: ~20 mA;

3: ~40 mA. (R/W)

Espressif Systems 75
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.53. RTC_IO_XTAL_32P_PAD_REG (0x00C0)

(re
se

rve
d)

0

31

RTC
_IO

_X
32

P_D
RV

2

30 29

RTC
_IO

_X
32

P_R
DE

0

28

RTC
_IO

_X
32

P_R
UE

0

27

(re
se

rve
d)

0 0 0 0 0 0 0

26 20

RTC
_IO

_X
32

P_M
UX_

SEL

0

19

RTC
_IO

_X
32

P_F
UN_S

EL

0

18 17

RTC
_IO

_X
32

P_S
LP

_S
EL

0

16

RTC
_IO

_X
32

P_S
LP

_IE

0

15

RTC
_IO

_X
32

P_S
LP

_O
E

0

14

RTC
_IO

_X
32

P_F
UN_IE

0

13

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

12 0

Reset

RTC_IO_X32P_FUN_IE Input enable in normal execution. (R/W)

RTC_IO_X32P_SLP_OE Output enable in sleep mode. (R/W)

RTC_IO_X32P_SLP_IE Input enable in sleep mode. (R/W)

RTC_IO_X32P_SLP_SEL 1: enable sleep mode; 0: no sleep mode. (R/W)

RTC_IO_X32P_FUN_SEL Function selection. (R/W)

RTC_IO_X32P_MUX_SEL 1: use RTC GPIO; 0: use digital GPIO. (R/W)

RTC_IO_X32P_RUE Pull-up enable of the pin. 1: internal pull-up enabled; 0: internal pull-up disabled.

(R/W)

RTC_IO_X32P_RDE Pull-down enable of the pin. 1: internal pull-down enabled, 0: internal pull-down

disabled. (R/W)

RTC_IO_X32P_DRV Select the drive strength of the pin. 0: ~5 mA: 1: ~10 mA: 2: ~20 mA; 3: ~40

mA. (R/W)

Espressif Systems 76
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.54. RTC_IO_XTAL_32N_PAD_REG (0x00C4)

(re
se

rve
d)

0

31

RTC
_IO

_X
32

N_D
RV

2

30 29

RTC
_IO

_X
32

N_R
DE

0

28

RTC
_IO

_X
32

N_R
UE

0

27

(re
se

rve
d)

0 0 0 0 0 0 0

26 20

RTC
_IO

_X
32

N_M
UX_

SEL

0

19

RTC
_IO

_X
32

N_F
UN_S

EL

0

18 17

RTC
_IO

_X
32

N_S
LP

_S
EL

0

16

RTC
_IO

_X
32

N_S
LP

_IE

0

15

RTC
_IO

_X
32

N_S
LP

_O
E

0

14

RTC
_IO

_X
32

N_F
UN_IE

0

13

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

12 0

Reset

RTC_IO_X32N_FUN_IE Input enable in normal execution. (R/W)

RTC_IO_X32N_SLP_OE Output enable in sleep mode. (R/W)

RTC_IO_X32N_SLP_IE Input enable in sleep mode. (R/W)

RTC_IO_X32N_SLP_SEL 1: enable sleep mode; 0: no sleep mode. (R/W)

RTC_IO_X32N_FUN_SEL Function selection. (R/W)

RTC_IO_X32N_MUX_SEL 1: use RTC GPIO; 0: use digital GPIO. (R/W)

RTC_IO_X32N_RUE Pull-up enable of the pin. 1: internal pull-up enabled; 0: internal pull-up dis-

abled. (R/W)

RTC_IO_X32N_RDE Pull-down enable of the pin. 1: internal pull-down enabled, 0: internal pull-down

disabled. (R/W)

RTC_IO_X32N_DRV Select the drive strength of the pin. 0: ~5 mA: 1: ~10 mA: 2: ~20 mA; 3: ~40

mA. (R/W)

Espressif Systems 77
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.55. RTC_IO_RTC_PADn_REG (n: 17­21) (0x00C8, 0x00CC, 0x00D0, 0x00D4, 0x00D8)

(re
se

rve
d)

0

31

RTC
_IO

_R
TC

_P
ADn

_D
RV

2

30 29

RTC
_IO

_R
TC

_P
ADn

_R
DE

1

28

RTC
_IO

_R
TC

_P
ADn

_R
UE

0

27

(re
se

rve
d)

0 0 0 0 0 0 0

26 20

RTC
_IO

_R
TC

_P
ADn

_M
UX_

SEL

0

19

RTC
_IO

_R
TC

_P
ADn

_F
UN_S

EL

0

18 17

RTC
_IO

_R
TC

_P
ADn

_S
LP

_S
EL

0

16

RTC
_IO

_R
TC

_P
ADn

_S
LP

_IE

0

15

RTC
_IO

_R
TC

_P
ADn

_S
LP

_O
E

0

14

RTC
_IO

_R
TC

_P
ADn

_F
UN_IE

0

13

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

12 0

Reset

RTC_IO_RTC_PADn_FUN_IE Input enable in normal execution. (R/W)

RTC_IO_RTC_PADn_SLP_OE Output enable in sleep mode. (R/W)

RTC_IO_RTC_PADn_SLP_IE Input enable in sleep mode. (R/W)

RTC_IO_RTC_PADn_SLP_SEL 1: enable sleep mode; 0: no sleep mode. (R/W)

RTC_IO_RTC_PADn_FUN_SEL Function selection. (R/W)

RTC_IO_RTC_PADn_MUX_SEL 1: use RTC GPIO; 0: use digital GPIO. (R/W)

RTC_IO_RTC_PADn_RUE Pull-up enable of the pin. 1: internal pull-up enabled; 0: internal pull-up

disabled. (R/W)

RTC_IO_RTC_PADn_RDE Pull-down enable of the pin. 1: internal pull-down enabled, 0: internal

pull-down disabled. (R/W)

RTC_IO_RTC_PADn_DRV Select the drive strength of the pin. 0: ~5 mA: 1: ~10 mA: 2: ~20 mA; 3:

~40 mA. (R/W)

Register 2.56. RTC_IO_XTL_EXT_CTR_REG (0x00E0)

RTC
_IO

_X
TL

_E
XT

_C
TR

_S
EL

0

31 27

(re
se

rve
d)

0 0

26 0

Reset

RTC_IO_XTL_EXT_CTR_SEL Select the external crystal power down enable source to get into

sleep mode. 0: select GPIO0; 1: select GPIO1, etc. The input value on this pin XOR

RTC_CNTL_EXT_XTL_CONF_REG[30] is the crystal power down enable signal. (R/W)

Espressif Systems 78
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

2 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 2.57. RTC_IO_SAR_I2C_IO_REG (0x00E4)

RTC
_IO

_S
AR_I2

C_S
DA_S

EL

0

31 30

RTC
_IO

_S
AR_I2

C_S
CL_

SEL

0

29 28

(re
se

rve
d)

0 0

27 0

Reset

RTC_IO_SAR_I2C_SCL_SEL Selects a pin the RTC I2C SCL signal connects to. 0: use RTC GPIO0;

1: use RTC GPIO2. (R/W)

RTC_IO_SAR_I2C_SDA_SEL Selects a pin the RTC I2C SDA signal connects to. 0: use RTC GPIO1;

1: use RTC GPIO3. (R/W)

Register 2.58. RTC_IO_DATE_REG (0x01FC)

(re
se

rve
d)

0 0 0 0

31 28

RTC
_IO

_D
AT

E

0x1903170

27 0

Reset

RTC_IO_DATE Version control register (R/W)

Espressif Systems 79
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

3 Reset and Clock

3 Reset and Clock

3.1 Reset

3.1.1 Overview

ESP32-S3 provides four reset levels, namely CPU Reset, Core Reset, System Reset, and Chip Reset.

All reset levels mentioned above (except Chip Reset) maintain the data stored in internal memory. Figure 3-1

shows the affected subsystems of the four reset levels.

3.1.2 Architectural Overview

Figure 3­1. Reset Levels

3.1.3 Features

• Support four reset levels:

– CPU Reset: only resets CPUx core. CPUx can be CPU0 or CPU1 here. Once such reset is released,

programs will be executed from CPUx reset vector. Each CPU core has its own reset logic.

– Core Reset: resets the whole digital system except RTC, including CPU0, CPU1, peripherals, Wi-Fi,

Bluetooth® LE (BLE), and digital GPIOs.

– System Reset: resets the whole digital system, including RTC.

– Chip Reset: resets the whole chip.

• Support software reset and hardware reset:

– Software reset is triggered by CPUx configuring its corresponding registers.

Espressif Systems 80
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

3 Reset and Clock

– Hardware reset is directly triggered by the circuit.

Note:

If CPU Reset is from CPU0, the sensitive registers will be reset, too.

3.1.4 Functional Description

CPU0 and CPU1 will be reset immediately when any of the reset above occurs. After the reset is released, CPU0

and CPU1 can read from the registers RTC_CNTL_RESET_CAUSE_PROCPU and RTC_CNTL_RESET_

CAUSE_APPCPU to get the reset source, respectively. The reset sources recorded in the two registers are

shared by the two CPUs, except the CPU reset sources, i.e. each CPU has its own CPU reset sources.

Table 3-1 lists the reset sources and the types of reset they trigger.

Table 3­1. Reset Sources

Code Source Reset Type Comments

0x01 Chip reset1 Chip Reset -

0x0F Brown-out system reset
Chip Reset or

System Reset
Triggered by brown-out detector2

0x10 RWDT system reset System Reset See Chapter 7 Watchdog Timers

0x12 Super Watchdog reset System Reset See Chapter 7 Watchdog Timers

0x13 GLITCH reset System Reset See Chapter 18 Clock Glitch Detection [to be added later]

0x03 Software system reset Core Reset Triggered by configuring RTC_CNTL_SW_SYS_RST

0x05 Deep-sleep reset Core Reset
See Chapter 15 Low-Power Management (RTC_CNTL) [to be

added later]

0x07 MWDT0 core reset Core Reset See Chapter 7 Watchdog Timers

0x08 MWDT1 core reset Core Reset See Chapter 7 Watchdog Timers

0x09 RWDT core reset Core Reset See Chapter 7 Watchdog Timers

0x14 eFuse reset Core Reset Triggered by eFuse CRC error

0x0B MWDT0 CPUx reset CPU Reset See Chapter 7 Watchdog Timers

0x0C Software CPUx reset CPU Reset Triggered by configuring RTC_CNTL_SW_PRO(APP)CPU_RST

0x0D RWDT CPUx reset CPU Reset See Chapter 7 Watchdog Timers

0x11 MWDT1 CPUx reset CPU Reset See Chapter 7 Watchdog Timers

1 Chip Reset can be triggered by the following three sources:

• Triggered by chip power-on;

• Triggered by brown-out detector;

• Triggered by Super Watchdog (SWD).
2 Once brown-out status is detected, the detector will trigger System Reset or Chip Reset, depending on register

configuration. For more information, please see Chapter 15 Low-Power Management (RTC_CNTL) [to be added later].

Espressif Systems 81
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://github.com/espressif/esp-idf/blob/master/components/soc/esp32s3/include/soc/sensitive_reg.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

3 Reset and Clock

3.2 Clock

3.2.1 Overview

ESP32-S3 clocks are mainly sourced from oscillator (OSC), RC, and PLL circuit, and then processed by the

dividers/selectors, which allows most functional modules to select their working clock according to their power

consumption and performance requirements. Figure 3-2 shows the system clock structure.

3.2.2 Architectural Overview

Figure 3­2. Clock Structure

3.2.3 Features

ESP32-S3 clocks can be classified in two types depending on their frequencies:

• High speed clocks for devices working at a higher frequency, such as CPU and digital peripherals

– PLL_CLK (320 MHz or 480 MHz): internal PLL clock

– XTAL_CLK (40 MHz): external crystal clock

• Slow speed clocks for low-power devices, such as RTC module and low-power peripherals

– XTAL32K_CLK (32 kHz): external crystal clock

Espressif Systems 82
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

3 Reset and Clock

– FOSC_CLK (17.5 MHz by default): internal fast RC oscillator clock with adjustable frequency

– FOSC_DIV_CLK: internal fast RC oscillator clock derived from FOSC_CLK divided by 256

– RTC_CLK (136 kHz by default): internal low RC oscillator clock with adjustable frequency

3.2.4 Functional Description

3.2.4.1 CPU Clock

As Figure 3-2 shows, CPU_CLK is the master clock for CPUx and it can be as high as 240 MHz when CPUx

works in high performance mode. Alternatively, CPUx can run at lower frequencies, such as at 2 MHz, to lower

power consumption.

Users can set PLL_CLK, FOSC_CLK or XTAL_CLK as CPU_CLK clock source by configuring register

SYSTEM_SOC_CLK_SEL, see Table 3-2 and Table 3-3. By default, the CPU clock is sourced from XTAL_CLK

with a divider of 2, i.e. the CPU clock is 20 MHz.

Table 3­2. CPU Clock Source

SYSTEM_SOC_CLK_SEL Value CPU Clock Source

0 XTAL_CLK

1 PLL_CLK

2 FOSC_CLK

Table 3­3. CPU Clock Frequency

CPU Clock Source SEL_0* SEL_1* SEL_2* CPU Clock Frequency

XTAL_CLK 0 - -
CPU_CLK = XTAL_CLK/(SYSTEM_PRE_DIV_CNT + 1)

SYSTEM_PRE_DIV_CNT ranges from 0 ~ 1023. Default is 1

PLL_CLK (480 MHz) 1 1 0
CPU_CLK = PLL_CLK/6

CPU_CLK frequency is 80 MHz

PLL_CLK (480 MHz) 1 1 1
CPU_CLK = PLL_CLK/3

CPU_CLK frequency is 160 MHz

PLL_CLK (480 MHz) 1 1 2
CPU_CLK = PLL_CLK/2

CPU_CLK frequency is 240 MHz

PLL_CLK (320 MHz) 1 0 0
CPU_CLK = PLL_CLK/4

CPU_CLK frequency is 80 MHz

PLL_CLK (320 MHz) 1 0 1
CPU_CLK = PLL_CLK/2

CPU_CLK frequency is 160 MHz

FOSC_CLK 2 - -
CPU_CLK = FOSC_CLK/(SYSTEM_PRE_DIV_CNT + 1)

SYSTEM_PRE_DIV_CNT ranges from 0 ~ 1023. Default is 1

* The value of register SYSTEM_SOC_CLK_SEL.
* The value of register SYSTEM_PLL_FREQ_SEL.
* The value of register SYSTEM_CPUPERIOD_SEL.

3.2.4.2 Peripheral Clocks

Peripheral clocks include APB_CLK, CRYPTO_PWM_CLK, PLL_160M_CLK, PLL_240M_CLK, LEDC_CLK,

XTAL_CLK, and FOSC_CLK. Table 3-4 shows which clock can be used by each peripheral.

Espressif Systems 83
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

3
R

esetand
C

lock

Table 3­4. Peripheral Clocks

Peripheral XTAL_CLK APB_CLK PLL_160M_CLK PLL_240M_CLK FOSC_CLK CRYPTO_PWM_CLK LEDC_CLK

TIMG Y Y

I2S Y Y Y

UHCI Y

UART Y Y Y

RMT Y Y Y

PWM Y

I2C Y Y

SPI Y Y

PCNT Y

eFuse Controller Y

SARADC Y Y

USB Y

CRYPTO Y

TWAI Controller Y

SDIO HOST Y Y

LEDC Y Y Y Y

LCD_CAM Y Y Y

SYS_TIMER Y Y

E
spressifS

ystem
s

84
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

3 Reset and Clock

APB_CLK

APB_CLK frequency is determined by the clock source of CPU_CLK as shown in Table 3-5.

Table 3­5. APB_CLK Fequency

CPU_CLK Source APB_CLK Frequency

PLL_CLK 80 MHz

XTAL_CLK CPU_CLK

FOSC_CLK CPU_CLK

CRYPTO_PWM_CLK

The frequency of CRYPTO_PWM_CLK is determined by the CPU_CLK source, as shown in Table 3-6.

Table 3­6. CRYPTO_PWM_CLK Frequency

CPU_CLK Source CRYPTO_PWM_CLK Fre­

quency

PLL_CLK 160 MHz

XTAL_CLK CPU_CLK

FOSC_CLK CPU_CLK

PLL_160M_CLK

PLL_160M_CLK is divided from PLL_CLK according to current PLL frequency.

PLL_240M_CLK

PLL_240M_CLK is divided from PLL_CLK according to current PLL frequency.

LEDC_CLK

LEDC module uses FOSC_CLK as clock source when APB_CLK is disabled. In other words, when the system is

in low-power mode, most peripherals will be halted (APB_CLK is turned off), but LEDC can work normally via

FOSC_CLK.

3.2.4.3 Wi­Fi and Bluetooth LE Clock

Wi-Fi and Bluetooth LE can work only when CPU_CLK uses PLL_CLK as its clock source. Suspending PLL_CLK

requires that Wi-Fi and Bluetooth LE has entered low-power mode first.

LOW_POWER_CLK uses XTAL32K_CLK, XTAL_CLK, FOSC_CLK or SLOW_CLK (the low clock selected by

RTC) as its clock source for Wi-Fi and Bluetooth LE in low-power mode.

3.2.4.4 RTC Clock

The clock sources for SLOW_CLK and FAST_CLK are low-frequency clocks. RTC module can operate when

most other clocks are stopped.

SLOW_CLK is derived from RTC_CLK, XTAL32K_CLK or FOSC_DIV_CLK and used to clock Power

Management module. FAST_CLK is used to clock On-chip Sensor module. It can be sourced from a divided

XTAL_CLK or from FOSC_CLK.

Espressif Systems 85
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

4 Chip Boot Control

4 Chip Boot Control

4.1 Overview

ESP32-S3 has four strapping pins:

• GPIO0

• GPIO3

• GPIO45

• GPIO46

These strapping pins are used to control the following functions during chip power-on or hardware reset:

• control chip boot mode

• enable or disable ROM code printing to UART

• control the voltage of VDD_SPI

• control the source of JTAG signals

During system reset triggered by power-on, brown-out or by analog super watchdog (see Chapter 3 Reset and

Clock), hardware captures samples and stores the voltage level of strapping pins as strapping bit of “0” or “1” in

latches, and holds these bits until the chip is powered down or shut down. Software can read the latch status

(strapping value) from the register GPIO_STRAPPING.

By default, GPIO0, GPIO45, and GPIO46 are connected to the chip’s internal pull-up/pull-down resistors. If these

pins are not connected or connected to an external high-impedance circuit, the internal weak pull-up/pull-down

determines the default input level of these strapping pins (see Table 4-1).

Table 4­1. Default Configuration of Strapping Pins

Strapping Pin Default Configuration

GPIO0 Pull-up

GPIO3 N/A

GPIO45 Pull-down

GPIO46 Pull-down

To change the strapping bit values, users can apply external pull-down/pull-up resistors, or use host MCU GPIOs

to control the voltage level of these pins when powering on ESP32-S3. After the reset is released, the strapping

pins work as normal-function pins.

4.2 Boot Mode Control

GPIO0 and GPIO46 control the boot mode after the reset is released.

Table 4­2. Boot Mode Control

Boot Mode GPIO0 GPIO46

SPI Boot 1 x

Download Boot 0 0

Espressif Systems 86
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

4 Chip Boot Control

Table 4-2 shows the strapping pin values of GPIO0 and GPIO46, and the associated boot modes. “x” means

that this value is ignored. The ESP32-S3 chip only supports the two boot modes listed above. The strapping

combination of GPIO0 = 0 and GPIO46 = 1 is not supported and will trigger unexpected behavior.

In SPI Boot mode, the CPU boots the system by reading the program stored in SPI flash. SPI Boot mode can be

further classified as follows:

• Normal Flash Boot: supports Security Boot and programs run in RAM.

• Direct Boot: does not support Security Boot and programs run directly in flash. To enable this mode, make

sure that the first two words of the bin file downloading to flash (address: 0x42000000) are 0xaebd041d.

In Download Boot mode, users can download code to flash using UART0 or USB interface. It is also possible to

load a program into SRAM and execute it in this mode.

The following eFuses control boot mode behaviors:

• EFUSE_DIS_FORCE_DOWNLOAD

If this eFuse is 0 (default), software can force switch the chip from SPI Boot mode to Download Boot mode

by setting register RTC_CNTL_FORCE_DOWNLOAD_BOOT and triggering a CPU reset. If this eFuse is 1,

RTC_CNTL_FORCE_DOWNLOAD_BOOT is disabled.

• EFUSE_DIS_DOWNLOAD_MODE

If this eFuse is 1, Download Boot mode is disabled.

• EFUSE_ENABLE_SECURITY_DOWNLOAD

If this eFuse is 1, Download Boot mode only allows reading, writing, and erasing plaintext flash and does

not support any SRAM or register operations. Ignore this eFuse if Download Boot mode is disabled.

USB Serial/JTAG Controller can also force the chip into Download Boot mode from SPI Boot mode, as well as

force the chip into SPI Boot mode from Download Boot mode. For detailed information, please refer to Chapter

20 USB Serial/JTAG Controller (USB_SERIAL_JTAG) [to be added later].

4.3 ROM Code Printing Control

During the early boot process,

• if EFUSE_DIS_USB_DEVICE and EFUSE_DIS_USB are cleared, ROM code is always printed to USB

Serial/JTAG controller.

• Otherwise, GPIO46 controls ROM code printing, together with EFUSE_UART_PRINT_CONTROL. See

Table 4-3.

Espressif Systems 87
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

4 Chip Boot Control

Table 4­3. ROM Code Printing Control

eFuse1 GPIO46 ROM Code Printing

0 x
ROM code is always printed to UART during boot.

The value of GPIO46 is ignored.

1
0 Print is enabled during boot.

1 Print is disabled during boot.

2
0 Print is disabled during boot.

1 Print is enabled during boot.

3 x
Print is always disabled during boot. The value of GPIO46 is

ignored.

1 eFuse: EFUSE_UART_PRINT_CONTROL

If ROM code is printed to UART, U0TXD is used as the default pin. To print the ROM code to pin U1TXD,

configure EFUSE_UART_PRINT_CHANNEL:

• 0: print to pin U0TXD

• 1: print to pin U1TXD

4.4 VDD_SPI Voltage Control

GPIO45 is used to select the VDD_SPI power supply voltage at reset:

• GPIO45 = 0, VDD_SPI pin is powered directly from VDD3P3_RTC via resistor RSPI . Typically this voltage is

3.3 V. For more information, see Figure 4: ESP32-S3 Power Scheme in ESP32-S3 Datasheet.

• GPIO45 = 1, VDD_SPI pin is powered from internal 1.8 V LDO.

This functionality can be overridden by setting eFuse bit EFUSE_VDD_SPI_FORCE to 1, in which case the

EFUSE_

VDD_SPI_TIEH determines the VDD_SPI voltage:

• EFUSE_VDD_SPI_TIEH = 0, VDD_SPI connects to 1.8 V LDO.

• EFUSE_VDD_SPI_TIEH = 1, VDD_SPI connects to VDD3P3_RTC.

4.5 JTAG Signal Source Control

GPIO3 controls the source of JTAG signals during the early boot process. This GPIO is used together with

EFUSE_DIS_PAD_JTAG, EFUSE_DIS_USB_JTAG, and EFUSE_STRAP_JTAG_SEL, see Table 4-4.

Espressif Systems 88
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

4 Chip Boot Control

Table 4­4. JTAG Signal Source Control

eFuse 1a eFuse 2b eFuse 3c GPIO3 Signal Source

0 0

0 x
JTAG signals come from USB Serial/JTAG Controller. The value

of GPIO3 is ignored.

1
0 JTAG signals come from corresponding pinsd.

1 JTAG signals come from USB Serial/JTAG Controller.

0 1 x x
JTAG signals come from corresponding pinsd. The values of

EFUSE_STRAP_JTAG_SEL and GPIO3 are ignored.

1 0 x x
JTAG signals come from USB Serial/JTAG Controller. The values

of EFUSE_STRAP_JTAG_SEL and GPIO3 are ignored.

1 1 x x
JTAG is disabled. The values of EFUSE_STRAP_JTAG_SEL

and GPIO3 are ignored.

a eFuse 1: EFUSE_DIS_PAD_JTAG
b eFuse 2: EFUSE_DIS_USB_JTAG
c eFuse 3: EFUSE_STRAP_JTAG_SEL
d JTAG pins: MTDI, MTCK, MTMS, and MTDO.

Espressif Systems 89
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

5 Interrupt Matrix (INTERRUPT)

5.1 Overview

The interrupt matrix embedded in ESP32-S3 independently allocates peripheral interrupt sources to the two

CPUs’ peripheral interrupts, to timely inform CPU0 or CPU1 to process the interrupts once the interrupt signals

are generated.

Peripheral interrupt sources must be routed to CPU0/CPU1 peripheral interrupts via this interrupt matrix due to

the following considerations:

• ESP32-S3 has 99 peripheral interrupt sources. To map them to 32 CPU0 interrupts or 32 CPU1 interrupts,

this matrix is needed.

• Through this matrix, one peripheral interrupt source can be mapped to multiple CPU0 interrupts or CPU1

interrupts according to application requirements.

5.2 Features

• Accept 99 peripheral interrupt sources as input

• Generate 26 peripheral interrupts to CPU0 and 26 peripheral interrupts to CPU1 as output. Note that the

remaining six CPU0 interrupts and six CPU1 interrupts are internal interrupts.

• Support to disable CPU non-maskable interrupt (NMI) sources

• Support to query current interrupt status of peripheral interrupt sources

Figure 5-1 shows the structure of the interrupt matrix.

Figure 5­1. Interrupt Matrix Structure

All the interrupts generated by the peripheral interrupt sources can be handled by CPU0 or CPU1. Users can

configure CPU0 interrupt registers (“Core0 Interrupt Reg” module in Figure 5-1) to allocate peripheral interrupt

sources to CPU0, or configure CPU1 interrupt registers (“Core1 Interrupt Reg” module in Figure 5-1) to allocate

Espressif Systems 90
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

peripheral interrupt sources to CPU1. Peripheral interrupt sources can be allocated both to CPU0 and CPU1

simultaneously, if so, CPU0 and CPU1 will accept the interrupts.

5.3 Functional Description

5.3.1 Peripheral Interrupt Sources

ESP32-S3 has 99 peripheral interrupt sources in total. For the peripheral interrupt sources and their

configuration/status registers, please refer to Table 5-1.

• Column “No.”: the peripheral interrupt source number, can be 0 ~ 98

• Column “Source”: all peripheral interrupt sources available

• Column “Configuration Register”: the registers used for routing the peripheral interrupt sources to

CPU0/CPU1 peripheral interrupts

• Column “Status Register”: the registers used for indicating the interrupt status of peripheral interrupt

sources

– Column “Status Register - Bit”: the bit position in status registers

– Column “Status Register - Name”: the name of status registers

The register in column “Configuration Register” and the bit in column “Bit” correspond to the peripheral interrupt

source in column “Source”. For example, the configuration register for interrupt source MAC_INTR is

INTERRUPT_COREx_MAC_INTR_MAP_REG, and its status bit in INTERRUPT_COREx_INTR_STATUS_0_REG is

bit0.

Note that COREx in the table can be CORE0 (CPU0) or CORE1 (CPU1).

Espressif Systems 91
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

5
InterruptM

atrix
(IN

TE
R

R
U

P
T)

Table 5­1. CPU Peripheral Interrupt Configuration/Status Registers and Peripheral Interrupt Sources

Status Register
No. Source Configuration Register

Bit Name

0 MAC_INTR INTERRUPT_COREx_MAC_INTR_MAP_REG 0

INTERRUPT_COREx_INTR_STATUS_0_REG

1 MAC_NMI INTERRUPT_COREx_MAC_NMI_MAP_REG 1

2 PWR_INTR INTERRUPT_COREx_PWR_INTR_MAP_REG 2

3 BB_INT INTERRUPT_COREx_BB_INT_MAP_REG 3

4 BT_MAC_INT INTERRUPT_COREx_BT_MAC_INT_MAP_REG 4

5 BT_BB_INT INTERRUPT_COREx_BT_BB_INT_MAP_REG 5

6 BT_BB_NMI INTERRUPT_COREx_BT_BB_NMI_MAP_REG 6

7 RWBT_IRQ INTERRUPT_COREx_RWBT_IRQ_MAP_REG 7

8 RWBLE_IRQ INTERRUPT_COREx_RWBLE_IRQ_MAP_REG 8

9 RWBT_NMI INTERRUPT_COREx_RWBT_NMI_MAP_REG 9

10 RWBLE_NMI INTERRUPT_COREx_RWBLE_NMI_MAP_REG 10

11 I2C_MST_INT INTERRUPT_COREx_I2C_MST_INT_MAP_REG 11

12 reserved reserved 12

13 reserved reserved 13

14 UHCI0_INTR INTERRUPT_COREx_UHCI0_INTR_MAP_REG 14

15 reserved reserved 15

16 GPIO_INTERRUPT_PRO INTERRUPT_COREx_GPIO_INTERRUPT_PRO_MAP_REG 16

17 GPIO_INTERRUPT_PRO_NMI INTERRUPT_COREx_GPIO_INTERRUPT_PRO_NMI_MAP_REG 17

18 reserved reserved 18

19 reserved reserved 19

20 SPI_INTR_1 INTERRUPT_COREx_SPI_INTR_1_MAP_REG 20

21 SPI_INTR_2 INTERRUPT_COREx_SPI_INTR_2_MAP_REG 21

22 SPI_INTR_3 INTERRUPT_COREx_SPI_INTR_3_MAP_REG 22

23 reserved reserved 23

24 LCD_CAM_INT INTERRUPT_COREx_LCD_CAM_INT_MAP_REG 24

25 I2S0_INT INTERRUPT_COREx_I2S0_INT_MAP_REG 25

26 I2S1_INT INTERRUPT_COREx_I2S1_INT_MAP_REG 26

27 UART_INTR INTERRUPT_COREx_UART_INTR_MAP_REG 27

28 UART1_INTR INTERRUPT_COREx_UART1_INTR_MAP_REG 28

29 UART2_INTR INTERRUPT_COREx_UART2_INTR_MAP_REG 29

30 SDIO_HOST_INTERRUPT INTERRUPT_COREx_SDIO_HOST_INTERRUPT_MAP_REG 30

31 PWM0_INTR INTERRUPT_COREx_PWM0_INTR_MAP_REG 31

32 PWM1_INTR INTERRUPT_COREx_PWM1_INTR_MAP_REG 0

INTERRUPT_COREx_INTR_STATUS_1_REG33 reserved reserved 1

34 reserved reserved 2

E
spressifS

ystem
s

92
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

5
InterruptM

atrix
(IN

TE
R

R
U

P
T)

Status Register
No. Source Configuration Register

Bit Name

35 LEDC_INT INTERRUPT_COREx_LEDC_INT_MAP_REG 3

36 EFUSE_INT INTERRUPT_COREx_EFUSE_INT_MAP_REG 4

37 CAN_INT INTERRUPT_COREx_CAN_INT_MAP_REG 5

38 USB_INTR INTERRUPT_COREx_USB_INTR_MAP_REG 6

39 RTC_CORE_INTR INTERRUPT_COREx_RTC_CORE_INTR_MAP_REG 7

INTERRUPT_COREx_INTR_STATUS_1_REG

40 RMT_INTR INTERRUPT_COREx_RMT_INTR_MAP_REG 8

41 PCNT_INTR INTERRUPT_COREx_PCNT_INTR_MAP_REG 9

42 I2C_EXT0_INTR INTERRUPT_COREx_I2C_EXT0_INTR_MAP_REG 10

43 I2C_EXT1_INTR INTERRUPT_COREx_I2C_EXT1_INTR_MAP_REG 11

44 reserved reserved 12

45 reserved reserved 13

46 reserved reserved 14

47 reserved reserved 15

48 reserved reserved 16

49 reserved reserved 17

50 TG_T0_INT INTERRUPT_COREx_TG_T0_INT_MAP_REG 18

51 TG_T1_INT INTERRUPT_COREx_TG_T1_INT_MAP_REG 19

52 TG_WDT_INT INTERRUPT_COREx_TG_WDT_INT_MAP_REG 20

53 TG1_T0_INT INTERRUPT_COREx_TG1_T0_INT_MAP_REG 21

54 TG1_T1_INT INTERRUPT_COREx_TG1_T1_INT_MAP_REG 22

55 TG1_WDT_INT INTERRUPT_COREx_TG1_WDT_INT_MAP_REG 23

56 CACHE_IA_INT INTERRUPT_COREx_CACHE_IA_INT_MAP_REG 24

57 SYSTIMER_TARGET0_INT INTERRUPT_COREx_SYSTIMER_TARGET0_INT_MAP_REG 25

58 SYSTIMER_TARGET1_INT INTERRUPT_COREx_SYSTIMER_TARGET1_INT_MAP_REG 26

59 SYSTIMER_TARGET2_INT INTERRUPT_COREx_SYSTIMER_TARGET2_INT_MAP_REG 27

60 SPI_MEM_REJECT_INTR INTERRUPT_COREx_SPI_MEM_REJECT_INTR_MAP_REG 28

61 DCACHE_PRELOAD_INT INTERRUPT_COREx_DCACHE_PRELOAD_INT_MAP_REG 29

62 ICACHE_PRELOAD_INT INTERRUPT_COREx_ICACHE_PRELOAD_INT_MAP_REG 30

63 DCACHE_SYNC_INT INTERRUPT_COREx_DCACHE_SYNC_INT_MAP_REG 31

64 ICACHE_SYNC_INT INTERRUPT_COREx_ICACHE_SYNC_INT_MAP_REG 0

INTERRUPT_COREx_INTR_STATUS_2_REG

65 APB_ADC_INT INTERRUPT_COREX_APB_ADC_INT_MAP_REG 1

66 DMA_IN_CH0_INT INTERRUPT_COREX_DMA_IN_CH0_INT_MAP_REG 2

67 DMA_IN_CH1_INT INTERRUPT_COREx_DMA_IN_CH1_INT_MAP_REG 3

68 DMA_IN_CH2_INT INTERRUPT_COREx_DMA_IN_CH2_INT_MAP_REG 4

69 DMA_IN_CH3_INT INTERRUPT_COREx_DMA_IN_CH3_INT_MAP_REG 5

70 DMA_IN_CH4_INT INTERRUPT_COREx_DMA_IN_CH4_INT_MAP_REG 6

71 DMA_OUT_CH0_INT INTERRUPT_COREX_DMA_OUT_CH0_INT_MAP_REG 7

E
spressifS

ystem
s

93
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

5
InterruptM

atrix
(IN

TE
R

R
U

P
T)

Status Register
No. Source Configuration Register

Bit Name

72 DMA_OUT_CH1_INT INTERRUPT_COREx_DMA_OUT_CH1_INT_MAP_REG 8

INTERRUPT_COREx_INTR_STATUS_2_REG

73 DMA_OUT_CH2_INT INTERRUPT_COREx_DMA_OUT_CH2_INT_MAP_REG 9

74 DMA_OUT_CH3_INT INTERRUPT_COREx_DMA_OUT_CH3_INT_MAP_REG 10

75 DMA_OUT_CH4_INT INTERRUPT_COREx_DMA_OUT_CH4_INT_MAP_REG 11

76 RSA_INTR INTERRUPT_COREx_RSA_INTR_MAP_REG 12

77 AES_INTR INTERRUPT_COREx_AES_INTR_MAP_REG 13

78 SHA_INTR INTERRUPT_COREx_SHA_INTR_MAP_REG 14

79 CPU_INTR_FROM_CPU_0 INTERRUPT_COREx_CPU_INTR_FROM_CPU_0_MAP_REG 15

80 CPU_INTR_FROM_CPU_1 INTERRUPT_COREx_CPU_INTR_FROM_CPU_1_MAP_REG 16

81 CPU_INTR_FROM_CPU_2 INTERRUPT_COREx_CPU_INTR_FROM_CPU_2_MAP_REG 17

82 CPU_INTR_FROM_CPU_3 INTERRUPT_COREx_CPU_INTR_FROM_CPU_3_MAP_REG 18

83 ASSIST_DEBUG_INTR INTERRUPT_COREx_ASSIST_DEBUG_INTR_MAP_REG 19

84 DMA_APB_PMS_MONITOR_VIOLATE_INTR INTERRUPT_COREx_DMA_APB_PMS_MONITOR_VIOLATE_INTR_MAP_REG 20

85 CORE_0_IRAM0_PMS_MONITOR_VIOLATE_INTR INTERRUPT_COREx_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_INTR_MAP_REG 21

86 CORE_0_DRAM0_PMS_MONITOR_VIOLATE_INTR INTERRUPT_COREx_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_INTR_MAP_REG 22

87 CORE_0_PIF_PMS_MONITOR_VIOLATE_INTR INTERRUPT_COREx_CORE_0_PIF_PMS_MONITOR_VIOLATE_INTR_MAP_REG 23

88 CORE_0_PIF_PMS_MONITOR_VIOLATE_SIZE_INTR INTERRUPT_COREx_CORE_0_PIF_PMS_MONITOR_VIOLATE_SIZE_INTR_MAP_REG 24

89 CORE_1_IRAM0_PMS_MONITOR_VIOLATE_INTR INTERRUPT_COREx_CORE_1_IRAM0_PMS_MONITOR_VIOLATE_INTR_MAP_REG 25

90 CORE_1_DRAM0_PMS_MONITOR_VIOLATE_INTR INTERRUPT_COREx_CORE_1_DRAM0_PMS_MONITOR_VIOLATE_INTR_MAP_REG 26

91 CORE_1_PIF_PMS_MONITOR_VIOLATE_INTR INTERRUPT_COREx_CORE_1_PIF_PMS_MONITOR_VIOLATE_INTR_MAP_REG 27

92 CORE_1_PIF_PMS_MONITOR_VIOLATE_SIZE_INTR INTERRUPT_COREx_CORE_1_PIF_PMS_MONITOR_VIOLATE_SIZE_INTR_MAP_REG 28

93 BACKUP_PMS_VIOLATE_INT INTERRUPT_COREx_BACKUP_PMS_VIOLATE_INTR_MAP_REG 29

94 CACHE_CORE0_ACS_INT INTERRUPT_COREx_CACHE_CORE0_ACS_INT_MAP_REG 30

95 CACHE_CORE1_ACS_INT INTERRUPT_COREx_CACHE_CORE1_ACS_INT_MAP_REG 31

96 USB_DEVICE_INT INTERRUPT_COREx_USB_DEVICE_INT_MAP_REG 0

INTERRUPT_COREx_INTR_STATUS_3_REG97 PERI_BACKUP_INT INTERRUPT_COREx_PERI_BACKUP_INT_MAP_REG 1

98 DMA_EXTMEM_REJECT_INT INTERRUPT_COREx_DMA_EXTMEM_REJECT_INT_MAP_REG 2

E
spressifS

ystem
s

94
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

5.3.2 CPU Interrupts

Each CPU has 32 interrupts, numbered from 0 ~ 31, including 26 peripheral interrupts and six internal

interrupts.

• Peripheral interrupts: triggered by peripheral interrupt sources, include the following types:

– Level-triggered interrupts: triggered by a high level signal. The interrupt sources should hold the level

till the CPUx handles the interrupts.

– Edge-triggered interrupts: triggered on a rising edge. CPUx responds to this kind of interrupts

immediately.

– NMI interrupt: once triggered, the NMI interrupt can not be masked by software using the CPUx

internal registers. World Controller provides a way to mask this kind of interrupt. For more information,

see Chapter 19 World Controller (WCTL) [to be added later].

• Internal interrupts: generated inside CPUx, include the following types:

– Timer interrupts: triggered by internal timers and are used to generate periodic interrupts.

– Software interrupts: triggered when software writes to special registers.

– Profiling interrupt: triggered for performance monitoring and analysis.

Level-triggered and edge-triggered both describe the ways of CPUx to accept interrupt signals. For

level-triggered interrupts, the level of interrupt signal should be kept till the CPU handles the interrupt, otherwise

the interrupt may be lost. For edge-triggered interrupts, when a rising edge is detected, this edge will be

recorded by CPUx, which then allows the interrupt signal to be released.

Interrupt matrix routes the peripheral interrupt sources to any of the CPUx peripheral interrupts. By such way,

CPUx can receive the interrupt signals from peripheral interrupt sources. Table 5-2 lists all the interrupts and their

types as well as priorities.

ESP32-S3 supports the above-mentioned 32 interrupts at six levels as shown in the table below. A higher level

corresponds to a higher priority. NMI has the highest interrupt priority and once triggered, the CPUx must handle

such interrupt. Nested interrupts are also supported, i.e. low-level interrupts can be stopped by high-level

interrupts.

Table 5­2. CPU Interrupts

No. Category Type Priority

0 Peripheral Level-triggered 1

1 Peripheral Level-triggered 1

2 Peripheral Level-triggered 1

3 Peripheral Level-triggered 1

4 Peripheral Level-triggered 1

5 Peripheral Level-triggered 1

6 Internal Timer.0 1

7 Internal Software 1

8 Peripheral Level-triggered 1

9 Peripheral Level-triggered 1

10 Peripheral Level-triggered 1

Espressif Systems 95
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

No. Category Type Priority

11 Internal Profiling 3

12 Peripheral Level-triggered 1

13 Peripheral Level-triggered 1

14 Peripheral NMI NMI

15 Internal Timer.1 3

16 Internal Timer.2 5

17 Peripheral Level-triggered 1

18 Peripheral Level-triggered 1

19 Peripheral Level-triggered 2

20 Peripheral Level-triggered 2

21 Peripheral Level-triggered 2

22 Peripheral Level-triggered 3

23 Peripheral Level-triggered 3

24 Peripheral Level-triggered 4

25 Peripheral Level-triggered 4

26 Peripheral Level-triggered 5

27 Peripheral Level-triggered 3

28 Peripheral Level-triggered 4

29 Internal Software 3

30 Peripheral Level-triggered 4

31 Peripheral Level-triggered 5

5.3.3 Allocate Peripheral Interrupt Source to CPUx Interrupt

In this section, the following terms are used to describe the operation of the interrupt matrix.

• Source_Y: stands for a peripheral interrupt source, wherein, Y means the number of this interrupt source in

Table 5-1.

• INTERRUPT_COREx_SOURCE_Y_MAP_REG: stands for a configuration register for the peripheral interrupt

source (Source_Y) of CPUx.

• Interrupt_P: stands for the CPUx peripheral interrupt numbered as Num_P. The value of Num_P can be 0 ~
5, 8 ~ 10, 12 ~ 14, 17 ~ 28, and 30 ~ 31. See Table 5-2.

• Interrupt_I: stands for the CPUx internal interrupt numbered as Num_I. The value of Num_I can be 6, 7, 11,

15, 16, and 29. See Table 5-2.

5.3.3.1 Allocate one peripheral interrupt source (Source_Y) to CPUx

Setting the corresponding configuration register INTERRUPT_COREx_SOURCE_Y_MAP_REG of Source_Y to

Num

_P allocates this interrupt source to Interrupt_P. Num_P here can be any value from 0 ~ 5, 8 ~ 10, 12 ~ 14, 17 ~
28, and 30 ~ 31. Note that one CPUx interrupt can be shared by multiple peripherals.

Espressif Systems 96
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

5.3.3.2 Allocate multiple peripheral interrupt sources (Source_Yn) to CPUx

Setting the corresponding configuration register INTERRUPT_COREx_SOURCE_Yn_MAP_REG of each interrupt

source to the same Num_P allocates multiple sources to the same Interrupt_P. Any of these sources can trigger

CPUx Interrupt_P. When an interrupt signal is generated, CPUx checks the interrupt status registers to figure out

which peripheral the signal comes from.

5.3.3.3 Disable CPUx peripheral interrupt source (Source_Y)

Setting the corresponding configuration register INTERRUPT_COREx_SOURCE_Y_MAP_REG of the source to

any Num_I disables this interrupt Source_Y. The choice of Num_I (6, 7, 11, 15, 16, 29) does not matter, as none

of peripheral interrupt sources allocated to Num_I is connected to the CPUx. Therefore this functionality can be

used to disable peripheral interrupt sources.

5.3.4 Disable CPUx NMI Interrupt

All CPUx interrupts, except for NMI interrupt (No.14 in Table 5-2), can be masked and enabled by software using

CPU special register (INTENABLE). NMI interrupt can not be masked by the way above, but ESP32-S3 provides

two ways to mask NMI interrupt:

• Disconnect peripheral interrupt sources from NMI interrupt, i.e. the sources routed to NMI interrupt before

are now routed to other interrupts. By such way, the previous NMI interrupt is maskable.

• Connect peripheral interrupt sources with NMI interrupt, but use World Controller module to mask NMI

interrupt. For more information, see Chapter Chapter 19 World Controller (WCTL) [to be added later].

5.3.5 Query Current Interrupt Status of Peripheral Interrupt Source

Users can query current interrupt status of a CPUx peripheral interrupt source by reading the bit value in

INTERRUPT_COREx_INTR_STATUS_n_REG (read only). For the mapping between

INTERRUPT_COREx_INTR_STATUS_

n_REG and peripheral interrupt sources, please refer to Table 5-1.

5.4 Register Summary

The addresses in this section are relative to the Interrupt Matrix base address provided in Table 1-4 in Chapter 1

System and Memory.

Espressif Systems 97
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

5
InterruptM

atrix
(IN

TE
R

R
U

P
T)

5.4.1 CPU0 Interrupt Register Summary

Name Description Address Access

Configuration Registers

INTERRUPT_CORE0_MAC_INTR_MAP_REG MAC interrupt configuration register 0x0000 R/W

INTERRUPT_CORE0_MAC_NMI_MAP_REG MAC_NMI interrupt configuration register 0x0004 R/W

INTERRUPT_CORE0_PWR_INTR_MAP_REG PWR interrupt configuration register 0x0008 R/W

INTERRUPT_CORE0_BB_INT_MAP_REG BB interrupt configuration register 0x000C R/W

INTERRUPT_CORE0_BT_MAC_INT_MAP_REG BB_MAC interrupt configuration register 0x0010 R/W

INTERRUPT_CORE0_BT_BB_INT_MAP_REG BT_BB interrupt configuration register 0x0014 R/W

INTERRUPT_CORE0_BT_BB_NMI_MAP_REG BT_BB_NMI interrupt configuration register 0x0018 R/W

INTERRUPT_CORE0_RWBT_IRQ_MAP_REG RWBT_IRQ interrupt configuration register 0x001C R/W

INTERRUPT_CORE0_RWBLE_IRQ_MAP_REG RWBLE_IRQ interrupt configuration register 0x0020 R/W

INTERRUPT_CORE0_RWBT_NMI_MAP_REG RWBT_NMI interrupt configuration register 0x0024 R/W

INTERRUPT_CORE0_RWBLE_NMI_MAP_REG RWBLE_NMI interrupt configuration register 0x0028 R/W

INTERRUPT_CORE0_I2C_MST_INT_MAP_REG I2C_MST interrupt configuration register 0x002C R/W

INTERRUPT_CORE0_UHCI0_INTR_MAP_REG UHCI0 interrupt configuration register 0x0038 R/W

INTERRUPT_CORE0_GPIO_INTERRUPT_PRO_MAP_REG GPIO_INTERRUPT_PRO interrupt configuration register 0x0040 R/W

INTERRUPT_CORE0_GPIO_INTERRUPT_PRO_NMI_MAP_REG GPIO_INTERRUPT_PRO_NMI interrupt configuration register 0x0044 R/W

INTERRUPT_CORE0_SPI_INTR_1_MAP_REG SPI_INTR_1 interrupt configuration register 0x0050 R/W

INTERRUPT_CORE0_SPI_INTR_2_MAP_REG SPI_INTR_2 interrupt configuration register 0x0054 R/W

INTERRUPT_CORE0_SPI_INTR_3_MAP_REG SPI_INTR_3 interrupt configuration register 0x0058 R/W

INTERRUPT_CORE0_LCD_CAM_INT_MAP_REG LCD_CAM interrupt configuration register 0x0060 R/W

INTERRUPT_CORE0_I2S0_INT_MAP_REG I2S0 interrupt configuration register 0x0064 R/W

INTERRUPT_CORE0_I2S1_INT_MAP_REG I2S1 interrupt configuration register 0x0068 R/W

INTERRUPT_CORE0_UART_INTR_MAP_REG UART interrupt configuration register 0x006C R/W

INTERRUPT_CORE0_UART1_INTR_MAP_REG UART1 interrupt configuration register 0x0070 R/W

INTERRUPT_CORE0_UART2_INTR_MAP_REG UART2 interrupt configuration register 0x0074 R/W

INTERRUPT_CORE0_SDIO_HOST_INTERRUPT_MAP_REG SDIO_HOST interrupt configuration register 0x0078 R/W

INTERRUPT_CORE0_PWM0_INTR_MAP_REG PWM0 interrupt configuration register 0x007C R/W

E
spressifS

ystem
s

98
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

5
InterruptM

atrix
(IN

TE
R

R
U

P
T)

Name Description Address Access

INTERRUPT_CORE0_PWM1_INTR_MAP_REG PWM1 interrupt configuration register 0x0080 R/W

INTERRUPT_CORE0_LEDC_INT_MAP_REG LEDC interrupt configuration register 0x008C R/W

INTERRUPT_CORE0_EFUSE_INT_MAP_REG EFUSE interrupt configuration register 0x0090 R/W

INTERRUPT_CORE0_CAN_INT_MAP_REG CAN interrupt configuration register 0x0094 R/W

INTERRUPT_CORE0_USB_INTR_MAP_REG USB interrupt configuration register 0x0098 R/W

INTERRUPT_CORE0_RTC_CORE_INTR_MAP_REG RTC_CORE interrupt configuration register 0x009C R/W

INTERRUPT_CORE0_RMT_INTR_MAP_REG RMT interrupt configuration register 0x00A0 R/W

INTERRUPT_CORE0_PCNT_INTR_MAP_REG PCNT interrupt configuration register 0x00A4 R/W

INTERRUPT_CORE0_I2C_EXT0_INTR_MAP_REG I2C_EXT0 interrupt configuration register 0x00A8 R/W

INTERRUPT_CORE0_I2C_EXT1_INTR_MAP_REG I2C_EXT1 interrupt configuration register 0x00AC R/W

INTERRUPT_CORE0_TG_T0_INT_MAP_REG TG_T0 interrupt configuration register 0x00C8 R/W

INTERRUPT_CORE0_TG_T1_INT_MAP_REG TG_T1 interrupt configuration register 0x00CC R/W

INTERRUPT_CORE0_TG_WDT_INT_MAP_REG TG_WDT interrupt configuration register 0x00D0 R/W

INTERRUPT_CORE0_TG1_T0_INT_MAP_REG TG1_T0 interrupt configuration register 0x00D4 R/W

INTERRUPT_CORE0_TG1_T1_INT_MAP_REG TG1_T1 interrupt configuration register 0x00D8 R/W

INTERRUPT_CORE0_TG1_WDT_INT_MAP_REG TG1_WDT interrupt configuration register 0x00DC R/W

INTERRUPT_CORE0_CACHE_IA_INT_MAP_REG CACHE_IA interrupt configuration register 0x00E0 R/W

INTERRUPT_CORE0_SYSTIMER_TARGET0_INT_MAP_REG SYSTIMER_TARGET0 interrupt configuration register 0x00E4 R/W

INTERRUPT_CORE0_SYSTIMER_TARGET1_INT_MAP_REG SYSTIMER_TARGET1 interrupt configuration register 0x00E8 R/W

INTERRUPT_CORE0_SYSTIMER_TARGET2_INT_MAP_REG SYSTIMER_TARGET2 interrupt configuration register 0x00EC R/W

INTERRUPT_CORE0_SPI_MEM_REJECT_INTR_MAP_REG SPI_MEM_REJECT interrupt configuration register 0x00F0 R/W

INTERRUPT_CORE0_DCACHE_PRELOAD_INT_MAP_REG DCACHE_PRELAOD interrupt configuration register 0x00F4 R/W

INTERRUPT_CORE0_ICACHE_PRELOAD_INT_MAP_REG ICACHE_PRELOAD interrupt configuration register 0x00F8 R/W

INTERRUPT_CORE0_DCACHE_SYNC_INT_MAP_REG DCACHE_SYNC interrupt configuration register 0x00FC R/W

INTERRUPT_CORE0_ICACHE_SYNC_INT_MAP_REG ICACHE_SYNC interrupt configuration register 0x0100 R/W

INTERRUPT_CORE0_APB_ADC_INT_MAP_REG APB_ADC interrupt configuration register 0x0104 R/W

INTERRUPT_CORE0_DMA_IN_CH0_INT_MAP_REG DMA_IN_CH0 interrupt configuration register 0x0108 R/W

INTERRUPT_CORE0_DMA_IN_CH1_INT_MAP_REG DMA_IN_CH1 interrupt configuration register 0x010C R/W

INTERRUPT_CORE0_DMA_IN_CH2_INT_MAP_REG DMA_IN_CH2 interrupt configuration register 0x0110 R/W

E
spressifS

ystem
s

99
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

5
InterruptM

atrix
(IN

TE
R

R
U

P
T)

Name Description Address Access

INTERRUPT_CORE0_DMA_IN_CH3_INT_MAP_REG DMA_IN_CH3 interrupt configuration register 0x0114 R/W

INTERRUPT_CORE0_DMA_IN_CH4_INT_MAP_REG DMA_IN_CH4 interrupt configuration register 0x0118 R/W

INTERRUPT_CORE0_DMA_OUT_CH0_INT_MAP_REG DMA_OUT_CH0 interrupt configuration register 0x011C R/W

INTERRUPT_CORE0_DMA_OUT_CH1_INT_MAP_REG DMA_OUT_CH1 interrupt configuration register 0x0120 R/W

INTERRUPT_CORE0_DMA_OUT_CH2_INT_MAP_REG DMA_OUT_CH2 interrupt configuration register 0x0124 R/W

INTERRUPT_CORE0_DMA_OUT_CH3_INT_MAP_REG DMA_OUT_CH3 interrupt configuration register 0x0128 R/W

INTERRUPT_CORE0_DMA_OUT_CH4_INT_MAP_REG DMA_OUT_CH4 interrupt configuration register 0x012C R/W

INTERRUPT_CORE0_RSA_INT_MAP_REG RSA interrupt configuration register 0x0130 R/W

INTERRUPT_CORE0_AES_INT_MAP_REG AES interrupt configuration register 0x0134 R/W

INTERRUPT_CORE0_SHA_INT_MAP_REG SHA interrupt configuration register 0x0138 R/W

INTERRUPT_CORE0_CPU_INTR_FROM_CPU_0_MAP_REG CPU_INTR_FROM_CPU_0 interrupt configuration register 0x013C R/W

INTERRUPT_CORE0_CPU_INTR_FROM_CPU_1_MAP_REG CPU_INTR_FROM_CPU_1 interrupt configuration register 0x0140 R/W

INTERRUPT_CORE0_CPU_INTR_FROM_CPU_2_MAP_REG CPU_INTR_FROM_CPU_2 interrupt configuration register 0x0144 R/W

INTERRUPT_CORE0_CPU_INTR_FROM_CPU_3_MAP_REG CPU_INTR_FROM_CPU_3 interrupt configuration register 0x0148 R/W

INTERRUPT_CORE0_ASSIST_DEBUG_INTR_MAP_REG ASSIST_DEBUG interrupt configuration register 0x014C R/W

INTERRUPT_CORE0_DMA_APBPERI_PMS_MONITOR_VIOLATE_

INTR_MAP_REG

dma_pms_monitor_violatile interrupt configuration register
0x0150 R/W

INTERRUPT_CORE0_CORE_0_IRAM0_PMS_MONITOR_VIOLATE

_INTR_MAP_REG

core0_IRam0_pms_monitor_violatile interrupt configuration register
0x0154 R/W

INTERRUPT_CORE0_CORE_0_DRAM0_PMS_MONITOR_VIOLATE

_INTR_MAP_REG

core0_DRam0_pms_monitor_violatile interrupt configuration register
0x0158 R/W

INTERRUPT_CORE0_CORE_0_PIF_PMS_MONITOR_VIOLATE_

INTR_MAP_REG

core0_PIF_pms_monitor_violatile interrupt configuration register
0x015C R/W

INTERRUPT_CORE0_CORE_0_PIF_PMS_MONITOR_VIOLATE_

SIZE_INTR_MAP_REG

core0_PIF_pms_monitor_violatile_size interrupt configuration regis-

ter
0x0160 R/W

INTERRUPT_CORE0_CORE_1_IRAM0_PMS_MONITOR_VIOLATE_

INTR_MAP_REG

core1_IRam0_pms_monitor_violatile interrupt configuration register
0x0164 R/W

INTERRUPT_CORE0_CORE_1_DRAM0_PMS_MONITOR_VIOLATE

_INTR_MAP_REG

core1_DRam0_pms_monitor_violatile interrupt configuration register
0x0168 R/W

E
spressifS

ystem
s

100
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

5
InterruptM

atrix
(IN

TE
R

R
U

P
T)

Name Description Address Access

INTERRUPT_CORE0_CORE_1_PIF_PMS_MONITOR_VIOLATE_

INTR_MAP_REG

core1_PIF_pms_monitor_violatile interrupt configuration register
0x016C R/W

INTERRUPT_CORE0_CORE_1_PIF_PMS_MONITOR_VIOLATE_

SIZE_INTR_MAP_REG

core1_PIF_pms_monitor_violatile_size interrupt configuration regis-

ter
0x0170 R/W

INTERRUPT_CORE0_BACKUP_PMS_VIOLATE_INTR_MAP_REG BACKUP_PMS_MONITOR_VIOLATILE interrupt configuration regis-

ter

0x0174 R/W

INTERRUPT_CORE0_CACHE_CORE0_ACS_INT_MAP_REG CACHE_CORE0_ACS interrupt configuration register 0x0178 R/W

INTERRUPT_CORE0_CACHE_CORE1_ACS_INT_MAP_REG CACHE_CORE1_ACS interrupt configuration register 0x017C R/W

INTERRUPT_CORE0_USB_DEVICE_INT_MAP_REG USB_DEVICE interrupt configuration register 0x0180 R/W

INTERRUPT_CORE0_PERI_BACKUP_INT_MAP_REG PERI_BACKUP interrupt configuration register 0x0184 R/W

INTERRUPT_CORE0_DMA_EXTMEM_REJECT_INT_MAP_REG DMA_EXTMEM_REJECT interrupt configuration register 0x0188 R/W

Status Registers

INTERRUPT_CORE0_INTR_STATUS_0_REG Interrupt status register 0x018C RO

INTERRUPT_CORE0_INTR_STATUS_1_REG Interrupt status register 0x0190 RO

INTERRUPT_CORE0_INTR_STATUS_2_REG Interrupt status register 0x0194 RO

INTERRUPT_CORE0_INTR_STATUS_3_REG Interrupt status register 0x0198 RO

Clock Register

INTERRUPT_CORE0_CLOCK_GATE_REG Clock gate register 0x019C R/W

Version Register

INTERRUPT_CORE0_DATE_REG Version control register 0x07FC R/W

5.4.2 CPU1 Interrupt Register Summary

Name Description Address Access

Configuration Registers

INTERRUPT_CORE1_MAC_INTR_MAP_REG MAC interrupt configuration register 0x0800 R/W

INTERRUPT_CORE1_MAC_NMI_MAP_REG MAC_NMI interrupt configuration register 0x0804 R/W

INTERRUPT_CORE1_PWR_INTR_MAP_REG PWR interrupt configuration register 0x0808 R/W

INTERRUPT_CORE1_BB_INT_MAP_REG BB interrupt configuration register 0x080C R/W

E
spressifS

ystem
s

101
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

5
InterruptM

atrix
(IN

TE
R

R
U

P
T)

Name Description Address Access

INTERRUPT_CORE1_BT_MAC_INT_MAP_REG BB_MAC interrupt configuration register 0x0810 R/W

INTERRUPT_CORE1_BT_BB_INT_MAP_REG BT_BB interrupt configuration register 0x0814 R/W

INTERRUPT_CORE1_BT_BB_NMI_MAP_REG BT_BB_NMI interrupt configuration register 0x0818 R/W

INTERRUPT_CORE1_RWBT_IRQ_MAP_REG RWBT_IRQ interrupt configuration register 0x081C R/W

INTERRUPT_CORE1_RWBLE_IRQ_MAP_REG RWBLE_IRQ interrupt configuration register 0x0820 R/W

INTERRUPT_CORE1_RWBT_NMI_MAP_REG RWBT_NMI interrupt configuration register 0x0824 R/W

INTERRUPT_CORE1_RWBLE_NMI_MAP_REG RWBLE_NMI interrupt configuration register 0x0828 R/W

INTERRUPT_CORE1_I2C_MST_INT_MAP_REG I2C_MST interrupt configuration register 0x082C R/W

INTERRUPT_CORE1_UHCI0_INTR_MAP_REG UHCI0 interrupt configuration register 0x0838 R/W

INTERRUPT_CORE1_GPIO_INTERRUPT_PRO_MAP_REG GPIO_INTERRUPT_PRO interrupt configuration register 0x0840 R/W

INTERRUPT_CORE1_GPIO_INTERRUPT_PRO_NMI_MAP_REG GPIO_INTERRUPT_PRO_NMI Interrupt configuration register 0x0844 R/W

INTERRUPT_CORE1_SPI_INTR_1_MAP_REG SPI_INTR_1 interrupt configuration register 0x0850 R/W

INTERRUPT_CORE1_SPI_INTR_2_MAP_REG SPI_INTR_2 interrupt configuration register 0x0854 R/W

INTERRUPT_CORE1_SPI_INTR_3_MAP_REG SPI_INTR_3 interrupt configuration register 0x0858 R/W

INTERRUPT_CORE1_LCD_CAM_INT_MAP_REG LCD_CAM interrupt configuration register 0x0860 R/W

INTERRUPT_CORE1_I2S0_INT_MAP_REG I2S0 interrupt configuration register 0x0864 R/W

INTERRUPT_CORE1_I2S1_INT_MAP_REG I2S1 interrupt configuration register 0x0868 R/W

INTERRUPT_CORE1_UART_INTR_MAP_REG UART interrupt configuration register 0x086C R/W

INTERRUPT_CORE1_UART1_INTR_MAP_REG UART1 interrupt configuration register 0x0870 R/W

INTERRUPT_CORE1_UART2_INTR_MAP_REG UART2 interrupt configuration register 0x0874 R/W

INTERRUPT_CORE1_SDIO_HOST_INTERRUPT_MAP_REG SDIO_HOST interrupt configuration register 0x0878 R/W

INTERRUPT_CORE1_PWM0_INTR_MAP_REG PWM0 interrupt configuration register 0x087C R/W

INTERRUPT_CORE1_PWM1_INTR_MAP_REG PWM1 interrupt configuration register 0x0880 R/W

INTERRUPT_CORE1_LEDC_INT_MAP_REG LEDC interrupt configuration register 0x088C R/W

INTERRUPT_CORE1_EFUSE_INT_MAP_REG EFUSE interrupt configuration register 0x0890 R/W

INTERRUPT_CORE1_CAN_INT_MAP_REG CAN interrupt configuration register 0x0894 R/W

INTERRUPT_CORE1_USB_INTR_MAP_REG USB interrupt configuration register 0x0898 R/W

INTERRUPT_CORE1_RTC_CORE_INTR_MAP_REG RTC_CORE interrupt configuration register 0x089C R/W

INTERRUPT_CORE1_RMT_INTR_MAP_REG RMT interrupt configuration register 0x08A0 R/W

E
spressifS

ystem
s

102
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

5
InterruptM

atrix
(IN

TE
R

R
U

P
T)

Name Description Address Access

INTERRUPT_CORE1_PCNT_INTR_MAP_REG PCNT interrupt configuration register 0x08A4 R/W

INTERRUPT_CORE1_I2C_EXT0_INTR_MAP_REG I2C_EXT0 interrupt configuration register 0x08A8 R/W

INTERRUPT_CORE1_I2C_EXT1_INTR_MAP_REG I2C_EXT1 interrupt configuration register 0x08AC R/W

INTERRUPT_CORE1_TG_T1_INT_MAP_REG TG_T1 interrupt configuration register 0x08CC R/W

INTERRUPT_CORE1_TG_WDT_INT_MAP_REG TG_WDT interrupt configuration register 0x08D0 R/W

INTERRUPT_CORE1_TG1_T0_INT_MAP_REG TG1_T0 interrupt configuration register 0x08D4 R/W

INTERRUPT_CORE1_TG1_T1_INT_MAP_REG TG1_T1 interrupt configuration register 0x08D8 R/W

INTERRUPT_CORE1_TG1_WDT_INT_MAP_REG TG1_WDT interrupt configuration register 0x08DC R/W

INTERRUPT_CORE1_CACHE_IA_INT_MAP_REG CACHE_IA interrupt configuration register 0x08E0 R/W

INTERRUPT_CORE1_SYSTIMER_TARGET0_INT_MAP_REG SYSTIMER_TARGET0 interrupt configuration register 0x08E4 R/W

INTERRUPT_CORE1_SYSTIMER_TARGET1_INT_MAP_REG SYSTIMER_TARGET1 interrupt configuration register 0x08E8 R/W

INTERRUPT_CORE1_SYSTIMER_TARGET2_INT_MAP_REG SYSTIMER_TARGET2 interrupt configuration register 0x08EC R/W

INTERRUPT_CORE1_SPI_MEM_REJECT_INTR_MAP_REG SPI_MEM_REJECT interrupt configuration register 0x08F0 R/W

INTERRUPT_CORE1_DCACHE_PRELOAD_INT_MAP_REG DCACHE_PRELAOD interrupt configuration register 0x08F4 R/W

INTERRUPT_CORE1_ICACHE_PRELOAD_INT_MAP_REG ICACHE_PRELOAD interrupt configuration register 0x08F8 R/W

INTERRUPT_CORE1_DCACHE_SYNC_INT_MAP_REG DCACHE_SYNC interrupt configuration register 0x08FC R/W

INTERRUPT_CORE1_ICACHE_SYNC_INT_MAP_REG ICACHE_SYNC interrupt configuration register 0x0900 R/W

INTERRUPT_CORE1_APB_ADC_INT_MAP_REG APB_ADC interrupt configuration register 0x0904 R/W

INTERRUPT_CORE1_DMA_IN_CH0_INT_MAP_REG DMA_IN_CH0 interrupt configuration register 0x0908 R/W

INTERRUPT_CORE1_DMA_IN_CH1_INT_MAP_REG DMA_IN_CH1 interrupt configuration register 0x090C R/W

INTERRUPT_CORE1_DMA_IN_CH2_INT_MAP_REG DMA_IN_CH2 interrupt configuration register 0x0910 R/W

INTERRUPT_CORE1_DMA_IN_CH3_INT_MAP_REG DMA_IN_CH3 interrupt configuration register 0x0914 R/W

INTERRUPT_CORE1_DMA_IN_CH4_INT_MAP_REG DMA_IN_CH4 interrupt configuration register 0x0918 R/W

INTERRUPT_CORE1_DMA_OUT_CH0_INT_MAP_REG DMA_OUT_CH0 interrupt configuration register 0x091C R/W

INTERRUPT_CORE1_DMA_OUT_CH1_INT_MAP_REG DMA_OUT_CH1 interrupt configuration register 0x0920 R/W

INTERRUPT_CORE1_DMA_OUT_CH2_INT_MAP_REG DMA_OUT_CH2 interrupt configuration register 0x0924 R/W

INTERRUPT_CORE1_DMA_OUT_CH3_INT_MAP_REG DMA_OUT_CH3 interrupt configuration register 0x0928 R/W

INTERRUPT_CORE1_DMA_OUT_CH4_INT_MAP_REG DMA_OUT_CH4 interrupt configuration register 0x092C R/W

INTERRUPT_CORE1_RSA_INT_MAP_REG RSA interrupt configuration register 0x0930 R/W

E
spressifS

ystem
s

103
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

5
InterruptM

atrix
(IN

TE
R

R
U

P
T)

Name Description Address Access

INTERRUPT_CORE1_AES_INT_MAP_REG AES interrupt configuration register 0x0934 R/W

INTERRUPT_CORE1_SHA_INT_MAP_REG SHA interrupt configuration register 0x0938 R/W

INTERRUPT_CORE1_CPU_INTR_FROM_CPU_0_MAP_REG CPU_INTR_FROM_CPU_0 interrupt configuration register 0x093C R/W

INTERRUPT_CORE1_CPU_INTR_FROM_CPU_1_MAP_REG CPU_INTR_FROM_CPU_1 interrupt configuration register 0x0940 R/W

INTERRUPT_CORE1_CPU_INTR_FROM_CPU_2_MAP_REG CPU_INTR_FROM_CPU_2 interrupt configuration register 0x0944 R/W

INTERRUPT_CORE1_CPU_INTR_FROM_CPU_3_MAP_REG CPU_INTR_FROM_CPU_3 interrupt configuration register 0x0948 R/W

INTERRUPT_CORE1_ASSIST_DEBUG_INTR_MAP_REG ASSIST_DEBUG interrupt configuration register 0x094C R/W

INTERRUPT_CORE1_DMA_APBPERI_PMS_MONITOR_VIOLATE_

INTR_MAP_REG

dma_pms_monitor_violatile interrupt configuration register
0x0950 R/W

INTERRUPT_CORE1_CORE_0_IRAM0_PMS_MONITOR_VIOLATE

_INTR_MAP_REG

core0_IRam0_pms_monitor_violatile interrupt configuration register
0x0954 R/W

INTERRUPT_CORE1_CORE_0_DRAM0_PMS_MONITOR_VIOLATE

_INTR_MAP_REG

core0_DRam0_pms_monitor_violatile interrupt configuration register
0x0958 R/W

INTERRUPT_CORE1_CORE_0_PIF_PMS_MONITOR_VIOLATE_

INTR_MAP_REG

core0_PIF_pms_monitor_violatile interrupt configuration register
0x095C R/W

INTERRUPT_CORE1_CORE_0_PIF_PMS_MONITOR_VIOLATE_

SIZE_INTR_MAP_REG

core0_PIF_pms_monitor_violatile_size interrupt configuration regis-

ter
0x0960 R/W

INTERRUPT_CORE1_CORE_1_IRAM0_PMS_MONITOR_VIOLATE_

INTR_MAP_REG

core1_IRam0_pms_monitor_violatile interrupt configuration register
0x0964 R/W

INTERRUPT_CORE1_CORE_1_DRAM0_PMS_MONITOR_VIOLATE

_INTR_MAP_REG

core1_DRam0_pms_monitor_violatile interrupt configuration register
0x0968 R/W

INTERRUPT_CORE1_CORE_1_PIF_PMS_MONITOR_VIOLATE_

INTR_MAP_REG

core1_PIF_pms_monitor_violatile interrupt configuration register
0x096C R/W

INTERRUPT_CORE1_CORE_1_PIF_PMS_MONITOR_VIOLATE_

SIZE_INTR_MAP_REG

core1_PIF_pms_monitor_violatile_size interrupt configuration regis-

ter
0x0970 R/W

INTERRUPT_CORE1_BACKUP_PMS_VIOLATE_INTR_MAP_REG BACKUP_PMS_MONITOR_VIOLATILE interrupt configuration regis-

ter

0x0974 R/W

INTERRUPT_CORE1_CACHE_CORE0_ACS_INT_MAP_REG CACHE_CORE0_ACS interrupt configuration register REG 0x0978 R/W

INTERRUPT_CORE1_CACHE_CORE1_ACS_INT_MAP_REG CACHE_CORE1_ACS interrupt configuration register REG 0x097C R/W

E
spressifS

ystem
s

104
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

5
InterruptM

atrix
(IN

TE
R

R
U

P
T)

Name Description Address Access

INTERRUPT_CORE1_USB_DEVICE_INT_MAP_REG USB_DEVICE interrupt configuration register 0x0980 R/W

INTERRUPT_CORE1_PERI_BACKUP_INT_MAP_REG PERI_BACKUP interrupt configuration register 0x0984 R/W

INTERRUPT_CORE1_DMA_EXTMEM_REJECT_INT_MAP_REG DMA_EXTMEM_REJECT interrupt configuration register 0x0988 R/W

Status Registers

INTERRUPT_CORE1_INTR_STATUS_0_REG Interrupt status register 0x098C RO

INTERRUPT_CORE1_INTR_STATUS_1_REG Interrupt status register 0x0990 RO

INTERRUPT_CORE1_INTR_STATUS_2_REG Interrupt status register 0x0994 RO

INTERRUPT_CORE1_INTR_STATUS_3_REG Interrupt status register 0x0998 RO

Clock Register

INTERRUPT_CORE1_CLOCK_GATE_REG Clock gate register 0x099C R/W

Version Register

INTERRUPT_CORE1_DATE_REG Version control register 0x0FFC R/W

E
spressifS

ystem
s

105
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

5.5 Registers

5.5.1 CPU0 Interrupt Registers

Register 5.1. INTERRUPT_CORE0_MAC_INTR_MAP_REG (0x0000)

Register 5.2. INTERRUPT_CORE0_MAC_NMI_MAP_REG (0x0004)

Register 5.3. INTERRUPT_CORE0_PWR_INTR_MAP_REG (0x0008)

Register 5.4. INTERRUPT_CORE0_BB_INT_MAP_REG (0x000C)

Register 5.5. INTERRUPT_CORE0_BT_MAC_INT_MAP_REG (0x0010)

Register 5.6. INTERRUPT_CORE0_BT_BB_INT_MAP_REG (0x0014)

Register 5.7. INTERRUPT_CORE0_BT_BB_NMI_MAP_REG (0x0018)

Register 5.8. INTERRUPT_CORE0_RWBT_IRQ_MAP_REG (0x001C)

Register 5.9. INTERRUPT_CORE0_RWBLE_IRQ_MAP_REG (0x0020)

Register 5.10. INTERRUPT_CORE0_RWBT_NMI_MAP_REG (0x0024)

Register 5.11. INTERRUPT_CORE0_RWBLE_NMI_MAP_REG (0x0028)

Register 5.12. INTERRUPT_CORE0_I2C_MST_INT_MAP_REG (0x002C)

Register 5.13. INTERRUPT_CORE0_UHCI0_INTR_MAP_REG (0x0038)

Register 5.14. INTERRUPT_CORE0_GPIO_INTERRUPT_PRO_MAP_REG (0x0040)

Register 5.15. INTERRUPT_CORE0_GPIO_INTERRUPT_PRO_NMI_MAP_REG (0x0044)

Register 5.16. INTERRUPT_CORE0_SPI_INTR_1_MAP_REG (0x0050)

Register 5.17. INTERRUPT_CORE0_SPI_INTR_2_MAP_REG (0x0054)

Register 5.18. INTERRUPT_CORE0_SPI_INTR_3_MAP_REG (0x0058)

Register 5.19. INTERRUPT_CORE0_LCD_CAM_INT_MAP_REG (0x0060)

Register 5.20. INTERRUPT_CORE0_I2S0_INT_MAP_REG (0x0064)

Register 5.21. INTERRUPT_CORE0_I2S1_INT_MAP_REG (0x0068)

Register 5.22. INTERRUPT_CORE0_UART_INTR_MAP_REG (0x006C)

Register 5.23. INTERRUPT_CORE0_UART1_INTR_MAP_REG (0x0070)

Register 5.24. INTERRUPT_CORE0_UART2_INTR_MAP_REG (0x0074)

Register 5.25. INTERRUPT_CORE0_SDIO_HOST_INTERRUPT_MAP_REG (0x0078)

Register 5.26. INTERRUPT_CORE0_PWM0_INTR_MAP_REG (0x007C)

Register 5.27. INTERRUPT_CORE0_PWM1_INTR_MAP_REG (0x0080)

Register 5.28. INTERRUPT_CORE0_LEDC_INT_MAP_REG (0x008C)

Register 5.29. INTERRUPT_CORE0_EFUSE_INT_MAP_REG (0x0090)

Register 5.30. INTERRUPT_CORE0_CAN_INT_MAP_REG (0x0094)

Register 5.31. INTERRUPT_CORE0_USB_INTR_MAP_REG (0x0098)

Register 5.32. INTERRUPT_CORE0_RTC_CORE_INTR_MAP_REG (0x009C)

Espressif Systems 106
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

Register 5.33. INTERRUPT_CORE0_RMT_INTR_MAP_REG (0x00A0)

Register 5.34. INTERRUPT_CORE0_PCNT_INTR_MAP_REG (0x00A4)

Register 5.35. INTERRUPT_CORE0_I2C_EXT0_INTR_MAP_REG (0x00A8)

Register 5.36. INTERRUPT_CORE0_I2C_EXT1_INTR_MAP_REG (0x00AC)

Register 5.37. INTERRUPT_CORE0_TG_T0_INT_MAP_REG (0x00C8)

Register 5.38. INTERRUPT_CORE0_TG_T1_INT_MAP_REG (0x00CC)

Register 5.39. INTERRUPT_CORE0_TG_WDT_INT_MAP_REG (0x00D0)

Register 5.40. INTERRUPT_CORE0_TG1_T0_INT_MAP_REG (0x00D4)

Register 5.41. INTERRUPT_CORE0_TG1_T1_INT_MAP_REG (0x00D8)

Register 5.42. INTERRUPT_CORE0_TG1_WDT_INT_MAP_REG (0x00DC)

Register 5.43. INTERRUPT_CORE0_CACHE_IA_INT_MAP_REG (0x00E0)

Register 5.44. INTERRUPT_CORE0_SYSTIMER_TARGET0_INT_MAP_REG (0x00E4)

Register 5.45. INTERRUPT_CORE0_SYSTIMER_TARGET1_INT_MAP_REG (0x00E8)

Register 5.46. INTERRUPT_CORE0_SYSTIMER_TARGET2_INT_MAP_REG (0x00EC)

Register 5.47. INTERRUPT_CORE0_SPI_MEM_REJECT_INTR_MAP_REG (0x00F0)

Register 5.48. INTERRUPT_CORE0_DCACHE_PRELOAD_INT_MAP_REG (0x00F4)

Register 5.49. INTERRUPT_CORE0_ICACHE_PRELOAD_INT_MAP_REG (0x00F8)

Register 5.50. INTERRUPT_CORE0_DCACHE_SYNC_INT_MAP_REG (0x00FC)

Register 5.51. INTERRUPT_CORE0_ICACHE_SYNC_INT_MAP_REG (0x0100)

Register 5.52. INTERRUPT_CORE0_APB_ADC_INT_MAP_REG (0x0104)

Register 5.53. INTERRUPT_CORE0_DMA_IN_CH0_INT_MAP_REG (0x0108)

Register 5.54. INTERRUPT_CORE0_DMA_IN_CH1_INT_MAP_REG (0x010C)

Register 5.55. INTERRUPT_CORE0_DMA_IN_CH2_INT_MAP_REG (0x0110)

Register 5.56. INTERRUPT_CORE0_DMA_IN_CH3_INT_MAP_REG (0x0114)

Register 5.57. INTERRUPT_CORE0_DMA_IN_CH4_INT_MAP_REG (0x0118)

Register 5.58. INTERRUPT_CORE0_DMA_OUT_CH0_INT_MAP_REG (0x011C)

Register 5.59. INTERRUPT_CORE0_DMA_OUT_CH1_INT_MAP_REG (0x0120)

Register 5.60. INTERRUPT_CORE0_DMA_OUT_CH2_INT_MAP_REG (0x0124)

Register 5.61. INTERRUPT_CORE0_DMA_OUT_CH3_INT_MAP_REG (0x0128)

Register 5.62. INTERRUPT_CORE0_DMA_OUT_CH4_INT_MAP_REG (0x012C)

Register 5.63. INTERRUPT_CORE0_RSA_INT_MAP_REG (0x0130)

Register 5.64. INTERRUPT_CORE0_AES_INT_MAP_REG (0x0134)

Register 5.65. INTERRUPT_CORE0_SHA_INT_MAP_REG (0x0138)

Register 5.66. INTERRUPT_CORE0_CPU_INTR_FROM_CPU_0_MAP_REG (0x013C)

Register 5.67. INTERRUPT_CORE0_CPU_INTR_FROM_CPU_1_MAP_REG (0x0140)

Espressif Systems 107
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

Register 5.68. INTERRUPT_CORE0_CPU_INTR_FROM_CPU_2_MAP_REG (0x0144)

Register 5.69. INTERRUPT_CORE0_CPU_INTR_FROM_CPU_3_MAP_REG (0x0148)

Register 5.70. INTERRUPT_CORE0_ASSIST_DEBUG_INTR_MAP_REG (0x014C)

Register 5.71. INTERRUPT_CORE0_DMA_APBPERI_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x0150)

Register 5.72. INTERRUPT_CORE0_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x0154)

Register 5.73. INTERRUPT_CORE0_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x0158)

Register 5.74. INTERRUPT_CORE0_CORE_0_PIF_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x015C)

Register 5.75. INTERRUPT_CORE0_CORE_0_PIF_PMS_MONITOR_VIOLATE_SIZE_INTR_MAP_REG (0x0160)

Register 5.76. INTERRUPT_CORE0_CORE_1_IRAM0_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x0164)

Register 5.77. INTERRUPT_CORE0_CORE_1_DRAM0_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x0168)

Register 5.78. INTERRUPT_CORE0_CORE_1_PIF_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x016C)

Register 5.79. INTERRUPT_CORE0_CORE_1_PIF_PMS_MONITOR_VIOLATE_SIZE_INTR_MAP_REG (0x0170)

Register 5.80. INTERRUPT_CORE0_BACKUP_PMS_VIOLATE_INTR_MAP_REG (0x0174)

Register 5.81. INTERRUPT_CORE0_CACHE_CORE0_ACS_INT_MAP_REG (0x0178)

Register 5.82. INTERRUPT_CORE0_CACHE_CORE1_ACS_INT_MAP_REG (0x017C)

Register 5.83. INTERRUPT_CORE0_USB_DEVICE_INT_MAP_REG (0x0180)

Register 5.84. INTERRUPT_CORE0_PERI_BACKUP_INT_MAP_REG (0x0184)

Register 5.85. INTERRUPT_CORE0_DMA_EXTMEM_REJECT_INT_MAP_REG (0x0188)

(re
se

rve
d)

0 0

31 5

IN
TE

RRUPT_
CORE0_

SOURCE_Y
_M

AP

16

4 0

Reset

INTERRUPT_CORE0_SOURCE_Y_MAP Map interrupt signal of Source_Y to one of CPU0 external

interrupt, can be configured as 0 ~ 5, 8 ~ 10, 12 ~ 14, 17 ~ 28, 30 ~ 31. The remaining values are

invalid. For Source_Y, see Table 5-1. (R/W)

Register 5.86. INTERRUPT_CORE0_INTR_STATUS_0_REG (0x018C)

IN
TE

RRUPT_
CORE0_

IN
TR

_S
TA

TU
S_0

0x000000

31 0

Reset

INTERRUPT_CORE0_INTR_STATUS_0 This register stores the status of the first 32 interrupt

sources. (RO)

Espressif Systems 108
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

Register 5.87. INTERRUPT_CORE0_INTR_STATUS_1_REG (0x0190)

IN
TE

RRUPT_
CORE0_

IN
TR

_S
TA

TU
S_1

0x000000

31 0

Reset

INTERRUPT_CORE0_INTR_STATUS_1 This register stores the status of the second 32 interrupt

sources. (RO)

Register 5.88. INTERRUPT_CORE0_INTR_STATUS_2_REG (0x0194)

IN
TE

RRUPT_
CORE0_

IN
TR

_S
TA

TU
S_2

0x000000

31 0

Reset

INTERRUPT_CORE0_INTR_STATUS_2 This register stores the status of the third 32 interrupt

sources. (RO)

Register 5.89. INTERRUPT_CORE0_INTR_STATUS_3_REG (0x0198)

IN
TE

RRUPT_
CORE0_

IN
TR

_S
TA

TU
S_3

0x000000

31 0

Reset

INTERRUPT_CORE0_INTR_STATUS_3 This register stores the status of the last 3 interrupt sources.

(RO)

Espressif Systems 109
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

Register 5.90. INTERRUPT_CORE0_CLOCK_GATE_REG (0x019C)

(re
se

rve
d)

0 0

31 1

IN
TE

RRUPT_
CORE0_

CLK
_E

N

1

0

Reset

INTERRUPT_CORE0_CLK_EN This register is used to control clock-gating of interrupt matrix. (R/W)

Register 5.91. INTERRUPT_CORE0_DATE_REG (0x07FC)

(re
se

rve
d)

0 0 0 0

31 28

IN
TE

RRUPT_
CORE0_

IN
TE

RRUPT_
DAT

E

0x2012300

27 0

Reset

INTERRUPT_CORE0_INTERRUPT_DATE Version control register (R/W)

5.5.2 CPU1 Interrupt Registers

Register 5.92. INTERRUPT_CORE1_MAC_INTR_MAP_REG (0x0800)

Register 5.93. INTERRUPT_CORE1_MAC_NMI_MAP_REG (0x0804)

Register 5.94. INTERRUPT_CORE1_PWR_INTR_MAP_REG (0x0808)

Register 5.95. INTERRUPT_CORE1_BB_INT_MAP_REG (0x080C)

Register 5.96. INTERRUPT_CORE1_BT_MAC_INT_MAP_REG (0x0810)

Register 5.97. INTERRUPT_CORE1_BT_BB_INT_MAP_REG (0x0814)

Register 5.98. INTERRUPT_CORE1_BT_BB_NMI_MAP_REG (0x0818)

Register 5.99. INTERRUPT_CORE1_RWBT_IRQ_MAP_REG (0x081C)

Register 5.100. INTERRUPT_CORE1_RWBLE_IRQ_MAP_REG (0x0820)

Register 5.101. INTERRUPT_CORE1_RWBT_NMI_MAP_REG (0x0824)

Register 5.102. INTERRUPT_CORE1_RWBLE_NMI_MAP_REG (0x0828)

Register 5.103. INTERRUPT_CORE1_I2C_MST_INT_MAP_REG (0x082C)

Espressif Systems 110
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

Register 5.104. INTERRUPT_CORE1_UHCI0_INTR_MAP_REG (0x0838)

Register 5.105. INTERRUPT_CORE1_GPIO_INTERRUPT_PRO_MAP_REG (0x0840)

Register 5.106. INTERRUPT_CORE1_GPIO_INTERRUPT_PRO_NMI_MAP_REG (0x0844)

Register 5.107. INTERRUPT_CORE1_SPI_INTR_1_MAP_REG (0x0850)

Register 5.108. INTERRUPT_CORE1_SPI_INTR_2_MAP_REG (0x0854)

Register 5.109. INTERRUPT_CORE1_SPI_INTR_3_MAP_REG (0x0858)

Register 5.110. INTERRUPT_CORE1_LCD_CAM_INT_MAP_REG (0x0860)

Register 5.111. INTERRUPT_CORE1_I2S0_INT_MAP_REG (0x0864)

Register 5.112. INTERRUPT_CORE1_I2S1_INT_MAP_REG (0x0868)

Register 5.113. INTERRUPT_CORE1_UART_INTR_MAP_REG (0x086C)

Register 5.114. INTERRUPT_CORE1_UART1_INTR_MAP_REG (0x0870)

Register 5.115. INTERRUPT_CORE1_UART2_INTR_MAP_REG (0x0874)

Register 5.116. INTERRUPT_CORE1_SDIO_HOST_INTERRUPT_MAP_REG (0x0878)

Register 5.117. INTERRUPT_CORE1_PWM0_INTR_MAP_REG (0x087C)

Register 5.118. INTERRUPT_CORE1_PWM1_INTR_MAP_REG (0x0880)

Register 5.119. INTERRUPT_CORE1_LEDC_INT_MAP_REG (0x088C)

Register 5.120. INTERRUPT_CORE1_EFUSE_INT_MAP_REG (0x0890)

Register 5.121. INTERRUPT_CORE1_CAN_INT_MAP_REG (0x0894)

Register 5.122. INTERRUPT_CORE1_USB_INTR_MAP_REG (0x0898)

Register 5.123. INTERRUPT_CORE1_RTC_CORE_INTR_MAP_REG (0x089C)

Register 5.124. INTERRUPT_CORE1_RMT_INTR_MAP_REG (0x08A0)

Register 5.125. INTERRUPT_CORE1_PCNT_INTR_MAP_REG (0x08A4)

Register 5.126. INTERRUPT_CORE1_I2C_EXT0_INTR_MAP_REG (0x08A8)

Register 5.127. INTERRUPT_CORE1_I2C_EXT1_INTR_MAP_REG (0x08AC)

Register 5.128. INTERRUPT_CORE1_TG_T0_INT_MAP_REG (0x08C8)

Register 5.129. INTERRUPT_CORE1_TG_T1_INT_MAP_REG (0x08CC)

Register 5.130. INTERRUPT_CORE1_TG_WDT_INT_MAP_REG (0x08D0)

Register 5.131. INTERRUPT_CORE1_TG1_T0_INT_MAP_REG (0x08D4)

Register 5.132. INTERRUPT_CORE1_TG1_T1_INT_MAP_REG (0x08D8)

Register 5.133. INTERRUPT_CORE1_TG1_WDT_INT_MAP_REG (0x08DC)

Register 5.134. INTERRUPT_CORE1_CACHE_IA_INT_MAP_REG (0x08E0)

Register 5.135. INTERRUPT_CORE1_SYSTIMER_TARGET0_INT_MAP_REG (0x08E4)

Register 5.136. INTERRUPT_CORE1_SYSTIMER_TARGET1_INT_MAP_REG (0x08E8)

Register 5.137. INTERRUPT_CORE1_SYSTIMER_TARGET2_INT_MAP_REG (0x08EC)

Register 5.138. INTERRUPT_CORE1_SPI_MEM_REJECT_INTR_MAP_REG (0x08F0)

Espressif Systems 111
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

Register 5.139. INTERRUPT_CORE1_DCACHE_PRELOAD_INT_MAP_REG (0x08F4)

Register 5.140. INTERRUPT_CORE1_ICACHE_PRELOAD_INT_MAP_REG (0x08F8)

Register 5.141. INTERRUPT_CORE1_DCACHE_SYNC_INT_MAP_REG (0x08FC)

Register 5.142. INTERRUPT_CORE1_ICACHE_SYNC_INT_MAP_REG (0x0900)

Register 5.143. INTERRUPT_CORE1_APB_ADC_INT_MAP_REG (0x0904)

Register 5.144. INTERRUPT_CORE1_DMA_IN_CH0_INT_MAP_REG (0x0908)

Register 5.145. INTERRUPT_CORE1_DMA_IN_CH1_INT_MAP_REG (0x090C)

Register 5.146. INTERRUPT_CORE1_DMA_IN_CH2_INT_MAP_REG (0x0910)

Register 5.147. INTERRUPT_CORE1_DMA_IN_CH3_INT_MAP_REG (0x0914)

Register 5.148. INTERRUPT_CORE1_DMA_IN_CH4_INT_MAP_REG (0x0918)

Register 5.149. INTERRUPT_CORE1_DMA_OUT_CH0_INT_MAP_REG (0x091C)

Register 5.150. INTERRUPT_CORE1_DMA_OUT_CH1_INT_MAP_REG (0x0920)

Register 5.151. INTERRUPT_CORE1_DMA_OUT_CH2_INT_MAP_REG (0x0924)

Register 5.152. INTERRUPT_CORE1_DMA_OUT_CH3_INT_MAP_REG (0x0928)

Register 5.153. INTERRUPT_CORE1_DMA_OUT_CH4_INT_MAP_REG (0x092C)

Register 5.154. INTERRUPT_CORE1_RSA_INT_MAP_REG (0x0930)

Register 5.155. INTERRUPT_CORE1_AES_INT_MAP_REG (0x0934)

Register 5.156. INTERRUPT_CORE1_SHA_INT_MAP_REG (0x0938)

Register 5.157. INTERRUPT_CORE1_CPU_INTR_FROM_CPU_0_MAP_REG (0x093C)

Register 5.158. INTERRUPT_CORE1_CPU_INTR_FROM_CPU_1_MAP_REG (0x0940)

Register 5.159. INTERRUPT_CORE1_CPU_INTR_FROM_CPU_2_MAP_REG (0x0944)

Register 5.160. INTERRUPT_CORE1_CPU_INTR_FROM_CPU_3_MAP_REG (0x0948)

Register 5.161. INTERRUPT_CORE1_ASSIST_DEBUG_INTR_MAP_REG (0x094C)

Register 5.162. INTERRUPT_CORE1_DMA_APBPERI_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x0950)

Register 5.163. INTERRUPT_CORE1_CORE_0_IRAM0_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x0954)

Register 5.164. INTERRUPT_CORE1_CORE_0_DRAM0_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x0958)

Register 5.165. INTERRUPT_CORE1_CORE_0_PIF_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x095C)

Register 5.166. INTERRUPT_CORE1_CORE_0_PIF_PMS_MONITOR_VIOLATE_SIZE_INTR_MAP_REG

(0x0960)

Register 5.167. INTERRUPT_CORE1_CORE_1_IRAM0_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x0964)

Register 5.168. INTERRUPT_CORE1_CORE_1_DRAM0_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x0968)

Register 5.169. INTERRUPT_CORE1_CORE_1_PIF_PMS_MONITOR_VIOLATE_INTR_MAP_REG (0x096C)

Register 5.170. INTERRUPT_CORE1_CORE_1_PIF_PMS_MONITOR_VIOLATE_SIZE_INTR_MAP_REG

(0x0970)

Register 5.171. INTERRUPT_CORE1_BACKUP_PMS_VIOLATE_INTR_MAP_REG (0x0974)

Register 5.172. INTERRUPT_CORE1_CACHE_CORE0_ACS_INT_MAP_REG (0x0978)

Espressif Systems 112
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

Register 5.173. INTERRUPT_CORE1_CACHE_CORE1_ACS_INT_MAP_REG (0x097C)

Register 5.174. INTERRUPT_CORE1_USB_DEVICE_INT_MAP_REG (0x0980)

Register 5.175. INTERRUPT_CORE1_PERI_BACKUP_INT_MAP_REG (0x0984)

Register 5.176. INTERRUPT_CORE1_DMA_EXTMEM_REJECT_INT_MAP_REG (0x0988)

(re
se

rve
d)

0 0

31 5

IN
TE

RRUPT_
CORE1_

SOURCE_Y
_M

AP

16

4 0

Reset

INTERRUPT_CORE1_SOURCE_Y_MAP Map interrupt signal of Source_Y to one of CPU1 external

interrupt, can be configured as 0 ~ 5, 8 ~ 10, 12 ~ 14, 17 ~ 28, 30 ~ 31. The remaining values are

invalid. For Source_Y, see Table 5-1. (R/W)

Register 5.177. INTERRUPT_CORE1_INTR_STATUS_0_REG (0x098C)

IN
TE

RRUPT_
CORE1_

IN
TR

_S
TA

TU
S_0

0x000000

31 0

Reset

INTERRUPT_CORE1_INTR_STATUS_0 This register stores the status of the first 32 interrupt

sources. (RO)

Espressif Systems 113
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

Register 5.178. INTERRUPT_CORE1_INTR_STATUS_1_REG (0x0990)

IN
TE

RRUPT_
CORE1_

IN
TR

_S
TA

TU
S_1

0x000000

31 0

Reset

INTERRUPT_CORE1_INTR_STATUS_1 This register stores the status of the second 32 interrupt

sources. (RO)

Register 5.179. INTERRUPT_CORE1_INTR_STATUS_2_REG (0x0994)

IN
TE

RRUPT_
CORE1_

IN
TR

_S
TA

TU
S_2

0x000000

31 0

Reset

INTERRUPT_CORE1_INTR_STATUS_2 This register stores the status of the third 32 interrupt

sources. (RO)

Register 5.180. INTERRUPT_CORE1_INTR_STATUS_3_REG (0x0998)

IN
TE

RRUPT_
CORE1_

IN
TR

_S
TA

TU
S_3

0x000000

31 0

Reset

INTERRUPT_CORE1_INTR_STATUS_3 This register stores the status of the last 3 interrupt sources.

(RO)

Espressif Systems 114
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

5 Interrupt Matrix (INTERRUPT)

Register 5.181. INTERRUPT_CORE1_CLOCK_GATE_REG (0x099C)

(re
se

rve
d)

0 0

31 1

IN
TE

RRUPT_
CORE1_

CLK
_E

N

1

0

Reset

INTERRUPT_CORE1_CLK_EN This register is used to control clock-gating of interrupt matrix. (R/W)

Register 5.182. INTERRUPT_CORE1_DATE_REG (0x0FFC)

(re
se

rve
d)

0 0 0 0

31 28

IN
TE

RRUPT_
CORE1_

IN
TE

RRUPT_
DAT

E

0x2012300

27 0

Reset

INTERRUPT_CORE1_INTERRUPT_DATE Version control register. (R/W)

Espressif Systems 115
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

6 Timer Group (TIMG)

6.1 Overview

General purpose timers can be used to precisely time an interval, trigger an interrupt after a particular interval

(periodically and aperiodically), or act as a hardware clock. As shown in Figure 6-1, the ESP32-S3 chip contains

two timer groups, namely timer group 0 and timer group 1. Each timer group consists of two general purpose

timers referred to as Tx (where x is 0 or 1) and one Main System Watchdog Timer. All general purpose timers are

based on 16-bit prescalers and 54-bit auto-reload-capable up-down counters.

Figure 6­1. Timer Units within Groups

Note that while the Main System Watchdog Timer registers are described in this chapter, their functional

description is included in the Chapter 7 Watchdog Timers. Therefore, the term ‘timers’ within this chapter refers

to the general purpose timers.

The timers’ features are summarized as follows:

• A 16-bit clock prescaler, from 2 to 65536

• A 54-bit time-base counter programmable to incrementing or decrementing

• Able to read real-time value of the time-base counter

• Halting and resuming the time-base counter

• Programmable alarm generation

• Timer value reload (Auto-reload at alarm or software-controlled instant reload)

• Level interrupt generation

Espressif Systems 116
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

6.2 Functional Description

Figure 6­2. Timer Group Architecture

Figure6-2 is a diagram of timer Tx in a timer group. Tx contains a clock selector, a 16-bit integer divider as a

prescaler, a timer-based counter and a comparator for alarm generation.

6.2.1 16­bit Prescaler and Clock Selection

Each timer can select between the APB clock (APB_CLK) or external clock (XTAL_CLK) as its clock source by

setting the TIMG_Tx_USE_XTAL field of the TIMG_TxCONFIG_REG register. The clock is then divided by a 16-bit

prescaler to generate the time-base counter clock (TB_CLK) used by the time-base counter. When the

TIMG_Tx_DIVIDER field is configured as 2 ~ 65536, the divisor of the prescaler would be 2 ~ 65536. Note that

programming value 0 to TIMG_Tx_DIVIDER will result in the divisor being 65536. When the prescaler is set to 1,

the actual divisor is 2, so the timer counter value represents the half of real time.

Before you modify the 16-bit prescaler, the timer must be disabled (i.e. TIMG_Tx_EN should be cleared).

Otherwise, the result can be unpredictable.

6.2.2 54­bit Time­base Counter

The 54-bit time-base counters are based on TB_CLK and can be configured to increment or decrement via the

TIMG_Tx_INCREASE field. The time-base counter can be enabled or disabled by setting or clearing the

TIMG_Tx_EN field, respectively. When enabled, the time-base counter increments or decrements on each cycle

of TB_CLK. When disabled, the time-base counter is essentially frozen. Note that the TIMG_Tx_INCREASE field

can be changed while TIMG_Tx_EN is set and this will cause the time-base counter to change direction

instantly.

To read the 54-bit value of the time-base counter, the timer value must be latched to two registers before being

read by the CPU (due to the CPU being 32-bit). By writing any value to the TIMG_TxUPDATE_REG, the current

value of the 54-bit timer is instantly latched into the TIMG_TxLO_REG and TIMG_TxHI_REG registers containing

the lower 32-bits and higher 22-bits, respectively. TIMG_TxLO_REG and TIMG_TxHI_REG registers will remain

unchanged for the CPU to read in its own time until TIMG_TxUPDATE_REG is written to again.

6.2.3 Alarm Generation

A timer can be configured to trigger an alarm when the timer’s current value matches the alarm value. An alarm

will cause an interrupt to occur and (optionally) an automatic reload of the timer’s current value (see Section

6.2.4). The 54-bit alarm value is configured using TIMG_TxALARMLO_REG and TIMG_TxALARMHI_REG, which

represent the lower 32-bits and higher 22-bits of the alarm value, respectively. However, the configured alarm

Espressif Systems 117
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

value is ineffective until the alarm is enabled by setting the TIMG_Tx_ALARM_EN field. To avoid alarm being

enabled ‘too late’ (i.e. the timer value has already passed the alarm value when the alarm is enabled), the

hardware will trigger the alarm immediately if the current timer value is higher than the alarm value (within a

defined range) when the up-down counter increments, or lower than the alarm value (within a defined range) of

when the up-down counter decrements. Table 6-1 and Table 6-2 show the relationship between the current

value of the timer, the alarm value, and when an alarm is triggered.The current time value and the alarm value are

defined as follows:

• TIMG_VALUE = {TIMG_TxHI_REG, TIMG_TxLO_REG}

• ALARM_VALUE = {TIMG_TxALARMHI_REG, TIMG_TxALARMLO_REG}

Table 6­1. Alarm Generation When Up­Down Counter Increments

Scenario Range Alarm

1 ALARM_VALUE − TIMG_VALUE > 253 Triggered

2 0 < ALARM_VALUE − TIMG_VALUE ≤ 253
Triggered when the up-down counter counts

TIMG_VALUE up to ALARM_VALUE

3 0 ≤ TIMG_VALUE − ALARM_VALUE < 253 Triggered

4 TIMG_VALUE − ALARM_VALUE ≥ 253

Triggered when the up-down counter restarts

counting up from 0 after reaching the timer’s

maximum value and counts TIMG_VALUE up

to ALARM_VALUE

Table 6­2. Alarm Generation When Up­Down Counter Decrements

Scenario Range Alarm

5 TIMG_VALUE − ALARM_VALUE > 253 Triggered

6 0 < TIMG_VALUE − ALARM_VALUE ≤ 253
Triggered when the up-down counter counts

TIMG_VALUE down to ALARM_VALUE

7 0 ≤ ALARM_VALUE − TIMG_VALUE < 253 Triggered

8 ALARM_VALUE − TIMG_VALUE ≥ 253

Triggered when the up-down counter restarts

counting down from the timer’s maximum value

after reaching the minimum value and counts

TIMG_VALUE down to ALARM_VALUE

When an alarm occurs, the TIMG_Tx_ALARM_EN field is automatically cleared and no alarm will occur again until

the TIMG_Tx_ALARM_EN is set next time.

6.2.4 Timer Reload

A timer is reloaded when a timer’s current value is overwritten with a reload value stored in the

TIMG_Tx_LOAD_LO and TIMG_Tx_LOAD_HI fields that correspond to the lower 32-bits and higher 22-bits of the

timer’s new value, respectively. However, writing a reload value to TIMG_Tx_LOAD_LO and TIMG_Tx_LOAD_HI

will not cause the timer’s current value to change. Instead, the reload value is ignored by the timer until a reload

event occurs. A reload event can be triggered either by a software instant reload or an auto-reload at

alarm.

Espressif Systems 118
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

A software instant reload is triggered by the CPU writing any value to TIMG_TxLOAD_REG, which causes the

timer’s current value to be instantly reloaded. If TIMG_Tx_EN is set, the timer will continue incrementing or

decrementing from the new value. If TIMG_Tx_EN is cleared, the timer will remain frozen at the new value until

counting is re-enabled.

An auto-reload at alarm will cause a timer reload when an alarm occurs, thus allowing the timer to continue

incrementing or decrementing from the reload value. This is generally useful for resetting the timer’s value when

using periodic alarms. To enable auto-reload at alarm, the TIMG_Tx_AUTORELOAD field should be set. If not

enabled, the timer’s value will continue to increment or decrement past the alarm value after an alarm.

6.2.5 SLOW_CLK Frequency Calculation

Via XTAL_CLK, a timer could calculate the frequency of clock sources for SLOW_CLK (i.e. RTC_CLK,

RTC20M_D256_CLK, and XTAL32K_CLK) as follows:

1. Start periodic or one-shot frequency calculation;

2. Once receiving the signal to start calculation, the counter of XTAL_CLK and the counter of SLOW_CLK

begin to work at the same time. When the counter of SLOW_CLK counts to C0, the two counters stop

counting simultaneously;

3. Assume the value of XTAL_CLK’s counter is C1, and the frequency of SLOW_CLK would be calculated as:

f_rtc = C0×f_XTAL_CLK
C1

6.2.6 Interrupts

Each timer has its own interrupt line that can be routed to the CPU, and thus each timer group has a total of

three interrupt lines. Timers generate level interrupts that must be explicitly cleared by the CPU on each

triggering.

Interrupts are triggered after an alarm (or stage timeout for watchdog timers) occurs. Level interrupts will be held

high after an alarm (or stage timeout) occurs, and will remain so until manually cleared. To enable a timer’s

interrupt, the TIMG_Tx_INT_ENA bit should be set.

The interrupts of each timer group are governed by a set of registers. Each timer within the group has a

corresponding bit in each of these registers:

• TIMG_Tx_INT_RAW : An alarm event sets it to 1. The bit will remain set until the timer’s corresponding bit in

TIMG_Tx_INT_CLR is written.

• TIMG_WDT_INT_RAW : A stage time out will set the timer’s bit to 1. The bit will remain set until the timer’s

corresponding bit in TIMG_WDT_INT_CLR is written.

• TIMG_Tx_INT_ST : Reflects the status of each timer’s interrupt and is generated by masking the bits of

TIMG_Tx_INT_RAW with TIMG_Tx_INT_ENA.

• TIMG_WDT_INT_ST : Reflects the status of each watchdog timer’s interrupt and is generated by masking

the bits of TIMG_WDT_INT_RAW with TIMG_WDT_INT_ENA.

• TIMG_Tx_INT_ENA : Used to enable or mask the interrupt status bits of timers within the group.

• TIMG_WDT_INT_ENA : Used to enable or mask the interrupt status bits of watchdog timer within the group.

Espressif Systems 119
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

• TIMG_Tx_INT_CLR : Used to clear a timer’s interrupt by setting its corresponding bit to 1. The timer’s

corresponding bit in TIMG_Tx_INT_RAW and TIMG_Tx_INT_ST will be cleared as a result. Note that a

timer’s interrupt must be cleared before the next interrupt occurs.

• TIMG_WDT_INT_CLR : Used to clear a timer’s interrupt by setting its corresponding bit to 1. The watchdog

timer’s corresponding bit in TIMG_WDT_INT_RAW and TIMG_WDT_INT_ST will be cleared as a result.

Note that a watchdog timer’s interrupt must be cleared before the next interrupt occurs.

6.3 Configuration and Usage

6.3.1 Timer as a Simple Clock

1. Configure the time-base counter

• Select clock source by setting or clearing TIMG_Tx_USE_XTAL field.

• Configure the 16-bit prescaler by setting TIMG_Tx_DIVIDER.

• Configure the timer direction by setting or clearing TIMG_Tx_INCREASE.

• Set the timer’s starting value by writing the starting value to TIMG_Tx_LOAD_LO and

TIMG_Tx_LOAD_HI, then reloading it into the timer by writing any value to TIMG_TxLOAD_REG.

2. Start the timer by setting TIMG_Tx_EN.

3. Get the timer’s current value.

• Write any value to TIMG_TxUPDATE_REG to latch the timer’s current value.

• Read the latched timer value from TIMG_TxLO_REG and TIMG_TxHI_REG.

6.3.2 Timer as One­shot Alarm

1. Configure the time-base counter following step 1 of Section 6.3.1.

2. Configure the alarm.

• Configure the alarm value by setting TIMG_TxALARMLO_REG and TIMG_TxALARMHI_REG.

• Enable interrupt by setting TIMG_Tx_INT_ENA.

3. Disable auto reload by clearing TIMG_Tx_AUTORELOAD.

4. Start the alarm by setting TIMG_Tx_ALARM_EN.

5. Handle the alarm interrupt.

• Clear the interrupt by setting the timer’s corresponding bit in TIMG_Tx_INT_CLR.

• Disable the timer by clearing TIMG_Tx_EN.

6.3.3 Timer as Periodic Alarm

1. Configure the time-base counter following step 1 in Section 6.3.1.

2. Configure the alarm following step 2 in Section 6.3.2.

3. Enable auto reload by setting TIMG_Tx_AUTORELOAD and configure the reload value via

TIMG_Tx_LOAD_LO and TIMG_Tx_LOAD_HI.

Espressif Systems 120
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

4. Start the alarm by setting TIMG_Tx_ALARM_EN.

5. Handle the alarm interrupt (repeat on each alarm iteration).

• Clear the interrupt by setting the timer’s corresponding bit in TIMG_Tx_INT_CLR.

• If the next alarm requires a new alarm value and reload value (i.e. different alarm interval per iteration),

then TIMG_TxALARMLO_REG, TIMG_TxALARMHI_REG, TIMG_Tx_LOAD_LO, and

TIMG_Tx_LOAD_HI should be reconfigured as needed. Otherwise, the aforementioned registers

should remain unchanged.

• Re-enable the alarm by setting TIMG_Tx_ALARM_EN.

6. Stop the timer (on final alarm iteration).

• Clear the interrupt by setting the timer’s corresponding bit in TIMG_Tx_INT_CLR.

• Disable the timer by clearing TIMG_Tx_EN.

6.3.4 SLOW_CLK Frequency Calculation

1. One-shot frequency calculation

• Select the clock whose frequency is to be calculated (clock source of SLOW_CLK) via

TIMG_RTC_CALI_CLK_SEL, and configure the time of calculation via TIMG_RTC_CALI_MAX.

• Select one-shot frequency calculation by clearing TIMG_RTC_CALI_START_CYCLING, and enable

the two counters via TIMG_RTC_CALI_START.

• Once TIMG_RTC_CALI_RDY becomes 1, read TIMG_RTC_CALI_VALUE to get the value of

XTAL_CLK’s counter, and calculate the frequency of SLOW_CLK.

2. Periodic frequency calculation

• Select the clock whose frequency is to be calculated (clock source of SLOW_CLK) via

TIMG_RTC_CALI_CLK_SEL, and configure the time of calculation via TIMG_RTC_CALI_MAX.

• Select periodic frequency calculation by enabling TIMG_RTC_CALI_START_CYCLING.

• When TIMG_RTC_CALI_CYCLING_DATA_VLD is 1, TIMG_RTC_CALI_VALUE is valid.

3. Timeout

If the counter of SLOW_CLK cannot finish counting in TIMG_RTC_CALI_TIMEOUT_RST_CNT cycles,

TIMG_RTC_CALI_TIMEOUT will be set to indicate a timeout.

Espressif Systems 121
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

6.4 Register Summary

The addresses in this section are relative to Timer Group base address provided in Table 1-4 in Chapter 1 System

and Memory.

Name Description Address Access

Timer 0 configuration and control registers

TIMG_T0CONFIG_REG Timer 0 configuration register 0x0000 varies

TIMG_T0LO_REG Timer 0 current value, low 32 bits 0x0004 RO

TIMG_T0HI_REG Timer 0 current value, high 22 bits 0x0008 RO

TIMG_T0UPDATE_REG Write to copy current timer value to

TIMG_T0LO_REG or TIMG_T0HI_REG

0x000C R/W/SC

TIMG_T0ALARMLO_REG Timer 0 alarm value, low 32 bits 0x0010 R/W

TIMG_T0ALARMHI_REG Timer 0 alarm value, high bits 0x0014 R/W

TIMG_T0LOADLO_REG Timer 0 reload value, low 32 bits 0x0018 R/W

TIMG_T0LOADHI_REG Timer 0 reload value, high 22 bits 0x001C R/W

TIMG_T0LOAD_REG Write to reload timer from

TIMG_T0LOADLO_REG or

TIMG_T0LOADHI_REG

0x0020 WT

Timer 1 configuration and control registers

TIMG_T1CONFIG_REG Timer 1 configuration register 0x0024 varies

TIMG_T1LO_REG Timer 1 current value, low 32 bits 0x0028 RO

TIMG_T1HI_REG Timer 1 current value, high 22 bits 0x002C RO

TIMG_T1UPDATE_REG Write to copy current timer value to

TIMG_T1LO_REG or TIMG_T1HI_REG

0x0030 R/W/SC

TIMG_T1ALARMLO_REG Timer 1 alarm value, low 32 bits 0x0034 R/W

TIMG_T1ALARMHI_REG Timer 1 alarm value, high bits 0x0038 R/W

TIMG_T1LOADLO_REG Timer 1 reload value, low 32 bits 0x003C R/W

TIMG_T1LOADHI_REG Timer 1 reload value, high 22 bits 0x0040 R/W

TIMG_T1LOAD_REG Write to reload timer from

TIMG_T1LOADLO_REG or

TIMG_T1LOADHI_REG

0x0044 WT

Configuration and control registers for WDT

TIMG_WDTCONFIG0_REG Watchdog timer configuration register 0x0048 R/W

TIMG_WDTCONFIG1_REG Watchdog timer prescaler register 0x004C R/W

TIMG_WDTCONFIG2_REG Watchdog timer stage 0 timeout value 0x0050 R/W

TIMG_WDTCONFIG3_REG Watchdog timer stage 1 timeout value 0x0054 R/W

TIMG_WDTCONFIG4_REG Watchdog timer stage 2 timeout value 0x0058 R/W

TIMG_WDTCONFIG5_REG Watchdog timer stage 3 timeout value 0x005C R/W

TIMG_WDTFEED_REG Write to feed the watchdog timer 0x0060 WT

TIMG_WDTWPROTECT_REG Watchdog write protect register 0x0064 R/W

Configuration and control registers for RTC frequency calculation

TIMG_RTCCALICFG_REG RTC frequency calculation configuration reg-

ister 0

0x0068 varies

Espressif Systems 122
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

Name Description Address Access

TIMG_RTCCALICFG1_REG RTC frequency calculation configuration reg-

ister 1

0x006C RO

TIMG_RTCCALICFG2_REG RTC frequency calculation calibration register

2

0x0080 varies

Interrupt registers

TIMG_INT_ENA_TIMERS_REG Interrupt enable bits 0x0070 R/W

TIMG_INT_RAW_TIMERS_REG Raw interrupt status 0x0074 R/WTC/SS

TIMG_INT_ST_TIMERS_REG Masked interrupt status 0x0078 RO

TIMG_INT_CLR_TIMERS_REG Interrupt clear bits 0x007C WT

Version register

TIMG_NTIMERS_DATE_REG Timer version control register 0x00F8 R/W

Timer group configuration registers

TIMG_REGCLK_REG Timer group clock gate register 0x00FC R/W

Espressif Systems 123
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

6.5 Registers

The addresses in this section are relative to Timer Group base address provided in Table 1-4 in Chapter 1 System

and Memory.

Register 6.1. TIMG_TxCONFIG_REG (x: 0­1) (0x0000+0x24*x)

TIM
G_T

x_
EN

0

31

TIM
G_T

x_
IN

CREASE

1

30

TIM
G_T

x_
AUTO

RELO
AD

1

29

TIM
G_T

x_
DIVID

ER

0x01

28 13

(re
se

rve
d)

0 0

12 11

TIM
G_T

x_
ALA

RM
_E

N

0

10

TIM
G_T

x_
USE_X

TA
L

0

9

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

8 0

Reset

TIMG_Tx_USE_XTAL 0: Use APB_CLK as the source clock of timer group; 1: Use XTAL_CLK as the

source clock of timer group. (R/W)

TIMG_Tx_ALARM_EN When set, the alarm is enabled. This bit is automatically cleared once an alarm

occurs. (R/W/SC)

TIMG_Tx_DIVIDER Timer x clock (Tx_clk) prescaler value. (R/W)

TIMG_Tx_AUTORELOAD When set, timer x auto-reload at alarm is enabled. (R/W)

TIMG_Tx_INCREASE When set, the timer x time-base counter will increment every clock tick. When

cleared, the timer x time-base counter will decrement. (R/W)

TIMG_Tx_EN When set, the timer x time-base counter is enabled. (R/W)

Register 6.2. TIMG_TxLO_REG (x: 0­1) (0x0004+0x24*x)

TIM
G_T

x_
LO

0x000000

31 0

Reset

TIMG_Tx_LO After writing to TIMG_TxUPDATE_REG, the low 32 bits of the time-base counter of timer

x can be read here. (RO)

Espressif Systems 124
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

Register 6.3. TIMG_TxHI_REG (x: 0­1) (0x0008+0x24*x)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

TIM
G_T

x_
HI

0x0000

21 0

Reset

TIMG_Tx_HI After writing to TIMG_TxUPDATE_REG, the high 22 bits of the time-base counter of timer

x can be read here. (RO)

Register 6.4. TIMG_TxUPDATE_REG (x: 0­1) (0x000C+0x24*x)

TIM
G_T

x_
UPDAT

E

0

31

(re
se

rve
d)

0 0

30 0

Reset

TIMG_Tx_UPDATE After writing 0 or 1 to TIMG_TxUPDATE_REG, the counter value is latched.

(R/W/SC)

Register 6.5. TIMG_TxALARMLO_REG (x: 0­1) (0x0010+0x24*x)

TIM
G_T

x_
ALA

RM
_L

O

0x000000

31 0

Reset

TIMG_Tx_ALARM_LO Timer x alarm trigger time-base counter value, low 32 bits. (R/W)

Register 6.6. TIMG_TxALARMHI_REG (x: 0­1) (0x0014+0x24*x)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

TIM
G_T

x_
ALA

RM
_H

I

0x0000

21 0

Reset

TIMG_Tx_ALARM_HI Timer x alarm trigger time-base counter value, high 22 bits. (R/W)

Espressif Systems 125
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

Register 6.7. TIMG_TxLOADLO_REG (x: 0­1) (0x0018+0x24*x)

TIM
G_T

x_
LO

AD_L
O

0x000000

31 0

Reset

TIMG_Tx_LOAD_LO Low 32 bits of the value that a reload will load onto timer x time-base counter.

(R/W)

Register 6.8. TIMG_TxLOADHI_REG (x: 0­1) (0x001C+0x24*x)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

TIM
G_T

x_
LO

AD_H
I

0x0000

21 0

Reset

TIMG_Tx_LOAD_HI High 22 bits of the value that a reload will load onto timer x time-base counter.

(R/W)

Register 6.9. TIMG_TxLOAD_REG (x: 0­1) (0x0020+0x24*x)

TIM
G_T

x_
LO

AD

0x000000

31 0

Reset

TIMG_Tx_LOAD Write any value to trigger a timer x time-base counter reload. (WT)

Espressif Systems 126
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

Register 6.10. TIMG_WDTCONFIG0_REG (0x0048)

TIM
G_W

DT_
EN

0

31

TIM
G_W

DT_
STG

0

0

30 29

TIM
G_W

DT_
STG

1

0

28 27

TIM
G_W

DT_
STG

2

0

26 25

TIM
G_W

DT_
STG

3

0

24 23

(re
se

rve
d)

0 0

22 21

TIM
G_W

DT_
CPU_R

ESET_
LE

NGTH

0x1

20 18

TIM
G_W

DT_
SYS_R

ESET_
LE

NGTH

0x1

17 15

TIM
G_W

DT_
FL

ASHBOOT_
M

OD_E
N

1

14

TIM
G_W

DT_
PROCPU_R

ESET_
EN

0

13

TIM
G_W

DT_
APPCPU_R

ESET_
EN

0

12

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

TIMG_WDT_APPCPU_RESET_EN Reserved. (R/W)

TIMG_WDT_PROCPU_RESET_EN WDT reset CPU enable. (R/W)

TIMG_WDT_FLASHBOOT_MOD_EN When set, Flash boot protection is enabled. (R/W)

TIMG_WDT_SYS_RESET_LENGTH System reset signal length selection. 0: 100 ns; 1: 200 ns; 2:

300 ns; 3: 400 ns; 4: 500 ns; 5: 800 ns; 6: 1.6 µs; 7: 3.2 µs. (R/W)

TIMG_WDT_CPU_RESET_LENGTH CPU reset signal length selection. 0: 100 ns; 1: 200 ns; 2: 300

ns; 3: 400 ns; 4: 500 ns; 5: 800 ns; 6: 1.6 µs; 7: 3.2 µs. (R/W)

TIMG_WDT_STG3 Stage 3 configuration. 0: off; 1: interrupt; 2: reset CPU; 3: reset system. (R/W)

TIMG_WDT_STG2 Stage 2 configuration. 0: off; 1: interrupt; 2: reset CPU; 3: reset system. (R/W)

TIMG_WDT_STG1 Stage 1 configuration. 0: off; 1: interrupt; 2: reset CPU; 3: reset system. (R/W)

TIMG_WDT_STG0 Stage 0 configuration. 0: off; 1: interrupt; 2: reset CPU; 3: reset system. (R/W)

TIMG_WDT_EN When set, MWDT is enabled. (R/W)

Register 6.11. TIMG_WDTCONFIG1_REG (0x004C)

TIM
G_W

DT_
CLK

_P
RESCALE

0x01

31 16

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

TIMG_WDT_CLK_PRESCALE MWDT clock prescaler value. MWDT clock period = 12.5 ns *

TIMG_WDT_CLK_PRESCALE. (R/W)

Espressif Systems 127
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

Register 6.12. TIMG_WDTCONFIG2_REG (0x0050)

TIM
G_W

DT_
STG

0_
HOLD

26000000

31 0

Reset

TIMG_WDT_STG0_HOLD Stage 0 timeout value, in MWDT clock cycles. (R/W)

Register 6.13. TIMG_WDTCONFIG3_REG (0x0054)

TIM
G_W

DT_
STG

1_
HOLD

0x7ffffff

31 0

Reset

TIMG_WDT_STG1_HOLD Stage 1 timeout value, in MWDT clock cycles. (R/W)

Register 6.14. TIMG_WDTCONFIG4_REG (0x0058)

TIM
G_W

DT_
STG

2_
HOLD

0x0fffff

31 0

Reset

TIMG_WDT_STG2_HOLD Stage 2 timeout value, in MWDT clock cycles. (R/W)

Espressif Systems 128
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

Register 6.15. TIMG_WDTCONFIG5_REG (0x005C)

TIM
G_W

DT_
STG

3_
HOLD

0x0fffff

31 0

Reset

TIMG_WDT_STG3_HOLD Stage 3 timeout value, in MWDT clock cycles. (R/W)

Register 6.16. TIMG_WDTFEED_REG (0x0060)

TIM
G_W

DT_
FE

ED

0x000000

31 0

Reset

TIMG_WDT_FEED Write any value to feed the MWDT. (WT)

Register 6.17. TIMG_WDTWPROTECT_REG (0x0064)

TIM
G_W

DT_
W

KEY

0x50d83aa1

31 0

Reset

TIMG_WDT_WKEY If the register contains a different value than its reset value, write protection is

enabled. (R/W)

Espressif Systems 129
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

Register 6.18. TIMG_RTCCALICFG_REG (0x0068)

TIM
G_R

TC
_C

ALI_
STA

RT

0

31

TIM
G_R

TC
_C

ALI_
M

AX

0x01

30 16

TIM
G_R

TC
_C

ALI_
RDY

0

15

TIM
G_R

TC
_C

ALI_
CLK

_S
EL

0x1

14 13

TIM
G_R

TC
_C

ALI_
STA

RT_
CYCLIN

G

1

12

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

TIMG_RTC_CALI_START_CYCLING Enables periodic frequency calculation. (R/W)

TIMG_RTC_CALI_CLK_SEL Used to select the clock to be calibrated. 0: RTC_CLK; 1:

RTC20M_D256_CLK; 2: XTAL32K_CLK. (R/W)

TIMG_RTC_CALI_RDY Marks the completion of frequency calculation. (RO)

TIMG_RTC_CALI_MAX Configures the time of frequency calculation. (R/W)

TIMG_RTC_CALI_START Enables one-shot frequency calculation. (R/W)

Register 6.19. TIMG_RTCCALICFG1_REG (0x006C)

TIM
G_R

TC
_C

ALI_
VA

LU
E

0x00000

31 7

(re
se

rve
d)

0 0 0 0 0 0

6 1

TIM
G_R

TC
_C

ALI_
CYCLIN

G_D
AT

A_V
LD

0

0

Reset

TIMG_RTC_CALI_CYCLING_DATA_VLD Marks the completion of periodic frequency calculation.

(RO)

TIMG_RTC_CALI_VALUE Frequency calculation result. (RO)

Espressif Systems 130
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

Register 6.20. TIMG_RTCCALICFG2_REG (0x0080)

TIM
G_R

TC
_C

ALI_
TIM

EOUT_
TH

RES

0x1ffffff

31 7

TIM
G_R

TC
_C

ALI_
TIM

EOUT_
RST_

CNT

3

6 3

(re
se

rve
d)

0 0

2 1

TIM
G_R

TC
_C

ALI_
TIM

EOUT

0

0

Reset

TIMG_RTC_CALI_TIMEOUT Indicates frequency calculation timeout. (RO)

TIMG_RTC_CALI_TIMEOUT_RST_CNT Cycles to reset frequency calculation timeout. (R/W)

TIMG_RTC_CALI_TIMEOUT_THRES Threshold value for the frequency calculation timer. If the

timer’s value exceeds this threshold, a timeout is triggered. (R/W)

Register 6.21. TIMG_INT_ENA_TIMERS_REG (0x0070)

(re
se

rve
d)

0 0

31 3

TIM
G_W

DT_
IN

T_
ENA

0

2

TIM
G_T

1_
IN

T_
ENA

0

1

TIM
G_T

0_
IN

T_
ENA

0

0

Reset

TIMG_Tx_INT_ENA The interrupt enable bit for the TIMG_Tx_INT interrupt. (R/W)

TIMG_WDT_INT_ENA The interrupt enable bit for the TIMG_WDT_INT interrupt. (R/W)

Register 6.22. TIMG_INT_RAW_TIMERS_REG (0x0074)

(re
se

rve
d)

0 0

31 3

TIM
G_W

DT_
IN

T_
RAW

0

2

TIM
G_T

1_
IN

T_
RAW

0

1

TIM
G_T

0_
IN

T_
RAW

0

0

Reset

TIMG_Tx_INT_RAW The raw interrupt status bit for the TIMG_Tx_INT interrupt. (R/WTC/SS)

TIMG_WDT_INT_RAW The raw interrupt status bit for the TIMG_WDT_INT interrupt. (R/WTC/SS)

Espressif Systems 131
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

Register 6.23. TIMG_INT_ST_TIMERS_REG (0x0078)

(re
se

rve
d)

0 0

31 3

TIM
G_W

DT_
IN

T_
ST

0

2

TIM
G_T

1_
IN

T_
ST

0

1

TIM
G_T

0_
IN

T_
ST

0

0

Reset

TIMG_Tx_INT_ST The masked interrupt status bit for the TIMG_Tx_INT interrupt. (RO)

TIMG_WDT_INT_ST The masked interrupt status bit for the TIMG_WDT_INT interrupt. (RO)

Register 6.24. TIMG_INT_CLR_TIMERS_REG (0x007C)

(re
se

rve
d)

0 0

31 3

TIM
G_W

DT_
IN

T_
CLR

0

2

TIM
G_T

1_
IN

T_
CLR

0

1

TIM
G_T

0_
IN

T_
CLR

0

0

Reset

TIMG_Tx_INT_CLR Set this bit to clear the TIMG_Tx_INT interrupt. (WT)

TIMG_WDT_INT_CLR Set this bit to clear the TIMG_WDT_INT interrupt. (WT)

Register 6.25. TIMG_NTIMERS_DATE_REG (0x00F8)

(re
se

rve
d)

0 0 0 0

31 28

TIM
G_N

TIM
ERS_D

AT
E

0x2003071

27 0

Reset

TIMG_NTIMERS_DATE Timer version control register. (R/W)

Espressif Systems 132
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

6 Timer Group (TIMG)

Register 6.26. TIMG_REGCLK_REG (0x00FC)

TIM
G_C

LK
_E

N

0

31

(re
se

rve
d)

0 0

30 0

Reset

TIMG_CLK_EN Register clock gate signal. 0: The clock used by software to read and write registers

is on only when there is software operation. 1: The clock used by software to read and write

registers is always on. (R/W)

Espressif Systems 133
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

7 Watchdog Timers

7 Watchdog Timers

7.1 Overview

Watchdog timers are hardware timers used to detect and recover from malfunctions. They must be periodically

fed (reset) to prevent a timeout. A system/software that is behaving unexpectedly (e.g. is stuck in a software loop

or in overdue events) will fail to feed the watchdog thus trigger a watchdog timeout. Therefore, watchdog timers

are useful for detecting and handling erroneous system/software behavior.

As shown in Figure 7-1, ESP32-S3 contains three digital watchdog timers: one in each of the two timer groups in

Chapter 6 Timer Group (TIMG)(called Main System Watchdog Timers, or MWDT) and one in the RTC Module

(called the RTC Watchdog Timer, or RWDT). Each digital watchdog timer allows for four separately configurable

stages and each stage can be programmed to take one action upon expiry, unless the watchdog is fed or

disabled. MWDT supports three timeout actions: interrupt, CPU reset, and core reset, while RWDT supports four

timeout actions: interrupt, CPU reset, core reset, and system reset (see details in Section 7.2.2.2 Stages and

Timeout Actions). A timeout value can be set for each stage individually.

During the flash boot process, RWDT and the first MWDT in timergroup 0 are enabled automatically in order to

detect and recover from booting errors.

ESP32-S3 also has one analog watchdog timer: Super watchdog (SWD). It is an ultra-low-power circuit in analog

domain that helps to prevent the system from operating in a sub-optimal state and resets the system if

required.

Figure 7­1. Watchdog Timers Overview

Note that while this chapter provides the functional descriptions of the watchdog timer’s, their register

descriptions are provided in Chapter 6 Timer Group (TIMG) and Chapter 15 Low-Power Management (RTC_CNTL)

[to be added later].

Espressif Systems 134
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

7 Watchdog Timers

7.2 Digital Watchdog Timers

7.2.1 Features

Watchdog timers have the following features:

• Four stages, each with a programmable timeout value. Each stage can be configured and

enabled/disabled separately

• Three timeout actions (interrupt, CPU reset, or core reset) for MWDT and four timeout actions (interrupt,

CPU reset, core reset, or system reset) for RWDT upon expiry of each stage

• 32-bit expiry counter

• Write protection, to prevent RWDT and MWDT configuration from being altered inadvertently

• Flash boot protection

If the boot process from an SPI flash does not complete within a predetermined period of time, the

watchdog will reboot the entire main system.

Espressif Systems 135
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

7 Watchdog Timers

7.2.2 Functional Description

Figure 7­2. Watchdog Timers in ESP32­S3

Figure 7-2 shows the three watchdog timers in ESP32-S3 digital systems.

7.2.2.1 Clock Source and 32­Bit Counter

At the core of each watchdog timer is a 32-bit counter. The clock source of MWDTs is derived from the APB

clock via a pre-MWDT 16-bit configurable prescaler. In contrast, the clock source of RWDT is derived directly

from an RTC slow clock (the RTC slow clock source shown in Chapter 3 Reset and Clock). The 16-bit prescaler

for MWDTs is configured via the TIMG_WDT_CLK_PRESCALE field of TIMG_WDTCONFIG1_REG.

MWDTs and RWDT are enabled by setting the TIMG_WDT_EN and RTC_CNTL_WDT_EN fields respectively.

When enabled, the 32-bit counters of each watchdog will increment on each source clock cycle until the timeout

value of the current stage is reached (i.e. expiry of the current stage). When this occurs, the current counter value

is reset to zero and the next stage will become active. If a watchdog timer is fed by software, the timer will return

Espressif Systems 136
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

7 Watchdog Timers

to stage 0 and reset its counter value to zero. Software can feed a watchdog timer by writing any value to

TIMG_WDTFEED_REG for MDWTs and RTC_CNTL_RTC_WDT_FEED for RWDT.

7.2.2.2 Stages and Timeout Actions

Timer stages allow for a timer to have a series of different timeout values and corresponding expiry action. When

one stage expires, the expiry action is triggered, the counter value is reset to zero, and the next stage becomes

active. MWDTs/ RWDT provide four stages (called stages 0 to 3). The watchdog timers will progress through

each stage in a loop (i.e. from stage 0 to 3, then back to stage 0).

Timeout values of each stage for MWDTs are configured in TIMG_WDTCONFIGi_REG (where i ranges from 2 to

5), whilst timeout values for RWDT are configured using RTC_CNTL_WDT_STGj_HOLD field (where j ranges from

0 to 3).

Please note that the timeout value of stage 0 for RWDT (Thold0) is determined by the combination of the

EFUSE_WDT_DELAY_SEL field of eFuse register EFUSE_RD_REPEAT_DATA1_REG and

RTC_CNTL_WDT_STG0_HOLD. The relationship is as follows:

Thold0 = RTC_CNTL_WDT_STG0_HOLD << (EFUSE_WDT_DELAY _SEL+ 1)

where << is a left-shift operator.

Upon the expiry of each stage, one of the following expiry actions will be executed:

• Trigger an interrupt

When the stage expires, an interrupt is triggered.

• CPU reset – Reset a CPU core

When the stage expires, the CPU core will be reset.

• Core reset – Reset the main system

When the stage expires, the main system (which includes MWDTs, CPU, and all peripherals) will be reset.

The power management unit and RTC peripheral will not be reset.

• System reset – Reset the main system, power management unit and RTC peripheral

When the stage expires the main system, power management unit and RTC peripheral (see details in

Chapter 15 Low-Power Management (RTC_CNTL) [to be added later]) will all be reset. This action is only

available in RWDT.

• Disabled

This stage will have no effects on the system.

For MWDTs, the expiry action of all stages is configured in TIMG_WDTCONFIG0_REG. Likewise for RWDT, the

expiry action is configured in RTC_CNTL_WDTCONFIG0_REG.

7.2.2.3 Write Protection

Watchdog timers are critical to detecting and handling erroneous system/software behavior, thus should not be

disabled easily (e.g. due to a misplaced register write). Therefore, MWDTs and RWDT incorporate a write

protection mechanism that prevent the watchdogs from being disabled or tampered with due to an accidental

write.

Espressif Systems 137
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

7 Watchdog Timers

The write protection mechanism is implemented using a write-key field for each timer (TIMG_WDT_WKEY for

MWDT, RTC_CNTL_WDT_WKEY for RWDT). The value 0x50D83AA1 must be written to the watchdog timer’s

write-key field before any other register of the same watchdog timer can be changed. Any attempts to write to a

watchdog timer’s registers (other than the write-key field itself) whilst the write-key field’s value is not

0x50D83AA1 will be ignored. The recommended procedure for accessing a watchdog timer is as follows:

1. Disable the write protection by writing the value 0x50D83AA1 to the timer’s write-key field.

2. Make the required modification of the watchdog such as feeding or changing its configuration.

3. Re-enable write protection by writing any value other than 0x50D83AA1 to the timer’s write-key field.

7.2.2.4 Flash Boot Protection

During flash booting process, MWDT in timer group 0 (see Figure 6-1 Timer Units within Groups), as well as

RWDT, are automatically enabled. Stage 0 for the enabled MWDT is automatically configured to reset the system

upon expiry. Likewise, stage 0 for RWDT is configured to reset the main system and RTC when it expires. After

booting, TIMG_WDT_FLASHBOOT_MOD_EN and RTC_CNTL_WDT_FLASHBOOT_MOD_EN should be cleared

to stop the flash boot protection procedure for both MWDT and RWDT respectively. After this, MWDT and RWDT

can be configured by software.

7.3 Super Watchdog

Super watchdog (SWD) is an ultra-low-power circuit in analog domain that helps to prevent the system from

operating in a sub-optimal state and resets the system if required. SWD contains a watchdog circuit that needs

to be fed for at least once during its timeout period, which is slightly less than one second. About 100 ms before

watchdog timeout, it will also send out a WD_INTR signal as a request to remind the system to feed the

watchdog.

If the system doesn’t respond to SWD feed request and watchdog finally times out, SWD will generate a system

level signal SWD_RSTB to reset whole digital circuits on the chip.

7.3.1 Features

SWD has the following features:

• Ultra-low power

• Interrupt to indicate that the SWD timeout period is close to expiring

• Various dedicated methods for software to feed SWD, which enables SWD to monitor the working state of

the whole operating system

7.3.2 Super Watchdog Controller

Espressif Systems 138
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

7 Watchdog Timers

7.3.2.1 Structure

Figure 7­3. Super Watchdog Controller Structure

7.3.2.2 Workflow

In normal state:

• SWD controller receives feed request from SWD.

• SWD controller can send an interrupt to main CPU or ULP-RISC-V.

• Main CPU can decide whether to feed SWD directly by setting RTC_CNTL_SWD_FEED, or send an

interrupt to ULP-RISC-V and ask ULP-RISC-V to feed SWD by setting RTC_CNTL_SWD_FEED.

• When trying to feed SWD, CPU or ULP-RISC-V needs to disable SWD controller’s write protection by

writing 0x8F1D312A to RTC_CNTL_SWD_WKEY. This prevents SWD from being fed by mistake when the

system is operating in sub-optimal state.

• If setting RTC_CNTL_SWD_AUTO_FEED_EN to 1, SWD controller can also feed SWD itself without any

interaction with CPU or ULP-RISC-V.

After reset:

• Check RTC_CNTL_RESET_CAUSE_PROCPU[5:0] for the cause of CPU reset.

If RTC_CNTL_RESET_CAUSE_PROCPU[5:0] == 0x12, it indicates that the cause is SWD reset.

• Set RTC_CNTL_SWD_RST_FLAG_CLR to clear the SWD reset flag.

7.4 Interrupts

For watchdog timer interrupts, please refer to Section 6.2.6 Interrupts in Chapter 6 Timer Group (TIMG).

Espressif Systems 139
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

7 Watchdog Timers

7.5 Registers

MWDT registers are part of the timer submodule and are described in Section 6.4 Register Summary in Chapter 6

Timer Group (TIMG). RWDT and SWD registers are part of the RTC submodule and are described in Section 21

Register Summary in Chapter 15 Low-Power Management (RTC_CNTL) [to be added later].

Espressif Systems 140
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

8 XTAL32K Watchdog Timers (XTWDT)

8 XTAL32K Watchdog Timers (XTWDT)

8.1 Overview

The XTAL32K watchdog timer on ESP32-S3 is used to monitor the status of external crystal XTAL32K_CLK. This

watchdog timer can detect the oscillation failure of XTAL32K_CLK, change the clock source of RTC, etc. When

XTAL32K_CLK works as the clock source of RTC SLOW_CLK (for clock description, see Chapter 3 Reset and

Clock) and stops oscillating, the XTAL32K watchdog timer first switches to BACKUP32K_CLK derived from

RTC_CLK and generates an interrupt (if the chip is in Light-sleep or Deep-sleep mode, the CPU will be woken

up), and then switches back to XTAL32K_CLK after it is restarted by software.

Figure 8­1. XTAL32K Watchdog Timer

8.2 Features

8.2.1 Interrupt and Wake­Up

When the XTAL32K watchdog timer detects the oscillation failure of XTAL32K_CLK, an oscillation failure interrupt

RTC_XTAL32K_DEAD_INT (for interrupt description, please refer to Chapter 15 Low-Power Management

(RTC_CNTL) [to be added later]) is generated. At this point, the CPU will be woken up if in Light-sleep mode or

Deep-sleep mode.

8.2.2 BACKUP32K_CLK

Once the XTAL32K watchdog timer detects the oscillation failure of XTAL32K_CLK, it replaces XTAL32K_CLK

with BACKUP32K_CLK (with a frequency of 32 kHz or so) derived from RTC_CLK as RTC’s SLOW_CLK, so as

to ensure proper functioning of the system.

8.3 Functional Description

Espressif Systems 141
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

8 XTAL32K Watchdog Timers (XTWDT)

8.3.1 Workflow

1. The XTAL32K watchdog timer starts counting when RTC_CNTL_XTAL32K_WDT_EN is enabled. The

counter based on RTC_CLK keeps counting until it detects the positive edge of XTAL_32K and is then

cleared. When the counter reaches RTC_CNTL_XTAL32K_WDT_TIMEOUT, it generates an interrupt or a

wake-up signal and is then reset.

2. If RTC_CNTL_XTAL32K_AUTO_BACKUP is set and step 1 is finished, the XTAL32K watchdog timer will

automatically enable BACKUP32K_CLK as the alternative clock source of RTC SLOW_CLK, to ensure the

system’s proper functioning and the accuracy of timers running on RTC SLOW_CLK (e.g. RTC_TIMER).

For information about clock frequency configuration, please refer to Section 8.3.2.

3. To restore the XTAL32K watchdog timer, software restarts XTAL32K_CLK by turning its XPD (meaning no

power-down) signal off and on again via RTC_CNTL_XPD_XTAL_32K bit. Then, the XTAL32K watchdog

timer switches back to XTAL32K_CLK as the clock source of RTC SLOW_CLK by clearing

RTC_CNTL_XTAL32K_WDT_EN (BACKUP32K_CLK_EN is also automatically cleared). If the chip is in

Light-sleep or Deep-sleep mode mode, the XTAL32K watchdog timer will wake up the CPU to finish the

above steps.

8.3.2 BACKUP32K_CLK Working Principle

Chips have different RTC_CLK frequencies due to production process variations. To ensure the accuracy of

RTC_TIMER and other timers running on SLOW_CLK when BACKUP32K_CLK is at work, the divisor of

BACKUP32K_CLK should be configured according to the actual frequency of RTC_CLK (see details in Chapter

15 Low-Power Management (RTC_CNTL) [to be added later]) via RTC_CNTL_XTAL32K_CLK_FACTOR_REG

register. Each byte in this register corresponds to a divisor component (x0 ~x7). BACKUP32K_CLK is divided by

a fraction where the denominator is always 4, as calculated below.

f_back_clk/4 = f_rtc_clk/S

S = x0 + x1 + ...+ x7

f_back_clk is the desired frequency of BACKUP32K_CLK; f_rtc_clk is the actual frequency of RTC_CLK; x0 ~x7

correspond to the pulse width in high and low state of four BACKUP32K_CLK clock signals (unit: RTC_CLK

clock cycle).

8.3.3 Configuring the Divisor Component of BACKUP32K_CLK

Based on principles described in Section 8.3.2, you can configure the divisor component as follows:

• Calculate the sum of divisor components S according to the frequency of RTC_CLK and the desired

frequency of BACKUP32K_CLK;

• Calculate the integer part of divisor N = f_rtc_clk/f_back_clk;

• Calculate the integer part of divisor component M = N/2. The integer part of divisor N are separated into

two parts because a divisor component corresponds to a pulse width in high or low state;

• Calculate the number of divisor components that equal M (xn = M) and the number of divisor components

that equal M + 1 (xn = M + 1) according to the value of M and S. (M + 1) is the fractional part of divisor

component.

Espressif Systems 142
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

8 XTAL32K Watchdog Timers (XTWDT)

For example, if the frequency of RTC_CLK is 163 kHz, then f_rtc_clk = 163000, f_back_clk = 32768, S = 20,

M = 2, and {x0, x1, x2, x3, x4, x5, x6, x7} = {2, 3, 2, 3, 2, 3, 2, 3}. As a result, the frequency of BACKUP32K_CLK

is 32.6 kHz.

Espressif Systems 143
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

9 SHA Accelerator (SHA)

9.1 Introduction

ESP32-S3 integrates an SHA accelerator, which is a hardware device that speeds up SHA algorithm significantly,

compared to SHA algorithm implemented solely in software. The SHA accelerator integrated in ESP32-S3 has

two working modes, which are Typical SHA and DMA-SHA.

9.2 Features

The following functionality is supported:

• All the hash algorithms introduced in FIPS PUB 180-4 Spec.

– SHA-1

– SHA-224

– SHA-256

– SHA-384

– SHA-512

– SHA-512/224

– SHA-512/256

– SHA-512/t

• Two working modes

– Typical SHA

– DMA-SHA

• interleaved function when working in Typical SHA working mode

• Interrupt function when working in DMA-SHA working mode

9.3 Working Modes

The SHA accelerator integrated in ESP32-S3 has two working modes.

• Typical SHA Working Mode: all the data is written and read via CPU directly.

• DMA-SHA Working Mode: all the data is read via DMA. That is, users can configure the DMA controller to

read all the data needed for hash operation, thus releasing CPU for completing other tasks.

Users can start the SHA accelerator with different working modes by configuring registers SHA_START_REG and

SHA_DMA_START_REG. For details, please see Table 9-1.

Espressif Systems 144
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://doi.org/10.6028/NIST.FIPS.180-4
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Table 9­1. SHA Accelerator Working Mode

Working Mode Configuration Method

Typical SHA Set SHA_START_REG to 1

DMA-SHA Set SHA_DMA_START_REG to 1

Users can choose hash algorithms by configuring the SHA_MODE_REG register. For details, please see Table

9-2.

Table 9­2. SHA Hash Algorithm Selection

Hash Algorithm SHA_MODE_REG Configuration

SHA-1 0

SHA-224 1

SHA-256 2

SHA-384 3

SHA-512 4

SHA-512/224 5

SHA-512/256 6

SHA-512/t 7

Notice:

ESP32-S3’s Digital Signature (DS) and HMAC Accelerator (HMAC) [to be added later] modules also call the

SHA accelerator. Therefore, users cannot access the SHA accelerator when these modules are working.

9.4 Function Description

SHA accelerator can generate the message digest via two steps: Preprocessing and Hash operation.

9.4.1 Preprocessing

Preprocessing consists of three steps: padding the message, parsing the message into message blocks and

setting the initial hash value.

9.4.1.1 Padding the Message

The SHA accelerator can only process message blocks of 512 or 1024 bits, depending on the algorithm. Thus,

all the messages should be padded to a multiple of 512 or 1024 bits before the hash task.

Suppose that the length of the message M is m bits. Then M shall be padded as introduced below:

• SHA­1, SHA­224 and SHA­256

1. First, append the bit “1” to the end of the message;

2. Second, append k zero bits, where k is the smallest, non-negative solution to the equation

m+ 1 + k ≡ 448 mod 512;

3. Last, append the 64-bit block of value equal to the number m expressed using a binary representation.

Espressif Systems 145
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

• SHA­384, SHA­512, SHA­512/224, SHA­512/256 and SHA­512/t

1. First, append the bit “1” to the end of the message;

2. Second, append k zero bits, where k is the smallest, non-negative solution to the equation

m+ 1 + k ≡ 896 mod 1024;

3. Last, append the 128-bit block of value equal to the number m expressed using a binary

representation.

For more details, please refer to Section “5.1 Padding the Message” in FIPS PUB 180-4 Spec.

9.4.1.2 Parsing the Message

The message and its padding must be parsed into N 512-bit or 1024-bit blocks.

• For SHA­1, SHA­224 and SHA­256: the message and its padding are parsed into N 512-bit blocks, M (1),

M (2), …, M (N). Since the 512 bits of the input block may be expressed as sixteen 32-bit words, the first

32 bits of message block i are denoted M(i)
0 , the next 32 bits are M(i)

1 , and so on up to M(i)
15 .

• For SHA­384, SHA­512, SHA­512/224, SHA­512/256 and SHA­512/t: the message and its padding are

parsed into N 1024-bit blocks. Since the 1024 bits of the input block may be expressed as sixteen 64-bit

words, the first 64 bits of message block i are denoted M(i)
0 , the next 64 bits are M(i)

1 , and so on up to M(i)
15 .

During the task, all the message blocks are written into the SHA_M_n_REG, following the rules below:

• For SHA­1, SHA­224 and SHA­256: M(i)
0 is stored in SHA_M_0_REG, M(i)

1 stored in SHA_M_1_REG, …,

and M(i)
15 stored in SHA_M_15_REG.

• For SHA­384, SHA­512, SHA­512/224 and SHA­512/256: the most significant 32 bits and the least

significant 32 bits of M(i)
0 are stored in SHA_M_0_REG and SHA_M_1_REG, respectively, …, the most

significant 32 bits and the least significant 32 bits of M(i)
15 are stored in SHA_M_30_REG and

SHA_M_31_REG, respectively.

Note:

For more information about “message block”, please refer to Section “2.1 Glossary of Terms and Acronyms” in FIPS PUB
180-4 Spec.

9.4.1.3 Initial Hash Value

Before hash task begins for each of the secure hash algorithms, the initial Hash value H(0) must be set based on

different algorithms, among which the SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and

SHA-512/256 algorithms use the initial Hash values (constant C) stored in the hardware.

However, SHA-512/t requires a distinct initial hash value for each operation for a given value of t. Simply put,

SHA-512/t is the generic name for a t-bit hash function based on SHA-512 whose output is truncated to t bits. t

is any positive integer without a leading zero such that t<512, and t is not 384. The initial hash value for

SHA-512/t for a given value of t can be calculated by performing SHA-512 from hexadecimal representation of

the string “SHA-512/t”. It’s not hard to observe that when determining the initial hash values for SHA-512/t

algorithms with different t, the only difference lies in the value of t.

Therefore, we have specially developed the following simplified method to calculate the initial hash value for

SHA-512/t:

Espressif Systems 146
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

1. Generate t_string and t_length: t_string is a 32-bit data that stores the input message of t. t_length is a

7-bit data that stores the length of the input message. The t_string and t_length are generated in methods

described below, depending on the value of t:

• If 1 <= t <= 9, then t_length = 7′h48 and t_string is padded in the following format:

8′h30 + 8′ht0 1′b1 23′b0

where t0 = t.

For example, if t = 8, then t0 = 8 and t_string = 32′h38800000.

• If 10 <= t <= 99, then t_length = 7′h50 and t_string is padded in the following format:

8′h30 + 8′ht1 8′h30 + 8′ht0 1′b1 15′b0

where, t0 = t%10 and t1 = t/10.

For example, if t = 56, then t0 = 6, t1 = 5, and t_string = 32′h35368000.

• If 100 <= t < 512, then t_length = 7′h58 and t_string is padded in the following format:

8′h30 + 8′ht2 8′h30 + 8′ht1 8′h30 + 8′ht0 1′b1 7′b0

where, t0 = t%10, t1 = (t/10)%10, and t2 = t/100.

For example, if t = 231, then t0 = 1, t1 = 3, t2 = 2, and t_string = 32′h32333180.

2. Initialize relevant registers: Initialize SHA_T_STRING_REG and SHA_T_LENGTH_REG with the

generated t_string and t_length in the previous step.

3. Obtain initial hash value: Set the SHA_MODE_REG register to 7. Set the SHA_START_REG register to 1

to start the SHA accelerator. Then poll register SHA_BUSY_REG until the content of this register becomes

0, indicating the calculation of initial hash value is completed.

Please note that the initial value for SHA-512/t can be also calculated according to the Section “5.3.6 SHA-512/t”

in FIPS PUB 180-4 Spec, that is performing SHA-512 operation (with its initial hash value set to the result of

8-bitwise XOR operation of C and 0xa5) from the hexadecimal representation of the string “SHA-512/t”.

9.4.2 Hash task Process

After the preprocessing, the ESP32-S3 SHA accelerator starts to hash a message M and generates message

digest of different lengths, depending on different hash algorithms. As described above, the ESP32-S3 SHA

accelerator supports two working modes, which are Typical SHA and DMA-SHA. The operation process for the

SHA accelerator under two working modes is described in the following subsections.

9.4.2.1 Typical SHA Mode Process

Usually, the SHA accelerator will process all blocks of a message and produce a message digest before starting

the next message digest.

However, ESP32-S3 SHA working in Typical SHA mode also supports optional “interleaved” message digest

calculation. Users can insert new calculation (both Typical SHA and DMA-SHA) each time the SHA accelerator

completes one message block. To be more specific, users can store the message digest in registers

Espressif Systems 147
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://doi.org/10.6028/NIST.FIPS.180-4
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

SHA_H_n_REG after completing each message block, and assign the accelerator with other higher priority tasks.

After the inserted calculation completes, users can put the message digest stored back to registers

SHA_H_n_REG, and resume the accelerator with the previously paused calculation.

Typical SHA Process (except for SHA­512/t)

1. Select a hash algorithm.

• Configure the SHA_MODE_REG register based on Table 9-2.

2. Process the current message block 1.

• Write the message block in registers SHA_M_n_REG.

3. Start the SHA accelerator.

• If this is the first time to execute this step, set the SHA_START_REG register to 1 to start the SHA

accelerator. In this case, the accelerator uses the initial hash value stored in hardware for a given

algorithm configured in Step 1 to start the calculation;

• If this is not the first time to execute this step2, set the SHA_CONTINUE_REG register to 1 to start the

SHA accelerator. In this case, the accelerator uses the hash value stored in the SHA_H_n_REG

register to start calculation.

4. Check the progress of the current message block.

• Poll register SHA_BUSY_REG until the content of this register becomes 0, indicating the accelerator

has completed the calculation for the current message block and now is in the “idle” status 3.

5. Decide if you have more message blocks to process:

• If yes, please go back to Step 2.

• Otherwise, please continue.

6. Obtain the message digest.

• Read the message digest from registers SHA_H_n_REG.

Typical SHA Process (SHA­512/t)

1. Select a hash algorithm.

• Configure the SHA_MODE_REG register to 7 for SHA-512/t.

2. Calculate the initial hash value.

(a) Calculate t_stiring and t_length and initialize SHA_T_STRING_REG and SHA_T_LENGTH_REG with

the generated t_string and t_length. For details, please refer to Section 9.4.1.3.

(b) Set the SHA_START_REG register to 1 to start the SHA accelerator.

(c) Poll register SHA_BUSY_REG until the content of this register becomes 0, indicating the calculation of

initial hash value is completed.

3. Process the current message block1.

• Write the message block in registers SHA_M_n_REG.

4. Start the SHA accelerator

Espressif Systems 148
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

• Set the SHA_CONTINUE_REG register to 1. In this case, the accelerator uses the hash value stored in

the SHA_H_n_REG register to start calculation.

5. Check the progress of the calculation.

• Poll register SHA_BUSY_REG until the content of this register becomes 0, indicating the accelerator

has completed the calculation for the current message block and now is in the “idle” status3.

6. Decide if you have more message blocks to process:

• If yes, please go back to Step 3.

• Otherwise, please continue.

7. Obtain the message digest.

• Read the message digest from registers SHA_H_n_REG.

Note:

1. In this step, the software can also write the next message block (to be processed) in registers SHA_M_n_REG, if

any, while the hardware starts SHA calculation, to save time.

2. You are resuming the SHA accelerator with the previously paused calculation.

3. Here you can decide if you want to insert other calculations. If yes, please go to the process for interleaved

calculations for details.

As mentioned above, ESP32-S3 SHA accelerator supports “interleaving” calculation under the Typical SHA

working mode.

The process to implement interleaved calculation is described below.

1. Prepare to hand the SHA accelerator over for an interleaved calculation by saving the following data of the

previous calculation.

• The selected hash algorithm stored in the SHA_MODE_REG register.

• The message digest stored in registers SHA_H_n_REG.

2. Perform the interleaved calculation. For the detailed process of the interleaved calculation, please refer to

Typical SHA process or DMA-SHA process, depending on the working mode of your interleaved calculation.

3. Prepare to hand the SHA accelerator back to the previously paused calculation by restoring the following

data of the previous calculation.

• Write the previously stored hash algorithm back to register SHA_MODE_REG

• Write the previously stored message digest back to registers SHA_H_n_REG

4. Write the next message block from the previous paused calculation in registers SHA_M_n_REG, and set the

SHA_CONTINUE_REG register to 1 to restart the SHA accelerator with the previously paused calculation.

9.4.2.2 DMA­SHA Mode Process

ESP32-S3 SHA accelerator does not support “interleaving” message digest calculation when using the DMA,

which means you cannot insert new calculation before the whole DMA-SHA process completes. In this case,

Espressif Systems 149
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

users who need inserted calculation are recommended to divide your message blocks and perform several

DMA-SHA calculation, instead of trying to compute all the messages in one go.

In contrast to the Typical SHA working mode, when the SHA accelerator is working under the DMA-SHA mode,

all data read are completed via DMA.

Therefore, users are required to configure the DMA controller following the description in Chapter 9 GDMA

Controller (DMA) [to be added later].

DMA­SHA process (except SHA­512/t)

1. Select a hash algorithm.

• Select a hash algorithm by configuring the SHA_MODE_REG register. For details, please refer to Table

9-2.

2. Configure the SHA_INT_ENA_REG register to enable or disable interrupt (Set 1 to enable).

3. Configure the number of message blocks.

• Write the number of message blocks M to the SHA_DMA_BLOCK_NUM_REG register.

4. Start the DMA-SHA calculation.

• If the current DMA-SHA calculation follows a previous calculation, firstly write the message digest from

the previous calculation to registers SHA_H_n_REG, then write 1 to register

SHA_DMA_CONTINUE_REG to start SHA accelerator;

• Otherwise, write 1 to register SHA_DMA_START_REG to start the accelerator.

5. Wait till the completion of the DMA-SHA calculation, which happens when:

• The content of SHA_BUSY_REG register becomes 0, or

• An SHA interrupt occurs. In this case, please clear interrupt by writing 1 to the SHA_INT_CLEAR_REG

register.

6. Obtain the message digest:

• Read the message digest from registers SHA_H_n_REG.

DMA­SHA process for SHA­512/t

1. Select a hash algorithm.

• Select SHA-512/t algorithm by configuring the SHA_MODE_REG register to 7.

2. Configure the SHA_INT_ENA_REG register to enable or disable interrupt (Set 1 to enable).

3. Calculate the initial hash value.

(a) Calculate t_string and t_length and initialize SHA_T_STRING_REG and SHA_T_LENGTH_REG with

the generated t_string and t_length. For details, please refer to Section 9.4.1.3.

(b) Set the SHA_START_REG register to 1 to start the SHA accelerator.

(c) Poll register SHA_BUSY_REG until the content of this register becomes 0, indicating the calculation of

initial hash value is completed.

4. Configure the number of message blocks.

Espressif Systems 150
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

• Write the number of message blocks M to the SHA_DMA_BLOCK_NUM_REG register.

5. Start the DMA-SHA calculation.

• Write 1 to register SHA_DMA_CONTINUE_REG to start the accelerator.

6. Wait till the completion of the DMA-SHA calculation, which happens when:

• The content of SHA_BUSY_REG register becomes 0, or

• An SHA interrupt occurs. In this case, please clear interrupt by writing 1 to the SHA_INT_CLEAR_REG

register.

7. Obtain the message digest:

• Read the message digest from registers SHA_H_n_REG.

9.4.3 Message Digest

After the hash task completes, the SHA accelerator writes the message digest from the task to registers

SHA_H_n_REG(n: 0~15). The lengths of the generated message digest are different depending on different hash

algorithms. For details, see Table 9-6 below:

Table 9­6. The Storage and Length of Message digest from Different Algorithms

Hash Algorithm Length of Message Digest (in bits) Storage1

SHA-1 160 SHA_H_0_REG ~ SHA_H_4_REG

SHA-224 224 SHA_H_0_REG ~ SHA_H_6_REG

SHA-256 256 SHA_H_0_REG ~ SHA_H_7_REG

SHA-384 384 SHA_H_0_REG ~ SHA_H_11_REG

SHA-512 512 SHA_H_0_REG ~ SHA_H_15_REG

SHA-512/224 224 SHA_H_0_REG ~ SHA_H_6_REG

SHA-512/256 256 SHA_H_0_REG ~ SHA_H_7_REG

SHA-512/t2 t SHA_H_0_REG ~ SHA_H_x_REG

1 The message digest are stored in registers from most significant bits to the least significant

bits, with the first word stored in register SHA_H_0_REG and the second word stored in

register SHA_H_1_REG... For details, please see subsection 9.4.1.2.
2 The registers used for SHA-512/t algorithm depend on the value of t. x+1 indicates the

number of 32-bit registers used to store t bits of message digest, so that x = roundup(t/32)-

1. For example:

• When t = 8, then x = 0, indicating that the 8-bit long message digest is stored in the

most significant 8 bits of register SHA_H_0_REG;

• When t = 32, then x = 0, indicating that the 32-bit long message digest is stored in

register SHA_H_0_REG;

• When t = 132, then x = 4, indicating that the 132-bit long message digest is stored

in registers SHA_H_0_REG, SHA_H_1_REG, SHA_H_2_REG, SHA_H_3_REG, and

SHA_H_4_REG.

Espressif Systems 151
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

9.4.4 Interrupt

SHA accelerator supports interrupt on the completion of message digest calculation when working in the

DMA-SHA mode. To enable this function, write 1 to register SHA_INT_ENA_REG. Note that the interrupt should

be cleared by software after use via setting the SHA_INT_CLEAR_REG register to 1.

9.5 Register Summary

The addresses in this section are relative to the SHA accelerator base address provided in Table 1-4 in Chapter 1

System and Memory.

Name Description Address Access

Control/Status registers

SHA_CONTINUE_REG
Continues SHA operation (only effective in Typi-

cal SHA mode)
0x0014 WO

SHA_BUSY_REG Indicates if SHA Accelerator is busy or not 0x0018 RO

SHA_DMA_START_REG
Starts the SHA accelerator for DMA-SHA oper-

ation
0x001C WO

SHA_START_REG
Starts the SHA accelerator for Typical SHA op-

eration
0x0010 WO

SHA_DMA_CONTINUE_REG
Continues SHA operation (only effective in DMA-

SHA mode)
0x0020 WO

SHA_INT_CLEAR_REG DMA-SHA interrupt clear register 0x0024 WO

SHA_INT_ENA_REG DMA-SHA interrupt enable register 0x0028 R/W

Version Register

SHA_DATE_REG Version control register 0x002C R/W

Configuration Registers

SHA_MODE_REG Defines the algorithm of SHA accelerator 0x0000 R/W

SHA_T_STRING_REG
String content register for calculating initial Hash

Value (only effective for SHA-512/t)
0x0004 R/W

SHA_T_LENGTH_REG
String length register for calculating initial Hash

Value (only effective for SHA-512/t)
0x0008 R/W

Memories

SHA_DMA_BLOCK_NUM_REG
Block number register (only effective for DMA-

SHA)
0x000C R/W

SHA_H_0_REG Hash value 0x0040 R/W

SHA_H_1_REG Hash value 0x0044 R/W

SHA_H_2_REG Hash value 0x0048 R/W

SHA_H_3_REG Hash value 0x004C R/W

SHA_H_4_REG Hash value 0x0050 R/W

SHA_H_5_REG Hash value 0x0054 R/W

SHA_H_6_REG Hash value 0x0058 R/W

SHA_H_7_REG Hash value 0x005C R/W

SHA_H_8_REG Hash value 0x0060 R/W

SHA_H_9_REG Hash value 0x0064 R/W

SHA_H_10_REG Hash value 0x0068 R/W

Espressif Systems 152
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Name Description Address Access

SHA_H_11_REG Hash value 0x006C R/W

SHA_H_12_REG Hash value 0x0070 R/W

SHA_H_13_REG Hash value 0x0074 R/W

SHA_H_14_REG Hash value 0x0078 R/W

SHA_H_15_REG Hash value 0x007C R/W

SHA_M_0_REG Message 0x0080 R/W

SHA_M_1_REG Message 0x0084 R/W

SHA_M_2_REG Message 0x0088 R/W

SHA_M_3_REG Message 0x008C R/W

SHA_M_4_REG Message 0x0090 R/W

SHA_M_5_REG Message 0x0094 R/W

SHA_M_6_REG Message 0x0098 R/W

SHA_M_7_REG Message 0x009C R/W

SHA_M_8_REG Message 0x00A0 R/W

SHA_M_9_REG Message 0x00A4 R/W

SHA_M_10_REG Message 0x00A8 R/W

SHA_M_11_REG Message 0x00AC R/W

SHA_M_12_REG Message 0x00B0 R/W

SHA_M_13_REG Message 0x00B4 R/W

SHA_M_14_REG Message 0x00B8 R/W

SHA_M_15_REG Message 0x00BC R/W

SHA_M_16_REG Message 0x00C0 R/W

SHA_M_17_REG Message 0x00C4 R/W

SHA_M_18_REG Message 0x00C8 R/W

SHA_M_19_REG Message 0x00CC R/W

SHA_M_20_REG Message 0x00D0 R/W

SHA_M_21_REG Message 0x00D4 R/W

SHA_M_22_REG Message 0x00D8 R/W

SHA_M_23_REG Message 0x00DC R/W

SHA_M_24_REG Message 0x00E0 R/W

SHA_M_25_REG Message 0x00E4 R/W

SHA_M_26_REG Message 0x00E8 R/W

SHA_M_27_REG Message 0x00EC R/W

SHA_M_28_REG Message 0x00F0 R/W

SHA_M_29_REG Message 0x00F4 R/W

SHA_M_30_REG Message 0x00F8 R/W

SHA_M_31_REG Message 0x00FC R/W

9.6 Registers

The addresses in this section are relative to the SHA accelerator base address provided in Table 1-4 in Chapter 1

System and Memory.

Espressif Systems 153
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Register 9.1. SHA_START_REG (0x0010)

(re
se

rve
d)

0 0

31 1

SHA_S
TA

RT

0

0

Reset

SHA_START Write 1 to start Typical SHA calculation. (WO)

Register 9.2. SHA_CONTINUE_REG (0x0014)

(re
se

rve
d)

0 0

31 1

SHA_C
ONTIN

UE

0

0

Reset

SHA_CONTINUE Write 1 to continue Typical SHA calculation. (WO)

Register 9.3. SHA_BUSY_REG (0x0018)

(re
se

rve
d)

0 0

31 1

SHA_B
USY_S

TA
TE

0

0

Reset

SHA_BUSY_STATE Indicates the states of SHA accelerator. (RO) 1’h0: idle 1’h1: busy

Register 9.4. SHA_DMA_START_REG (0x001C)

(re
se

rve
d)

0 0

31 1

SHA_D
M

A_S
TA

RT

0

0

Reset

SHA_DMA_START Write 1 to start DMA-SHA calculation. (WO)

Espressif Systems 154
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Register 9.5. SHA_DMA_CONTINUE_REG (0x0020)

(re
se

rve
d)

0 0

31 1

SHA_D
M

A_C
ONTIN

UE

0

0

Reset

SHA_DMA_CONTINUE Write 1 to continue DMA-SHA calculation. (WO)

Register 9.6. SHA_INT_CLEAR_REG (0x0024)

(re
se

rve
d)

0 0

31 1

SHA_C
LE

AR_IN
TE

RRUPT

0

0

Reset

SHA_CLEAR_INTERRUPT Clears DMA-SHA interrupt. (WO)

Register 9.7. SHA_INT_ENA_REG (0x0028)

(re
se

rve
d)

0 0

31 1

SHA_IN
TE

RRUPT_
ENA

0

0

Reset

SHA_INTERRUPT_ENA Enables DMA-SHA interrupt. (R/W)

Register 9.8. SHA_DATE_REG (0x002C)

(re
se

rve
d)

0 0

31 30

SHA_D
AT

E

0x20190402

29 0

Reset

SHA_DATE Version control register. (R/W)

Espressif Systems 155
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Register 9.9. SHA_MODE_REG (0x0000)

(re
se

rve
d)

0 0

31 3

SHA_M
ODE

0x0

2 0

Reset

SHA_MODE Defines the SHA algorithm. For details, please see Table 9-2. (R/W)

Register 9.10. SHA_T_STRING_REG (0x0004)

SHA_T
_S

TR
IN

G

0x000000

31 0

Reset

SHA_T_STRING Defines t_string for calculating the initial Hash value for SHA-512/t. (R/W)

Register 9.11. SHA_T_LENGTH_REG (0x0008)

(re
se

rve
d)

0 0

31 6

SHA_T
_L

ENGTH

0x0

5 0

Reset

SHA_T_LENGTH Defines t_length for calculating the initial Hash value for SHA-512/t. (R/W)

Register 9.12. SHA_DMA_BLOCK_NUM_REG (0x000C)

(re
se

rve
d)

0 0

31 6

SHA_D
M

A_B
LO

CK_N
UM

0x0

5 0

Reset

SHA_DMA_BLOCK_NUM Defines the DMA-SHA block number. (R/W)

Espressif Systems 156
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Register 9.13. SHA_H_n_REG (n: 0­15) (0x0040+4*n)

SHA_H
_n

0x000000

31 0

Reset

SHA_H_n Stores the nth 32-bit piece of the Hash value. (R/W)

Register 9.14. SHA_M_n_REG (n: 0­31) (0x0080+4*n)

SHA_M
_n

0x000000

31 0

Reset

SHA_M_n Stores the nth 32-bit piece of the message. (R/W)

Espressif Systems 157
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

10 AES Accelerator (AES)

10 AES Accelerator (AES)

10.1 Introduction

ESP32-S3 integrates an Advanced Encryption Standard (AES) Accelerator, which is a hardware device that

speeds up AES Algorithm significantly, compared to AES algorithms implemented solely in software. The AES

Accelerator integrated in ESP32-S3 has two working modes, which are Typical AES and DMA-AES.

10.2 Features

The following functionality is supported:

• Typical AES working mode

– AES-128/AES-256 encryption and decryption

• DMA-AES working mode

– AES-128/AES-256 encryption and decryption

– Block cipher mode

* ECB (Electronic Codebook)

* CBC (Cipher Block Chaining)

* OFB (Output Feedback)

* CTR (Counter)

* CFB8 (8-bit Cipher Feedback)

* CFB128 (128-bit Cipher Feedback)

– Interrupt on completion of computation

10.3 AES Working Modes

The AES Accelerator integrated in ESP32-S3 has two working modes, which are Typical AES and

DMA-AES.

• Typical AES Working Mode:

– Supports encryption and decryption using cryptographic keys of 128 and 256 bits, specified in NIST

FIPS 197.

In this working mode, the plaintext and ciphertext is written and read via CPU directly.

• DMA-AES Working Mode:

– Supports encryption and decryption using cryptographic keys of 128 and 256 bits, specified in NIST

FIPS 197;

– Supports block cipher modes ECB/CBC/OFB/CTR/CFB8/CFB128 under NIST SP 800-38A.

In this working mode, the plaintext and ciphertext is written and read via DMA. An interrupt will be

generated when operation completes.

Espressif Systems 158
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

10 AES Accelerator (AES)

Users can choose the working mode for AES accelerator by configuring the AES_DMA_ENABLE_REG register

according to Table 10-1 below.

Table 10­1. AES Accelerator Working Mode

AES_DMA_ENABLE_REG Working Mode

0 Typical AES

1 DMA-AES

Users can choose the length of cryptographic keys and encryption / decryption by configuring the

AES_MODE_REG register according to Table 10-2 below.

Table 10­2. Key Length and Encryption / Decryption

AES_MODE_REG[2:0] Key Length and Encryption / Decryption

0 AES-128 encryption

1 reserved

2 AES-256 encryption

3 reserved

4 AES-128 decryption

5 reserved

6 AES-256 decryption

7 reserved

For detailed introduction on these two working modes, please refer to Section 10.4 and Section 10.5

below.

Notice: ESP32-S3’s Digital Signature (DS) module will call the AES accelerator. Therefore, users cannot
access the AES accelerator when Digital Signature (DS) module is working.

10.4 Typical AES Working Mode

In the Typical AES working mode, users can check the working status of the AES accelerator by inquiring the

AES_STATE_REG register and comparing the return value against the Table 10-3 below.

Table 10­3. Working Status under Typical AES Working Mode

AES_STATE_REG Status Description

0 IDLE The AES accelerator is idle or completed operation.

1 WORK The AES accelerator is in the middle of an operation.

10.4.1 Key, Plaintext, and Ciphertext

The encryption or decryption key is stored in AES_KEY_n_REG, which is a set of eight 32-bit registers.

• For AES-128 encryption/decryption, the 128-bit key is stored in AES_KEY_0_REG ~ AES_KEY_3_REG.

• For AES-256 encryption/decryption, the 256-bit key is stored in AES_KEY_0_REG ~ AES_KEY_7_REG.

Espressif Systems 159
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

10 AES Accelerator (AES)

The plaintext and ciphertext are stored in AES_TEXT_IN_m_REG and AES_TEXT_OUT_m_REG, which are two

sets of four 32-bit registers.

• For AES-128/AES-256 encryption, the AES_TEXT_IN_m_REG registers are initialized with plaintext. Then,

the AES Accelerator stores the ciphertext into AES_TEXT_OUT_m_REG after operation.

• For AES-128/AES-256 decryption, the AES_TEXT_IN_m_REG registers are initialized with ciphertext. Then,

the AES Accelerator stores the plaintext into AES_TEXT_OUT_m_REG after operation.

10.4.2 Endianness

Text Endianness

In Typical AES working mode, the AES Accelerator uses cryptographic keys to encrypt and decrypt data in

blocks of 128 bits. When filling data into AES_TEXT_IN_m_REG register or reading result from

AES_TEXT_OUT_m_REG registers, users should follow the text endianness type specified in Table 10-4.

Table 10­4. Text Endianness Type for Typical AES

Plaintext/Ciphertext

State1
c2

0 1 2 3

r

0 AES_TEXT_x_0_REG[7:0] AES_TEXT_x_1_REG[7:0] AES_TEXT_x_2_REG[7:0] AES_TEXT_x_3_REG[7:0]

1 AES_TEXT_x_0_REG[15:8] AES_TEXT_x_1_REG[15:8] AES_TEXT_x_2_REG[15:8] AES_TEXT_x_3_REG[15:8]

2 AES_TEXT_x_0_REG[23:16] AES_TEXT_x_1_REG[23:16] AES_TEXT_x_2_REG[23:16] AES_TEXT_x_3_REG[23:16]

3 AES_TEXT_x_0_REG[31:24] AES_TEXT_x_1_REG[31:24] AES_TEXT_x_2_REG[31:24] AES_TEXT_x_3_REG[31:24]

1 The definition of “State (including c and r)” is described in Section 3.4 The State in NIST FIPS 197.
2 Where x = IN or OUT.

Key Endianness

In Typical AES working mode, When filling key into AES_KEY_m_REG registers, users should follow the key

endianness type specified in Table 10-5 and Table 10-6.

Table 10­5. Key Endianness Type for AES­128 Encryption and Decryption

Bit1 w[0] w[1] w[2] w[3]2

[31:24] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0]

[23:16] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8]

[15:8] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16]

[7:0] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24]

1 Column “Bit” specifies the bytes of each word stored in w[0] ~ w[3].
2 w[0] ~ w[3] are “the first Nk words of the expanded key” as specified in Section 5.2 Key Expansion in NIST FIPS 197.

Espressif Systems 160
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
INARY

10
A

E
S

A
ccelerator

(A
E

S
)

Table 10­6. Key Endianness Type for AES­256 Encryption and Decryption

Bit1 w[0] w[1] w[2] w[3] w[4] w[5] w[6] w[7]2

[31:24] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_5_REG[7:0] AES_KEY_6_REG[7:0] AES_KEY_7_REG[7:0]

[23:16] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_5_REG[15:8] AES_KEY_6_REG[15:8] AES_KEY_7_REG[15:8]

[15:8] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_5_REG[23:16] AES_KEY_6_REG[23:16] AES_KEY_7_REG[23:16]

[7:0] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_5_REG[31:24] AES_KEY_6_REG[31:24] AES_KEY_7_REG[31:24]

1 Column “Bit” specifies the bytes of each word stored in w[0] ~ w[7].
2 w[0] ~ w[7] are “the first Nk words of the expanded key” as specified in Chapter 5.2 Key Expansion in NIST FIPS 197.

E
spressifS

ystem
s

161
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-S
3

TR
M

(P
re-release

v0.1)

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

10 AES Accelerator (AES)

10.4.3 Operation Process

Single Operation

1. Write 0 to the AES_DMA_ENABLE_REG register.

2. Initialize registers AES_MODE_REG, AES_KEY_n_REG, AES_TEXT_IN_m_REG.

3. Start operation by writing 1 to the AES_TRIGGER_REG register.

4. Wait till the content of the AES_STATE_REG register becomes 0, which indicates the operation is

completed.

5. Read results from the AES_TEXT_OUT_m_REG register.

Consecutive Operations

In consecutive operations, primarily the input AES_TEXT_IN_m_REG and output AES_TEXT_OUT_m_REG

registers are being written and read, while the content of AES_DMA_ENABLE_REG, AES_MODE_REG,

AES_KEY_n_REG is kept unchanged. Therefore, the initialization can be simplified during the consecutive

operation.

1. Write 0 to the AES_DMA_ENABLE_REG register before starting the first operation.

2. Initialize registers AES_MODE_REG and AES_KEY_n_REG before starting the first operation.

3. Update the content of AES_TEXT_IN_m_REG.

4. Start operation by writing 1 to the AES_TRIGGER_REG register.

5. Wait till the content of the AES_STATE_REG register becomes 0, which indicates the operation completes.

6. Read results from the AES_TEXT_OUT_m_REG register, and return to Step 3 to continue the next

operation.

10.5 DMA­AES Working Mode

In the DMA-AES working mode, the AES accelerator supports six block cipher modes including

ECB/CBC/OFB/CTR/CFB8/CFB128. Users can choose the block cipher mode by configuring the

AES_BLOCK_MODE_REG register according to Table 10-7 below.

Table 10­7. Block Cipher Mode

AES_BLOCK_MODE_REG[2:0] Block Cipher Mode

0 ECB (Electronic Codebook)

1 CBC (Cipher Block Chaining)

2 OFB (Output Feedback)

3 CTR (Counter)

4 CFB8 (8-bit Cipher Feedback)

5 CFB128 (128-bit Cipher Feedback)

6 reserved

7 reserved

Users can check the working status of the AES accelerator by inquiring the AES_STATE_REG register and

comparing the return value against the Table 10-8 below.

Espressif Systems 162
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

10 AES Accelerator (AES)

Table 10­8. Working Status under DMA­AES Working mode

AES_STATE_REG[1:0] Status Description

0 IDLE The AES accelerator is idle.

1 WORK The AES accelerator is in the middle of an operation.

2 DONE The AES accelerator completed operations.

When working in the DMA-AES working mode, the AES accelerator supports interrupt on the completion of

computation. To enable this function, write 1 to the AES_INT_ENA_REG register. By default, the interrupt

function is disabled. Also, note that the interrupt should be cleared by software after use.

10.5.1 Key, Plaintext, and Ciphertext

Block Operation

During the block operations, the AES Accelerator reads source data from DMA, and write result data to DMA

after the computation.

• For encryption, DMA reads plaintext from memory, then passes it to AES as source data. After

computation, AES passes ciphertext as result data back to DMA to write into memory.

• For decryption, DMA reads ciphertext from memory, then passes it to AES as source data. After

computation, AES passes plaintext as result data back to DMA to write into memory.

During block operations, the lengths of the source data and result data are the same. The total computation time

is reduced because the DMA data operation and AES computation can happen concurrently.

The length of source data for AES Accelerator under DMA-AES working mode must be 128 bits or the integral

multiples of 128 bits. Otherwise, trailing zeros will be added to the original source data, so the length of source

data equals to the nearest integral multiples of 128 bits. Please see details in Table 10-9 below.

Table 10­9. TEXT­PADDING

Function : TEXT­PADDING()

Input : X, bit string.

Output : Y = TEXT­PADDING(X), whose length is the nearest integral multiples of 128 bits.

Steps

Let us assume that X is a data-stream that can be split into n parts as following:

X = X1||X2|| · · · ||Xn−1||Xn

Here, the lengths of X1, X2, · · · , Xn−1 all equal to 128 bits, and the length of Xn is t

(0<=t<=127).

If t = 0, then

TEXT­PADDING(X) = X;

If 0 < t <= 127, define a 128-bit block, X∗
n, and let X∗

n = Xn||0128−t, then

TEXT­PADDING(X) = X1||X2|| · · · ||Xn−1||X∗
n = X||0128−t

10.5.2 Endianness

Under the DMA-AES working mode, the transmission of source data and result data for AES Accelerator is solely

controlled by DMA. Therefore, the AES Accelerator cannot control the Endianness of the source data and result

Espressif Systems 163
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

10 AES Accelerator (AES)

data, but does have requirement on how these data should be stored in memory and on the length of the

data.

For example, let us assume DMA needs to write the following data into memory at address 0x0280.

• Data represented in hexadecimal:

– 0102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F20

• Data Length:

– Equals to 2 blocks.

Then, this data will be stored in memory as shown in Table 10-10 below.

Table 10­10. Text Endianness for DMA­AES

Address Byte Address Byte Address Byte Address Byte

0x0280 0x01 0x0281 0x02 0x0282 0x03 0x0283 0x04

0x0284 0x05 0x0285 0x06 0x0286 0x07 0x0287 0x08

0x0288 0x09 0x0289 0x0A 0x028A 0x0B 0x028B 0x0C

0x028C 0x0D 0x028D 0x0E 0x028E 0x0F 0x028F 0x10

0x0290 0x11 0x0291 0x12 0x0292 0x13 0x0293 0x14

0x0294 0x15 0x0295 0x16 0x0296 0x17 0x0297 0x18

0x0298 0x19 0x0299 0x1A 0x029A 0x1B 0x029B 0x1C

0x029C 0x1D 0x029D 0x1E 0x029E 0x1F 0x029F 0x20

DMA can access both internal memory and PSRAM outside ESP32-S3. When you use DMA to access external

PSRAM, please use base addresses that meet the requirements for DMA. When you use DMA to access internal

memory, base addresses do not have such requirements. Details can be found in Chapter 9 GDMA Controller

(DMA) [to be added later].

10.5.3 Standard Incrementing Function

AES accelerator provides two Standard Incrementing Functions for the CTR block operation, which are INC32

and INC128 Standard Incrementing Functions. By setting the AES_INC_SEL_REG register to 0 or 1, users can

choose the INC32 or INC128 functions respectively. For details on the Standard Incrementing Function, please see

Chapter B.1 The Standard Incrementing Function in NIST SP 800-38A.

10.5.4 Block Number

Register AES_BLOCK_NUM_REG stores the Block Number of plaintext P or ciphertext C. The length of this

register equals to length(TEXT­PADDING(P))/128 or length(TEXT­PADDING(C))/128. The AES Accelerator only

uses this register when working in the DMA-AES mode.

10.5.5 Initialization Vector

AES_IV_MEM is a 16-byte memory, which is only available for AES Accelerator working in block operations. For

CBC/OFB/CFB8/CFB128 operations, the AES_IV_MEM memory stores the Initialization Vector (IV). For the CTR

operation, the AES_IV_MEM memory stores the Initial Counter Block (ICB).

Espressif Systems 164
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

10 AES Accelerator (AES)

Both IV and ICB are 128-bit strings, which can be divided into Byte0, Byte1, Byte2 · · · Byte15 (from left to right).

AES_IV_MEM stores data following the Endianness pattern presented in Table 10-10, i.e. the most significant

(i.e., left-most) byte Byte0 is stored at the lowest address while the least significant (i.e., right-most) byte Byte15

at the highest address.

For more details on IV and ICB, please refer to NIST SP 800-38A.

10.5.6 Block Operation Process

1. Select one of DMA channels to connect with AES, configure the DMA chained list, and then start DMA. For

details, please refer to Chapter 9 GDMA Controller (DMA) [to be added later].

2. Initialize the AES accelerator-related registers:

• Write 1 to the AES_DMA_ENABLE_REG register.

• Configure the AES_INT_ENA_REG register to enable or disable the interrupt function.

• Initialize registers AES_MODE_REG and AES_KEY_n_REG.

• Select block cipher mode by configuring the AES_BLOCK_MODE_REG register. For details, see Table

10-7.

• Initialize the AES_BLOCK_NUM_REG register. For details, see Section 10.5.4.

• Initialize the AES_INC_SEL_REG register (only needed when AES Accelerator is working under CTR

block operation).

• Initialize the AES_IV_MEM memory (This is always needed except for ECB block operation).

3. Start operation by writing 1 to the AES_TRIGGER_REG register.

4. Wait for the completion of computation, which happens when the content of AES_STATE_REG becomes 2

or the AES interrupt occurs.

5. Check if DMA completes data transmission from AES to memory. At this time, DMA had already written the

result data in memory, which can be accessed directly. For details on DMA, please refer to Chapter 9

GDMA Controller (DMA) [to be added later].

6. Clear interrupt by writing 1 to the AES_INT_CLR_REG register, if any AES interrupt occurred during the

computation.

7. Release the AES Accelerator by writing 0 to the AES_DMA_EXIT_REG register. After this, the content of the

AES_STATE_REG register becomes 0. Note that, you can release DMA earlier, but only after Step 4 is

completed.

10.6 Memory Summary

The addresses in this section are relative to the AES accelerator base address provided in Table 1-4 in Chapter 1

System and Memory.

Name Description Size (byte) Starting Address Ending Address Access

AES_IV_MEM Memory IV 16 bytes 0x0050 0x005F R/W

Espressif Systems 165
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

10 AES Accelerator (AES)

10.7 Register Summary

The addresses in this section are relative to the AES accelerator base address provided in Table 1-4 in Chapter 1

System and Memory.

Name Description Address Access

Key Registers

AES_KEY_0_REG AES key register 0 0x0000 R/W

AES_KEY_1_REG AES key register 1 0x0004 R/W

AES_KEY_2_REG AES key register 2 0x0008 R/W

AES_KEY_3_REG AES key register 3 0x000C R/W

AES_KEY_4_REG AES key register 4 0x0010 R/W

AES_KEY_5_REG AES key register 5 0x0014 R/W

AES_KEY_6_REG AES key register 6 0x0018 R/W

AES_KEY_7_REG AES key register 7 0x001C R/W

TEXT_IN Registers

AES_TEXT_IN_0_REG Source data register 0 0x0020 R/W

AES_TEXT_IN_1_REG Source data register 1 0x0024 R/W

AES_TEXT_IN_2_REG Source data register 2 0x0028 R/W

AES_TEXT_IN_3_REG Source data register 3 0x002C R/W

TEXT_OUT Registers

AES_TEXT_OUT_0_REG Result data register 0 0x0030 RO

AES_TEXT_OUT_1_REG Result data register 1 0x0034 RO

AES_TEXT_OUT_2_REG Result data register 2 0x0038 RO

AES_TEXT_OUT_3_REG Result data register 3 0x003C RO

Configuration Registers

AES_MODE_REG Defines key length and encryption / decryp-

tion

0x0040 R/W

AES_DMA_ENABLE_REG Selects the working mode of the AES accel-

erator

0x0090 R/W

AES_BLOCK_MODE_REG Defines the block cipher mode 0x0094 R/W

AES_BLOCK_NUM_REG Block number configuration register 0x0098 R/W

AES_INC_SEL_REG Standard incrementing function register 0x009C R/W

Controlling / Status Registers

AES_TRIGGER_REG Operation start controlling register 0x0048 WO

AES_STATE_REG Operation status register 0x004C RO

AES_DMA_EXIT_REG Operation exit controlling register 0x00B8 WO

Interruption Registers

AES_INT_CLR_REG DMA-AES interrupt clear register 0x00AC WO

AES_INT_ENA_REG DMA-AES interrupt enable register 0x00B0 R/W

Espressif Systems 166
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

10 AES Accelerator (AES)

10.8 Registers

The addresses in this section are relative to the AES accelerator base address provided in Table 1-4 in Chapter 1

System and Memory.

Register 10.1. AES_KEY_n_REG (n: 0­7) (0x0000+4*n)

0x000000000

31 0

Reset

AES_KEY_n_REG (n: 0­7) Stores AES keys. (R/W)

Register 10.2. AES_TEXT_IN_m_REG (m: 0­3) (0x0020+4*m)

0x000000000

31 0

Reset

AES_TEXT_IN_m_REG (m: 0­3) Stores the source data when the AES Accelerator operates in the

Typical AES working mode. (R/W)

Register 10.3. AES_TEXT_OUT_m_REG (m: 0­3) (0x0030+4*m)

0x000000000

31 0

Reset

AES_TEXT_OUT_m_REG (m: 0­3) Stores the result data when the AES Accelerator operates in the

Typical AES working mode. (RO)

Register 10.4. AES_MODE_REG (0x0040)

(re
se

rve
d)

0x00000000

31 3

AES_M
ODE

0

2 0

Reset

AES_MODE Defines the key length and encryption / decryption of the AES Accelerator. For details,

see Table 10-2. (R/W)

Espressif Systems 167
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

10 AES Accelerator (AES)

Register 10.5. AES_DMA_ENABLE_REG (0x0090)

(re
se

rve
d)

0x00000000

31 1

AES_D
M

A_E
NABLE

0

0

Reset

AES_DMA_ENABLE Defines the working mode of the AES Accelerator. 0: Typical AES, 1: DMA-AES.

For details, see Table 10-1. (R/W)

Register 10.6. AES_BLOCK_MODE_REG (0x0094)

(re
se

rve
d)

0x00000000

31 3

AES_B
LO

CK_M
ODE

0

2 0

Reset

AES_BLOCK_MODE Defines the block cipher mode of the AES Accelerator operating under the

DMA-AES working mode. For details, see Table 10-7. (R/W)

Register 10.7. AES_BLOCK_NUM_REG (0x0098)

0x00000000

31 0

Reset

AES_BLOCK_NUM Stores the Block Number of plaintext or ciphertext when the AES Accelerator

operates under the DMA-AES working mode. For details, see Section 10.5.4. (R/W)

Register 10.8. AES_INC_SEL_REG (0x009C)

(re
se

rve
d)

0x00000000

31 1

AES_IN
C_S

EL

0

0

Reset

AES_INC_SEL Defines the Standard Incrementing Function for CTR block operation. Set this bit to

0 or 1 to choose INC32 or INC128. (R/W)

Espressif Systems 168
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

10 AES Accelerator (AES)

Register 10.9. AES_TRIGGER_REG (0x0048)

(re
se

rve
d)

0x00000000

31 1

AES_T
RIG

GER

x

0

Reset

AES_TRIGGER Set this bit to 1 to start AES operation. (WO)

Register 10.10. AES_STATE_REG (0x004C)

(re
se

rve
d)

0x00000000

31 2

AES_S
TA

TE

0x0

1 0

Reset

AES_STATE Stores the working status of the AES Accelerator. For details, see Table 10-3 for Typical

AES working mode and Table 10-8 for DMA AES working mode. (RO)

Register 10.11. AES_DMA_EXIT_REG (0x00B8)

(re
se

rve
d)

0x00000000

31 1

AES_D
M

A_E
XIT

x

0

Reset

AES_DMA_EXIT Set this bit to 1 to exit AES operation. This register is only effective for DMA-AES

operation. (WO)

Register 10.12. AES_INT_CLR_REG (0x00AC)

(re
se

rve
d)

0x00000000

31 1

AES_IN
T_

CLR

x

0

Reset

AES_INT_CLR Set this bit to 1 to clear AES interrupt. (WO)

Espressif Systems 169
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

10 AES Accelerator (AES)

Register 10.13. AES_INT_ENA_REG (0x00B0)

(re
se

rve
d)

0x00000000

31 1

AES_IN
T_

ENA

0

0

Reset

AES_INT_ENA Set this bit to 1 to enable AES interrupt and 0 to disable interrupt. (R/W)

Espressif Systems 170
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

11 RSA Accelerator (RSA)

11.1 Introduction

The RSA Accelerator provides hardware support for high precision computation used in various RSA asymmetric

cipher algorithms by significantly reducing their software complexity. Compared with RSA algorithms

implemented solely in software, this hardware accelerator can speed up RSA algorithms significantly. Besides,

the RSA Accelerator also supports operands of different lengths, which provides more flexibility during the

computation.

11.2 Features

The following functionality is supported:

• Large-number modular exponentiation with two optional acceleration options

• Large-number modular multiplication

• Large-number multiplication

• Operands of different lengths

• Interrupt on completion of computation

11.3 Functional Description

The RSA Accelerator is activated by setting the SYSTEM_CRYPTO_RSA_CLK_EN bit in the

SYSTEM_PERIP_CLK_EN1_REG register and clearing the SYSTEM_RSA_MEM_PD bit in the

SYSTEM_RSA_PD_CTRL_REG register. This releases the RSA Accelerator from reset.

The RSA Accelerator is only available after the RSA-related memories are initialized. The content of the

RSA_CLEAN_REG register is 0 during initialization and will become 1 after the initialization is done. Therefore, it is

advised to wait until RSA_CLEAN_REG becomes 1 before using the RSA Accelerator.

The RSA_INTERRUPT_ENA_REG register is used to control the interrupt triggered on completion of

computation. Write 1 or 0 to this register to enable or disable interrupt. By default, the interrupt function of the

RSA Accelerator is enabled.

Notice:

ESP32-S3’s Digital Signature (DS) module also calls the RSA accelerator. Therefore, users cannot access the

RSA accelerator when Digital Signature (DS) is working.

11.3.1 Large Number Modular Exponentiation

Large-number modular exponentiation performs Z = XY mod M . The computation is based on Montgomery

multiplication. Therefore, aside from the X, Y , and M arguments, two additional ones are needed — r and M ′,

which need to be calculated in advance by software.

RSA Accelerator supports operands of length N = 32× x, where x ∈ {1, 2, 3, . . . , 128}. The bit lengths of

arguments Z, X, Y , M , and r can be arbitrary N , but all numbers in a calculation must be of the same length.

Espressif Systems 171
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

The bit length of M ′ must be 32.

To represent the numbers used as operands, let us define a base-b positional notation, as follows:

b = 232

Using this notation, each number is represented by a sequence of base-b digits:

n =
N

32

Z = (Zn−1Zn−2 · · ·Z0)b

X = (Xn−1Xn−2 · · ·X0)b

Y = (Yn−1Yn−2 · · ·Y0)b

M = (Mn−1Mn−2 · · ·M0)b

r = (rn−1rn−2 · · · r0)b

Each of the n values in Zn−1 · · ·Z0, Xn−1 · · ·X0, Yn−1 · · ·Y0, Mn−1 · · ·M0, rn−1 · · · r0 represents one base-b

digit (a 32-bit word).

Zn−1, Xn−1, Yn−1, Mn−1 and rn−1 are the most significant bits of Z, X, Y , M , while Z0, X0, Y0, M0 and r0 are

the least significant bits.

If we define R = bn, the additional arguments can be calculated as r = R2 mod M .

The following equation in the form compatible with the extended binary GCD algorithm can be written as�

M−1 ×M + 1 = R×R−1

M ′ = M−1 mod b

Large-number modular exponentiation can be implemented as follows:

1. Write 1 or 0 to the RSA_INTERRUPT_ENA_REG register to enable or disable the interrupt function.

2. Configure relevant registers:

(a) Write (N32 − 1) to the RSA_MODE_REG register.

(b) Write M ′ to the RSA_M_PRIME_REG register.

(c) Configure registers related to the acceleration options, which are described later in Section 11.3.4.

3. Write Xi, Yi, Mi and ri for i ∈ {0, 1, . . . , n− 1} to memory blocks RSA_X_MEM, RSA_Y_MEM,

RSA_M_MEM and RSA_Z_MEM. The capacity of each memory block is 128 words. Each word of each

memory block can store one base-b digit. The memory blocks use the little endian format for storage, i.e.

the least significant digit of each number is in the lowest address.

Users need to write data to each memory block only according to the length of the number; data beyond

this length are ignored.

4. Write 1 to the RSA_MODEXP_START_REG register to start computation.

5. Wait for the completion of computation, which happens when the content of RSA_IDLE_REG becomes 1

or the RSA interrupt occurs.

Espressif Systems 172
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

6. Read the result Zi for i ∈ {0, 1, . . . , n− 1} from RSA_Z_MEM.

7. Write 1 to RSA_CLEAR_INTERRUPT_REG to clear the interrupt, if you have enabled the interrupt function.

After the computation, the RSA_MODE_REG register, memory blocks RSA_Y_MEM and RSA_M_MEM, as well

as the RSA_M_PRIME_REG remain unchanged. However, Xi in RSA_X_MEM and ri in RSA_Z_MEM

computation are overwritten, and only these overwritten memory blocks need to be re-initialized before starting

another computation.

11.3.2 Large Number Modular Multiplication

Large-number modular multiplication performs Z = X × Y mod M . This computation is based on Montgomery

multiplication. Therefore, similar to the large number modular exponentiation, two additional arguments are

needed – r and M ′, which need to be calculated in advance by software.

The RSA Accelerator supports large-number modular multiplication with operands of 128 different lengths.

The computation can be executed as follows:

1. Write 1 or 0 to the RSA_INTERRUPT_ENA_REG register to enable or disable the interrupt function.

2. Configure relevant registers:

(a) Write (N32 − 1) to the RSA_MODE_REG register.

(b) Write M ′ to the RSA_M_PRIME_REG register.

3. Write Xi, Yi, Mi, and ri for i ∈ {0, 1, . . . , n− 1} to memory blocks RSA_X_MEM, RSA_Y_MEM,

RSA_M_MEM and RSA_Z_MEM. The capacity of each memory block is 128 words. Each word of each

memory block can store one base-b digit. The memory blocks use the little endian format for storage, i.e.

the least significant digit of each number is in the lowest address.

Users need to write data to each memory block only according to the length of the number; data beyond

this length are ignored.

4. Write 1 to the RSA_MODMULT_START_REG register.

5. Wait for the completion of computation, which happens when the content of RSA_IDLE_REG becomes 1

or the RSA interrupt occurs.

6. Read the result Zi for i ∈ {0, 1, . . . , n− 1} from RSA_Z_MEM.

7. Write 1 to RSA_CLEAR_INTERRUPT_REG to clear the interrupt, if you have enabled the interrupt function.

After the computation, the length of operands in RSA_MODE_REG, the Xi in memory RSA_X_MEM, the Yi in

memory RSA_Y_MEM, the Mi in memory RSA_M_MEM, and the M ′ in memory RSA_M_PRIME_REG remain

unchanged. However, the ri in memory RSA_Z_MEM has already been overwritten, and only this overwritten

memory block needs to be re-initialized before starting another computation.

11.3.3 Large Number Multiplication

Large-number multiplication performs Z = X × Y . The length of result Z is twice that of operand X and operand

Y . Therefore, the RSA Accelerator only supports Large Number Multiplication with operand length N = 32× x,

where x ∈ {1, 2, 3, . . . , 64}. The length N̂ of result Z is 2×N .

The computation can be executed as follows:

Espressif Systems 173
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

1. Write 1 or 0 to the RSA_INTERRUPT_ENA_REG register to enable or disable the interrupt function.

2. Write (N̂32 − 1), i.e. (N16 − 1) to the RSA_MODE_REG register.

3. Write Xi and Yi for ∈ {0, 1, . . . , n− 1} to memory blocks RSA_X_MEM and RSA_Z_MEM. The capacity of

each memory block is 64 words. Each word of each memory block can store one base-b digit. The

memory blocks use the little endian format for storage, i.e. the least significant digit of each number is in

the lowest address. n is N
32 .

Write Xi for i ∈ {0, 1, . . . , n− 1} to the address of the i words of the RSA_X_MEM memory block. Note

that Yi for i ∈ {0, 1, . . . , n− 1} will not be written to the address of the i words of the RSA_Z_MEM register,

but the address of the n+ i words, i.e. the base address of the RSA_Z_MEM memory plus the address

offset 4× (n+ i).

Users need to write data to each memory block only according to the length of the number; data beyond

this length are ignored.

4. Write 1 to the RSA_MULT_START_REG register.

5. Wait for the completion of computation, which happens when the content of RSA_IDLE_REG becomes 1

or the RSA interrupt occurs.

6. Read the result Zi for i ∈ {0, 1, . . . , n̂− 1} from the RSA_Z_MEM register. n̂ is 2× n.

7. Write 1 to RSA_CLEAR_INTERRUPT_REG to clear the interrupt, if you have enabled the interrupt function.

After the computation, the length of operands in RSA_MODE_REG and the Xi in memory RSA_X_MEM remain

unchanged. However, the Yi in memory RSA_Z_MEM has already been overwritten, and only this overwritten

memory block needs to be re-initialized before starting another computation.

11.3.4 Options for Acceleration

The ESP32-S3 RSA accelerator also provides SEARCH and CONSTANT_TIME options that can be configured to

accelerate the large-number modular exponentiation. By default, both options are configured for no acceleration.

Users can choose to use one or two of these options to accelerate the computation.

To be more specific, when neither of these two options are configured for acceleration, the time required to

calculate Z = XY mod M is solely determined by the lengths of operands. When either or both of these two

options are configured for acceleration, the time required is also correlated with the 0/1 distribution of Y .

To better illustrate how these two options work, first assume Y is represented in binaries as

Y = (ỸN−1ỸN−2 · · · Ỹt+1ỸtỸt−1 · · · Ỹ0)2

where,

• N is the length of Y ,

• Ỹt is 1,

• ỸN−1, ỸN−2, …, Ỹt+1 are all equal to 0,

• and Ỹt−1, Ỹt−2, …, Ỹ0 are either 0 or 1 but exactly m bits should be equal to 0 and t-m bits 1, i.e. the

Hamming weight of Ỹt−1Ỹt−2, · · · , Ỹ0 is t−m.

Espressif Systems 174
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

When either of these two options is configured for acceleration:

• SEARCH Option (Configuring RSA_SEARCH_ENABLE to 1 for acceleration)

– The accelerator ignores the bit positions of Ỹi, where i > α. Search position α is set by configuring

the RSA_SEARCH_POS_REG register. The maximum value of α is N-1, which leads to the same

result when this option is not used for acceleration. The best acceleration performance can be

achieved by setting α to t, in which case, all the ỸN−1, ỸN−2, …, Ỹt+1 of 0s are ignored during the

calculation. Note that if you set α to be less than t, then the result of the modular exponentiation

Z = XY mod M will be incorrect.

• CONSTANT_TIME Option (Configuring RSA_CONSTANT_TIME_REG to 0 for acceleration)

– The accelerator speeds up the calculation by simplifying the calculation concerning the 0 bits of Y .

Therefore, the higher the proportion of bits 0 against bits 1, the better the acceleration performance is.

We provide an example to demonstrate the performance of the RSA Accelerator under different combinations of

SEARCH and CONSTANT_TIME configuration. Here we perform Z = XY mod M with N = 3072 and Y =

65537. Table 11-1 below demonstrates the time costs under different combinations of SEARCH and

CONSTANT_TIME configuration. Here, we should also mention that, α is set to 16 when the SEARCH option is

enabled.

Table 11­1. Acceleration Performance

SEARCH Option CONSTANT_TIME Option Time Cost

No acceleration No acceleration 376.405 ms

Accelerated No acceleration 2.260 ms

No acceleration Acceleration 1.203 ms

Acceleration Acceleration 1.165 ms

It’s obvious that:

• The time cost is the biggest when none of these two options is configured for acceleration.

• The time cost is the smallest when both of these two options are configured for acceleration.

• The time cost can be dramatically reduced when either or both option(s) are configured for acceleration.

11.4 Memory Summary

The addresses in this section are relative to the RSA accelerator base address provided in Table 1-4 in Chapter 1

System and Memory.

Table 11­2. RSA Accelerator Memory Blocks

Name Description Size (byte) Starting Address Ending Address Access

RSA_M_MEM Memory M 512 0x0000 0x01FF WO

RSA_Z_MEM Memory Z 512 0x0200 0x03FF R/W

RSA_Y_MEM Memory Y 512 0x0400 0x05FF WO

RSA_X_MEM Memory X 512 0x0600 0x07FF WO

Espressif Systems 175
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

11.5 Register Summary

The addresses in this section are relative to the RSA accelerator base address provided in Table 1-4 in Chapter 1

System and Memory.

Name Description Address Access

Configuration Registers

RSA_M_PRIME_REG Register to store M’ 0x0800 R/W

RSA_MODE_REG RSA length mode 0x0804 R/W

RSA_CONSTANT_TIME_REG The constant_time option 0x0820 R/W

RSA_SEARCH_ENABLE_REG The search option 0x0824 R/W

RSA_SEARCH_POS_REG The search position 0x0828 R/W

Status/Control Registers

RSA_CLEAN_REG RSA clean register 0x0808 RO

RSA_MODEXP_START_REG Modular exponentiation starting bit 0x080C WO

RSA_MODMULT_START_REG Modular multiplication starting bit 0x0810 WO

RSA_MULT_START_REG Normal multiplication starting bit 0x0814 WO

RSA_IDLE_REG RSA idle register 0x0818 RO

Interrupt Registers

RSA_CLEAR_INTERRUPT_REG RSA clear interrupt register 0x081C WO

RSA_INTERRUPT_ENA_REG RSA interrupt enable register 0x082C R/W

Version Register

RSA_DATE_REG Version control register 0x0830 R/W

11.6 Registers

The addresses in this section are relative to the RSA accelerator base address provided in Table 1-4 in Chapter 1

System and Memory.

Register 11.1. RSA_M_PRIME_REG (0x0800)

0x000000000

31 0

Reset

RSA_M_PRIME_REG Stores M’.(R/W)

Register 11.2. RSA_MODE_REG (0x0804)

(re
se

rve
d)

0 0

31 7

RSA_M
ODE

0 0 0 0 0 0 0

6 0

Reset

RSA_MODE Stores the mode of modular exponentiation. (R/W)

Espressif Systems 176
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

Register 11.3. RSA_CLEAN_REG (0x0808)

(re
se

rve
d)

0 0

31 1

RSA_C
LE

AN

0

0

Reset

RSA_CLEAN The content of this bit is 1 when memories complete initialization. (RO)

Register 11.4. RSA_MODEXP_START_REG (0x080C)

(re
se

rve
d)

0 0

31 1

RSA_M
ODEXP

_S
TA

RT

0

0

Reset

RSA_MODEXP_START Set this bit to 1 to start the modular exponentiation. (WO)

Register 11.5. RSA_MODMULT_START_REG (0x0810)

(re
se

rve
d)

0 0

31 1

RSA_M
ODM

ULT
_S

TA
RT

0

0

Reset

RSA_MODMULT_START Set this bit to 1 to start the modular multiplication. (WO)

Register 11.6. RSA_MULT_START_REG (0x0814)

(re
se

rve
d)

0 0

31 1

RSA_M
ULT

_S
TA

RT

0

0

Reset

RSA_MULT_START Set this bit to 1 to start the multiplication. (WO)

Espressif Systems 177
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

Register 11.7. RSA_IDLE_REG (0x0818)

(re
se

rve
d)

0 0

31 1

RSA_ID
LE

0

0

Reset

RSA_IDLE The content of this bit is 1 when the RSA accelerator is idle. (RO)

Register 11.8. RSA_CLEAR_INTERRUPT_REG (0x081C)

(re
se

rve
d)

0 0

31 1

RSA_C
LE

AR_IN
TE

RRUPT

0

0

Reset

RSA_CLEAR_INTERRUPT Set this bit to 1 to clear the RSA interrupts. (WO)

Register 11.9. RSA_CONSTANT_TIME_REG (0x0820)

(re
se

rve
d)

0 0

31 1

RSA_C
ONSTA

NT_
TIM

E

1

0

Reset

RSA_CONSTANT_TIME_REG Controls the constant_time option. 0: acceleration. 1: no accelera-

tion (by default). (R/W)

Register 11.10. RSA_SEARCH_ENABLE_REG (0x0824)

(re
se

rve
d)

0 0

31 1

RSA_S
EARCH_E

NABLE

0

0

Reset

RSA_SEARCH_ENABLE Controls the search option. 0: no acceleration (by default). 1: acceleration.

(R/W)

Espressif Systems 178
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

Register 11.11. RSA_SEARCH_POS_REG (0x0828)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

RSA_S
EARCH_P

OS

0x000

11 0

Reset

RSA_SEARCH_POS Is used to configure the starting address when the acceleration option of search

is used. (R/W)

Register 11.12. RSA_INTERRUPT_ENA_REG (0x082C)

(re
se

rve
d)

0 0

31 1

RSA_IN
TE

RRUPT_
ENA

1

0

Reset

RSA_INTERRUPT_ENA Set this bit to 1 to enable the RSA interrupt. This option is enabled by default.

(R/W)

Register 11.13. RSA_DATE_REG (0x0830)

(re
se

rve
d)

0 0

31 30

RSA_D
AT

E

0x20190425

29 0

Reset

RSA_DATE Version control register. (R/W)

Espressif Systems 179
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

12 Digital Signature (DS)

12 Digital Signature (DS)

12.1 Overview

A Digital Signature is used to verify the authenticity and integrity of a message using a cryptographic algorithm.

This can be used to validate a device’s identity to a server, or to check the integrity of a message.

The ESP32-S3 includes a Digital Signature (DS) module providing hardware acceleration of messages’ signatures

based on RSA. It uses pre-encrypted parameters to calculate a signature. The parameters are encrypted using

HMAC as a key-derivation function. In turn, the HMAC uses eFuses as an input key. The whole process happens

in hardware so that neither the decryption key for the RSA parameters nor the input key for the HMAC key

derivation function can be seen by the software while calculating the signature.

12.2 Features

• RSA Digital Signatures with key length up to 4096 bits

• Encrypted private key data, only decryptable by DS peripheral

• SHA-256 digest to protect private key data against tampering by an attacker

12.3 Functional Description

12.3.1 Overview

The DS peripheral calculates RSA signature as Z = XY mod M where Z is the signature, X is the input

message, Y and M are the RSA private key parameters.

Private key parameters are stored in flash or other memory as ciphertext. They are decrypted using a key

(DS_KEY) which can only be read by the DS peripheral via the HMAC peripheral. The required inputs

(HMAC_KEY) to generate the key are only stored in eFuse and can only be accessed by the HMAC peripheral.

The DS peripheral hardware can decrypt the private key, and the private key in plaintext is never accessed by the

software. For more detailed information about eFuse and HMAC peripherals, please refer to Chapter 5 eFuse

Controller (eFuse) [to be added later] and 16 HMAC Accelerator (HMAC) [to be added later] peripheral.

The input message X will be sent directly to the DS peripheral by the software, each time a signature is needed.

After the RSA signature operation, the signature Z is read back by the software.

For better understanding, we define some symbols and functions here, which are only applicable to this

chapter:

• 1s A bit string consist of s bits that stores “1”.

• [x]s A bit string of s bits, in which s should be the integral multiple of 8 bits. If x is a number (x < 2s), it is

represented in little endian byte order in the bit string. x may be a variable value such as [Y]4096 or as a

hexadecimal constant such as [0x0C]8. If necessary, the value [x]t can be right-padded with (s− t)

number of 0 to reach s bits in length, and finally get [x]s. For example, [0x05]8 = 00000101,

[0x05]16 = 0000010100000000, [0x0005]16 = 0000000000000101, [0x13]8 = 00010011,

[0x13]16 = 0001001100000000, [0x0013]16 = 0000000000010011.

• || A bit string concatenation operator for joining multiple bit strings into a longer bit string.

Espressif Systems 180
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

12 Digital Signature (DS)

12.3.2 Private Key Operands

Private key operands Y (private key exponent) and M (key modulus) are generated by the user. They have a

particular RSA key length (up to 4096 bits). Two additional private key operands are needed: r and M ′. These

two operands are derived from Y and M .

Operands Y , M , r and M ′ are encrypted by the user along with an authentication digest and stored as a single

ciphertext C. C is inputted to the DS peripheral in this encrypted format, decrypted by the hardware, and then

used for RSA signature calculation. Detailed description of how to generate C is provided in Section

12.3.3.

The DS peripheral supports RSA signature calculation Z = XY mod M , in which the length of operands should

be N = 32× x where x ∈ {1, 2, 3, . . . , 128}. The bit lengths of arguments Z, X, Y , M and r should be an

arbitrary value in N , and all of them in a calculation must be of the same length, while the bit length of M ′ should

always be 32. For more detailed information about RSA calculation, please refer to Section 11.3.1 Large Number

Modular Exponentiation in Chapter 11 RSA Accelerator (RSA).

12.3.3 Software Prerequisites

The left side of Figure 12-1 lists preparations required by the software before the hardware starts RSA signature

calculation, while the right side lists the hardware workflow during the entire calculation procedure.

Figure 12­1. Software Preparations and Hardware Working Process

Note:

1. The software preparation (left side in the Figure 12-1) is a one-time operation before any signature is calculated,

while the hardware calculation (right side in the Figure 1-1) repeats for every signature calculation.

Users need to follow the steps shown in the left part of Figure 12-1 to calculate C. Detailed instructions are as

follows:

• Step 1: Prepare operands Y and M whose lengths should meet the requirements in Section 12.3.2.

Espressif Systems 181
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

12 Digital Signature (DS)

Define [L]32 = N
32 (i.e., for RSA 4096, [L]32 == [0x80]32). Prepare [HMAC_KEY]256 and calculate

[DS_KEY]256 based on DS_KEY = HMAC-SHA256 ([HMAC_KEY]256, 1256). Generate a random

[IV]128 which should meet the requirements of the AES-CBC block encryption algorithm. For more

information on AES, please refer to Chapter 10 AES Accelerator (AES).

• Step 2: Calculate r and M ′ based on M .

• Step 3: Extend Y , M and r, in order to get [Y]4096, [M]4096 and [r]4096, respectively. This step is only

required for Y , M and r whose length are less than 4096 bits, since their largest length are 4096 bits.

• Step 4�Calculate MD authentication code using the SHA-256:

[MD]256 = SHA256 ([Y]4096||[M]4096||[r]4096||[M ′]32||[L]32||[IV]128)

• Step 5: Build [P]12672 = ([Y]4096||[M]4096||[r]4096||[MD]256||[M ′]32||[L]32||[β]64), where [β]64 is a PKCS#7

padding value, i.e., a 64-bit string [0x0808080808080808]64 composed of 8 bytes (value = 0x80). The

purpose of [β]64 is to make the bit length of P a multiple of 128.

• Step 6: Calculate C = [C]12672 = AES-CBC-ENC ([P]12672, [DS_KEY]256, [IV]128), where C is the

ciphertext with length of 12672 bits.

12.3.4 DS Operation at the Hardware Level

The hardware operation is triggered each time a digital signature needs to be calculated. The inputs are the

pre-generated private key ciphertext C, a unique message X, and IV .

The DS operation at the hardware level can be divided into the following three stages:

1. Decryption: Step 7 and 8 in Figure 12­1

The decryption process is the inverse of Step 6 in figure 12-1. The DS peripheral will call AES accelerator to

decrypt C in CBC block mode and get the resulted plaintext. The decryption process can be represented

by P = AES-CBC-DEC (C, DS_KEY , IV), where IV (i.e., [IV]128) is defined by users. [DS_KEY]256 is

provided by HMAC module, derived from HMAC_KEY stored in eFuse. [DS_KEY]256, as well as

[HMAC_KEY]256 are not readable by the software.

With P, the DS peripheral can derive [Y]4096, [M]4096, [r]4096, [M ′]32, [L]32, MD authentication code, and

the padding value [β]64. This process is the inverse of Step 5.

2. Check: Step 9 and 10 in Figure 12­1

The DS peripheral will perform two checks: MD check and padding check. Padding check is not shown in

Figure 12-1, as it happens at the same time with MD check.

• MD check: The DS peripheral calls SHA-256 to calculate the MD authentication code

[CALC_MD]256 from [Y]4096||[M]4096||[r]4096||[M ′]32||[L]32||[IV]128). Then, [CALC_MD]256 is

compared against the pre-calculated MD authentication code [MD]256 from step 4. Only when the

two match, MD check passes.

• Padding check: The DS peripheral checks if [β]64 complies with the aforementioned PKCS#7 format.

Only when [β]64 complies with the format, padding check passes.

The DS peripheral will only perform subsequent operations if MD check passes. If padding check fails, an

error bit is set in the query register, but it does not affect the subsequent operations, i.e., it is up to the user

to proceed or not.

Espressif Systems 182
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

12 Digital Signature (DS)

3. Calculation: Step 11 and 12 in Figure 12­1

The DS peripheral treats X (input by users) and Y , M , r (compiled) as big numbers. With M ′, all operands

to perform XY mod M are in place. The operand length is defined by L. The DS peripheral will get the

signed result Z by calling RSA to perform Z = XY mod M .

12.3.5 DS Operation at the Software Level

The following software steps should be followed each time a Digital Signature needs to be calculated. The inputs

are the pre-generated private key ciphertext C, a unique message X, and IV . These software steps trigger the

hardware steps described in Section 12.3.4.

We assume that the software has called the HMAC peripheral and HMAC on the hardware has calculated

DS_KEY based on HMAC_KEY .

1. Prerequisites: Prepare operands C, X, IV according to Section 12.3.3.

2. Activate the DS peripheral: Write 1 to DS_SET_START_REG.

3. Check if DS_KEY is ready: Poll DS_QUERY_BUSY_REG until the software reads 0.

If the software does not read 0 in DS_QUERY_BUSY_REG after approximately 1 ms, it indicates a problem

with HMAC initialization. In such a case, the software can read register DS_QUERY_KEY_WRONG_REG to

get more information:

• If the software reads 0 in DS_QUERY_KEY_WRONG_REG, it indicates that the HMAC peripheral has

not been activated.

• If the software reads any value from 1 to 15 in DS_QUERY_KEY_WRONG_REG, it indicates that

HMAC was activated, but the DS peripheral did not successfully receive the DS_KEY value from the

HMAC peripheral. This may indicate that the HMAC operation has been interrupted due to a software

concurrency problem.

4. Configure register: Write IV block to register DS_IV_m_REG (m: 0-3). For more information on the IV

block, please refer to Chapter 10 AES Accelerator (AES).

5. Write X to memory block DS_X_MEM: Write Xi (i ∈ {0, 1, . . . , n− 1}), where n = N
32 , to memory block

DS_X_MEM whose capacity is 128 words. Each word can store one base-b digit. The memory block uses

the little endian format for storage, i.e., the least significant digit of the operand is in the lowest address.

Words in DS_X_MEM block after the configured length of X (N bits, as described in Section 12.3.2) are

ignored.

6. Write C to memory block DS_C_MEM: Write Ci (i ∈ {0, 1, . . . , 395}) to memory block DS_C_MEM

whose capacity is 396 words. Each word can store one base-b digit.

7. Start DS operation: Write 1 to register DS_SET_ME_REG.

8. Wait for the operation to be completed: Poll register DS_QUERY_BUSY_REG until the software reads 0.

9. Query check result: Read register DS_QUERY_CHECK_REG and determine the subsequent operations

based on the return value.

• If the value is 0, it indicates that both padding check and MD check pass. Users can continue to get

the signed result Z.

Espressif Systems 183
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

12 Digital Signature (DS)

• If the value is 1, it indicates that the padding check passes but MD check fails. The signed result Z is

invalid. The operation will resume directly from Step 11.

• If the value is 2, it indicates that the padding check fails but MD check passes. Users can continue to

get the signed result Z. But please note that the data encapsulation format does not complie with the

aforementioned PKCS#7 format, which may not be what you want.

• If the value is 3, it indicates that both padding check and MD check fail. In this case, some fatal errors

may occurred and the signed result Z is invalid. The operation will resume directly from Step 11.

10. Read the signed result: Read the signed result Zi (i ∈ {0, 1, . . . , n− 1}), where n = N
32 , from memory

block DS_Z_MEM. The memory block stores Z in little-endian byte order.

11. Exit the operation: Write 1 to DS_SET_FINISH_REG, then poll DS_QUERY_BUSY_REG until the software

reads 0.

After the operation, all the input/output registers and memory blocks are cleared.

Espressif Systems 184
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

12 Digital Signature (DS)

12.4 Memory Summary

The addresses in this section are relative to the [Digital Signature] base address provided in Table 1-4 in Chapter

1 System and Memory.

Name Description Size (byte) Starting Address Ending Address Access

DS_C_MEM Memory block C 1584 0x0000 0x062F WO

DS_X_MEM Memory block X 512 0x0800 0x09FF WO

DS_Z_MEM Memory block Z 512 0x0A00 0x0BFF RO

Espressif Systems 185
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

12 Digital Signature (DS)

12.5 Register Summary

The addresses in this section are relative to the Digital Signature base address provided in Table 1-4 in Chapter 1

System and Memory.

Name Description Address Access

Configuration Registers

DS_IV_0_REG IV block data 0x0630 WO

DS_IV_1_REG IV block data 0x0634 WO

DS_IV_2_REG IV block data 0x0638 WO

DS_IV_3_REG IV block data 0x063C WO

Status/Control Registers

DS_SET_START_REG Activates the DS peripheral 0x0E00 WO

DS_SET_ME_REG Starts DS operation 0x0E04 WO

DS_SET_FINISH_REG Ends DS operation 0x0E08 WO

DS_QUERY_BUSY_REG Status of the DS peripheral 0x0E0C RO

DS_QUERY_KEY_WRONG_REG Checks the reason why DS_KEY is not

ready

0x0E10 RO

DS_QUERY_CHECK_REG Queries DS check result 0x0814 RO

Version Register

DS_DATE_REG Version control register 0x0820 W/R

Espressif Systems 186
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

12 Digital Signature (DS)

12.6 Registers

The addresses in this section are relative to the Digital Signature base address provided in Table 1-4 in Chapter 1

System and Memory.

Register 12.1. DS_IV_m_REG (m: 0­3) (0x0630+4*m)

0x000000000

31 0

Reset

DS_IV_m_REG (m: 0­3) IV block data. (WO)

Register 12.2. DS_SET_START_REG (0x0E00)

(re
se

rve
d)

0 0

31 1

DS_S
ET_

STA
RT

0

0

Reset

DS_SET_START Write 1 to this register to activate the DS peripheral. (WO)

Register 12.3. DS_SET_ME_REG (0x0E04)

(re
se

rve
d)

0 0

31 1

DS_S
ET_

M
E

0

0

Reset

DS_SET_ME Write 1 to this register to start DS operation. (WO)

Register 12.4. DS_SET_FINISH_REG (0x0E08)

(re
se

rve
d)

0 0

31 1

DS_S
ET_

FIN
IS

H

0

0

Reset

DS_SET_FINISH Write 1 to this register to end DS operation. (WO)

Espressif Systems 187
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

12 Digital Signature (DS)

Register 12.5. DS_QUERY_BUSY_REG (0x0E0C)

(re
se

rve
d)

0 0

31 1

DS_Q
UERY_B

USY

0

0

Reset

DS_QUERY_BUSY 1: The DS peripheral is busy; 0: The DS peripheral is idle. (RO)

Register 12.6. DS_QUERY_KEY_WRONG_REG (0x0E10)

(re
se

rve
d)

0 0

31 4

DS_Q
UERY_K

EY_W
RONG

0x0

3 0

Reset

DS_QUERY_KEY_WRONG 1-15: HMAC was activated, but the DS peripheral did not successfully

receive the DS_KEY from the HMAC peripheral. (The biggest value is 15); 0: HMAC is not

activated. (RO)

Register 12.7. DS_QUERY_CHECK_REG (0x0E14)

(re
se

rve
d)

0 0

31 2

DS_P
ADDIN

G_B
AD

0

1

DS_M
D_E

RROR

0

0

Reset

DS_PADDING_BAD 1: The padding check fails; 0: The padding check passes. (RO)

DS_MD_ERROR 1: The MD check fails; 0: The MD check passes. (RO)

Register 12.8. DS_DATE_REG (0x0E20)

(re
se

rve
d)

0 0

31 30

DS_D
AT

E

0x20191217

29 0

Reset

DS_DATE Version control register. (R/W)

Espressif Systems 188
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

13 External Memory Encryption and Decryption (XTS_AES)

13 External Memory Encryption and Decryption (XTS_AES)

13.1 Overview

The ESP32-S3 integrates an External Memory Encryption and Decryption module that complies with the

XTS_AES standard algorithm specified in IEEE Std 1619-2007, providing security for users’ application code and

data stored in the external memory (flash and RAM). Users can store proprietary firmware and sensitive data

(e.g., credentials for gaining access to a private network) to the external flash, or store general data to the

external RAM.

13.2 Features

• General XTS_AES algorithm, compliant with IEEE Std 1619-2007

• Software-based manual encryption

• High-speed auto encryption, without software’s participation

• High-speed auto decryption, without software’s participation

• Encryption and decryption functions jointly determined by registers configuration, eFuse parameters, and

boot mode

13.3 Module Structure

The External Memory Encryption and Decryption module consists of three blocks, namely the Manual Encryption

block, Auto Encryption block, and Auto Decryption block. The module architecture is shown in Figure

13-1.

Figure 13­1. External Memory Encryption and Decryption Operation Settings

Espressif Systems 189
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://ieeexplore.ieee.org/document/4493450
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

13 External Memory Encryption and Decryption (XTS_AES)

The Manual Encryption block can encrypt instructions/data which will then be written to the external flash as

ciphertext via SPI1.

When the CPU writes data to the external RAM through cache, the Auto Encryption block will automatically

encrypt the data first, then the data will be written to the external RAM as ciphertext.

When the CPU reads from the external flash or external RAM through cache, the Auto Decryption block will

automatically decrypt the ciphertext to retrieve instructions and data.

In the System Registers (SYSREG) peripheral, the following four bits in register

SYSTEM_EXTERNAL_DEVICE_ENCRYPT_DECRYPT_CONTROL_REG are relevant to the external memory

encryption and decryption:

• SYSTEM_ENABLE_DOWNLOAD_MANUAL_ENCRYPT

• SYSTEM_ENABLE_DOWNLOAD_G0CB_DECRYPT

• SYSTEM_ENABLE_DOWNLOAD_DB_ENCRYPT

• SYSTEM_ENABLE_SPI_MANUAL_ENCRYPT

The XTS_AES module also fetches two parameters from the peripheral 5 eFuse Controller (eFuse) [to be added

later], which are: EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT and EFUSE_SPI_BOOT_CRYPT_CNT.

13.4 Functional Description

13.4.1 XTS Algorithm

The manual encryption and auto encryption/decryption all use the same algorithm, i.e., XTS algorithm. During

implementation, the XTS algorithm is characterized by a ”data unit” of 1024 bits, which is defined in the Section

XTS-AES encryption procedure of XTS-AES Tweakable Block Cipher Standard. For more information about

XTS-AES algorithm, please refer to IEEE Std 1619-2007.

13.4.2 Key

The Manual Encryption block, Auto Encryption block and Auto Decryption block share the same Key when

implementing XTS algorithm. The Key is provided by the eFuse hardware and cannot be accessed by

users.

The Key can be either 256-bit or 512-bit long. The value and length of the Key are determined by eFuse

parameters. For easier description, now define:

• BlockA: the BLOCK in BLOCK4 ~ BLOCK9 whose key purpose is

EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_1. If BlockA is true, then the 256-bit KeyA is stored in it.

• BlockB : the BLOCK in BLOCK4 ~ BLOCK9 whose key purpose is

EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_2. If BlockB is true, then the 256-bit KeyB is stored in it.

• BlockC : the BLOCK in BLOCK4 ~ BLOCK9 whose key purpose is

EFUSE_KEY_PURPOSE_XTS_AES_128_KEY. If BlockC is true, then the 256-bit KeyC is stored in it.

There are five possibilities of how the Key is generated depending on whether BlockA, BlockB and BlockC exists

or not, as shown in Table 13-1. In each case, the Key can be uniquely determined by BlockA, BlockB or

BlockC .

Espressif Systems 190
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://ieeexplore.ieee.org/document/4493450
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

13 External Memory Encryption and Decryption (XTS_AES)

Table 13­1. Key generated based on KeyA, KeyB and KeyC

BlockA BlockB BlockC Key Key Length (bit)

Yes Yes Don’t care KeyA||KeyB 512

Yes No Don’t care KeyA||0256 512

No Yes Don’t care 0256||KeyB 512

No No Yes KeyC 256

No No No 0256 256

Notes:

“YES” indicates that the block exists; “NO” indicates that the block does not exist; “0256” indicates a bit string

that consists of 256-bit zeros; “||” is a bonding operator for joining one bit string to another.

For more information of key purposes, please refer to Table Key in Chapter 5 eFuse Controller (eFuse) [to be

added later].

13.4.3 Target Memory Space

The target memory space refers to a continuous address space in the external memory where the first encrypted

ciphertext is stored. The target memory space can be uniquely determined by three relevant parameters: type,

size and base address, whose definitions are listed below.

• Type: the type of the target memory space, either external flash or external RAM. Value 0 indicates external

flash, while 1 indicates external RAM.

• Size: the size of the target memory space, indicating the number bytes encrypted in one encryption

operation, which supports 16, 32 or 64 bytes.

• Base address: the base_addr of the target memory space. It is a 30-bit physical address, with range of

0x0000_0000 ~ 0x3FFF_FFFF. It should be aligned to size, i.e., base_addr%size == 0.

For example, if there are 16 bytes of instruction data need to be encrypted and written to address 0x130 ~ 0x13F

in the external flash, then the target space is 0x130 ~ 0x13F, type is 0 (external flash), size is 16 (bytes), and base

address is 0x130.

The encryption of any length (must be multiples of 16 bytes) of plaintext instruction/data can be completed

separately in multiple operations, and each operation has individual target memory space and the relevant

parameters.

For Auto Encryption/Decryption blocks, these parameters are automatically defined by hardware. For Manual

Encryption block, these parameters should be configured manually by users.

Note:
The “tweak” defined in Chapter 5.1 Data units and tweaks of IEEE Std 1619-2007 is a 128-bit non-negative integer

(tweak), which can be generated according to tweak = type ∗ 230 + (base_addr & 0x3FFFFF80). The lowest 7 bits

and the highest 97 bits in tweak are always zero.

13.4.4 Data Padding

For Auto Encryption/Decryption blocks, data padding is automatically completed by hardware. For Manual

Encryption block, data padding should be completed manually by users. The Manual Encryption block has a

Espressif Systems 191
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://ieeexplore.ieee.org/document/4493450
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

13 External Memory Encryption and Decryption (XTS_AES)

registers block which consists of 16 registers, i.e., XTS_AES_PLAIN_n_REG (n: 0-15), that are dedicated to data

padding and can store up to 512 bits of plaintext instructions/data.

Actually, the Manual Encryption block does not care where the plaintext comes from, but only where the

ciphertext will be stored. Because of the strict correspondence between plaintext and ciphertext, in order to

better describe how the plaintext is stored in the register block, we assume that the plaintext is stored in the

target memory space in the first place and replaced by ciphertext after encryption. Therefore, the following

description no longer has the concept of “plaintext”, but uses “target memory space” instead. Please note that

the plaintext can come from everywhere in actual use, but users should understand how the plaintext is stored in

the register block.

How mapping works between target memory space and registers:

Assume a word in the target memory space is stored in address, define offset = address%64, n = offset
4 , then

the word will be stored in register XTS_AES_PLAIN_n_REG.

For example, if the size of the target memory space is 64, then all the 16 registers will be used for data storage.

The mapping between offset and registers is shown in Table 13-2.

Table 13­2. Mapping Between Offsets and Registers

offset Register offset Register

0x00 XTS_AES_PLAIN_0_REG 0x20 XTS_AES_PLAIN_8_REG

0x04 XTS_AES_PLAIN_1_REG 0x24 XTS_AES_PLAIN_9_REG

0x08 XTS_AES_PLAIN_2_REG 0x28 XTS_AES_PLAIN_10_REG

0x0C XTS_AES_PLAIN_3_REG 0x2C XTS_AES_PLAIN_11_REG

0x10 XTS_AES_PLAIN_4_REG 0x30 XTS_AES_PLAIN_12_REG

0x14 XTS_AES_PLAIN_5_REG 0x34 XTS_AES_PLAIN_13_REG

0x18 XTS_AES_PLAIN_6_REG 0x38 XTS_AES_PLAIN_14_REG

0x1C XTS_AES_PLAIN_7_REG 0x3C XTS_AES_PLAIN_15_REG

13.4.5 Manual Encryption Block

The Manual Encryption block is a peripheral module. It is equipped with registers and can be accessed by the

CPU directly. Registers embedded in this block, the System Registers (SYSREG) peripheral, eFuse parameters,

and boot mode jointly configure and use this module. Please note that the Manual Encryption block can only

encrypt for storage in the external flash.

The Manual Encryption block is operational only under certain conditions. The operating conditions

are:

• In SPI Boot mode

If bit SYSTEM_ENABLE_SPI_MANUAL_ENCRYPT in register

SYSTEM_EXTERNAL_DEVICE_ENCRYPT_DECRYPT_CONTROL_REG is 1, the Manual Encryption block

can be enabled. Otherwise, it is not operational.

• In Download Boot mode

If bit SYSTEM_ENABLE_DOWNLOAD_MANUAL_ENCRYPT in register

SYSTEM_EXTERNAL_DEVICE_ENCRYPT_DECRYPT_CONTROL_REG is 1 and the eFuse parameter

Espressif Systems 192
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

13 External Memory Encryption and Decryption (XTS_AES)

EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT is 0, the Manual Encryption block can be enabled.

Otherwise, it is not operational.

Note:

• Even though the CPU can skip cache and get the encrypted instruction/data directly by reading the external mem-

ory, software can by no means access Key.

13.4.6 Auto Encryption Block

The Auto Encryption block is not a conventional peripheral, so it does not have any registers and cannot be

accessed by the CPU directly. The System Registers (SYSREG) peripheral, eFuse parameters, and boot mode

jointly configure and use this block.

The Auto Encryption block is operational only under certain conditions. The operating conditions are:

• In SPI Boot mode

If the first bit or the third bit in parameter SPI_BOOT_CRYPT_CNT (3 bits) is set to 1, then the Auto

Encryption block can be enabled. Otherwise, it is not operational.

• In Download Boot mode

If bit SYSTEM_ENABLE_DOWNLOAD_DB_ENCRYPT in register

SYSTEM_EXTERNAL_DEVICE_ENCRYPT_DECRYPT_CONTROL_REG is 1, the Auto Encryption block can

be enabled. Otherwise, it is not operational.

Note:

• When the Auto Encryption block is enabled, it will automatically encrypt data if the CPU writes data to the external

RAM, and then the encrypted ciphertext will be written to the external RAM. The entire encryption process does

not need software participation and is transparent to the cache. Software can by no means obtain the encryption

Key during the process.

• When the Auto Encryption block is disabled, it will ignore the CPU’s access request to cache and do not process

the data. Therefore, the data will be written to the external RAM as plaintext directly.

13.4.7 Auto Decryption Block

The Auto Decryption block is not a conventional peripheral, so it does not have any registers and cannot be

accessed by the CPU directly. The System Registers (SYSREG) peripheral, eFuse parameters, and boot mode

jointly configure and use this block.

The Auto Decryption block is operational only under certain conditions. The operating conditions are:

• In SPI Boot mode

If the first bit or the third bit in parameter SPI_BOOT_CRYPT_CNT (3 bits) is set to 1, then the Auto

Decryption block can be enabled. Otherwise, it is not operational.

• In Download Boot mode

If bit SYSTEM_ENABLE_DOWNLOAD_G0CB_DECRYPT in register

SYSTEM_EXTERNAL_DEVICE_ENCRYPT_DECRYPT_CONTROL_REG is 1, the Auto Decryption block

Espressif Systems 193
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

13 External Memory Encryption and Decryption (XTS_AES)

can be enabled. Otherwise, it is not operational.

Note:

• When the Auto Decryption block is enabled, it will automatically decrypt the ciphertext if the CPU reads instruc-

tions/data from the external memory via cache to retrieve the instructions/data. The entire decryption process does

not need software participation and is transparent to the cache. Software can by no means obtain the decryption

Key during the process.

• When the Auto Decryption block is disabled, it does not have any effect on the contents stored in the external

memory, no matter they are encrypted or not. Therefore, what the CPU reads via cache is the original information

stored in the external memory.

13.5 Software Process

When the Manual Encryption block operates, software needs to be involved in the process. The steps are as

follows:

1. Configure XTS_AES:

• Set register XTS_AES_DESTINATION_REG to type = 0.

• Set register XTS_AES_PHYSICAL_ADDRESS_REG to base_addr.

• Set register XTS_AES_LINESIZE_REG to size
32 .

For definitions of type, base_addr and size, please refer to Section 13.4.3.

2. Pad plaintext data to the registers block XTS_AES_PLAIN_n_REG (n: 0-15). For detailed information,

please refer to Section 13.4.4.

Please pad data to registers according to your actual needs, and the unused ones could be set to arbitrary

values.

3. Wait for Manual Encrypt block to be idle. Poll register XTS_AES_STATE_REG until the software reads 0.

4. Trigger manual encryption by writing 1 to register XTS_AES_TRIGGER_REG.

5. Wait for the encryption process. Poll register XTS_AES_STATE_REG until the software reads 2.

Step 1 to 5 are the steps of encrypting plaintext instructions with the Manual Encryption block using the

Key.

6. Grant the ciphertext access to SPI1. Write 1 to register XTS_AES_RELEASE_REG to grant SPI1 the

access to the encrypted ciphertext. After this, the value of register XTS_AES_STATE_REG will become 3.

7. Call SPI1 to write the ciphertext in the external flash (see Chapter 12 SPI Controller (SPI) [to be added later]).

8. Destroy the ciphertext. Write 1 to register XTS_AES_DESTROY_REG. After this, the value of register

XTS_AES_STATE_REG will become 0.

Repeat above steps to meet plaintext instructions/data encryption demands.

Espressif Systems 194
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

13 External Memory Encryption and Decryption (XTS_AES)

13.6 Register Summary

The addresses in this section are relative to the External Memory Encryption and Decryption base address

provided in Table 1-4 in Chapter 1 System and Memory.

Name Description Address Access

Plaintext Register Heap

XTS_AES_PLAIN_0_REG Plaintext register 0 0x0000 R/W

XTS_AES_PLAIN_1_REG Plaintext register 1 0x0004 R/W

XTS_AES_PLAIN_2_REG Plaintext register 2 0x0008 R/W

XTS_AES_PLAIN_3_REG Plaintext register 3 0x000C R/W

XTS_AES_PLAIN_4_REG Plaintext register 4 0x0010 R/W

XTS_AES_PLAIN_5_REG Plaintext register 5 0x0014 R/W

XTS_AES_PLAIN_6_REG Plaintext register 6 0x0018 R/W

XTS_AES_PLAIN_7_REG Plaintext register 7 0x001C R/W

XTS_AES_PLAIN_8_REG Plaintext register 8 0x0020 R/W

XTS_AES_PLAIN_9_REG Plaintext register 9 0x0024 R/W

XTS_AES_PLAIN_10_REG Plaintext register 10 0x0028 R/W

XTS_AES_PLAIN_11_REG Plaintext register 11 0x002C R/W

XTS_AES_PLAIN_12_REG Plaintext register 12 0x0030 R/W

XTS_AES_PLAIN_13_REG Plaintext register 13 0x0034 R/W

XTS_AES_PLAIN_14_REG Plaintext register 14 0x0038 R/W

XTS_AES_PLAIN_15_REG Plaintext register 15 0x003C R/W

Configuration Registers

XTS_AES_LINESIZE_REG Configures the size of target memory space 0x0040 R/W

XTS_AES_DESTINATION_REG Configures the type of the external memory 0x0044 R/W

XTS_AES_PHYSICAL_ADDRESS_REG Physical address 0x0048 R/W

Contro/Status Registers

XTS_AES_TRIGGER_REG Activates AES algorithm 0x004C WO

XTS_AES_RELEASE_REG Release control 0x0050 WO

XTS_AES_DESTROY_REG Destroys control 0x0054 WO

XTS_AES_STATE_REG Status register 0x0058 RO

Version Register

XTS_AES_DATE_REG Version control register 0x005C RO

Espressif Systems 195
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

13 External Memory Encryption and Decryption (XTS_AES)

13.7 Registers

The addresses in this section are relative to the External Memory Encryption and Decryption base address

provided in Table 1-4 in Chapter 1 System and Memory.

Register 13.1. XTS_AES_PLAIN_n_REG (n: 0­15) (0x0000+4*n)

XT
S_A

ES_P
LA

IN
_n

0x000000

31 0

Reset

XTS_AES_PLAIN_n Stores nth 32-bit piece of plain text. (R/W)

Register 13.2. XTS_AES_LINESIZE_REG (0x0040)

(re
se

rve
d)

0x00000000

31 2

XT
S_A

ES_L
IN

ESIZE

0

1 0

Reset

XTS_AES_LINESIZE Configures the data size of one encryption.

• 0: 16 bytes;

• 1: 32 bytes;

• 2: 64 bytes. (R/W)

Register 13.3. XTS_AES_DESTINATION_REG (0x0044)

(re
se

rve
d)

0x00000000

31 1

XT
S_A

ES_D
ESTIN

AT
IO

N

0

0

Reset

XTS_AES_DESTINATION Configures the type of the external memory. Currently, it must be set to 0,

as the Manual Encryption block only supports flash encryption. Errors may occur if users write 1.

0: flash; 1: external RAM. (R/W)

Espressif Systems 196
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

13 External Memory Encryption and Decryption (XTS_AES)

Register 13.4. XTS_AES_PHYSICAL_ADDRESS_REG (0x0048)

(re
se

rve
d)

0x0

31 30

XT
S_A

ES_P
HYSIC

AL_
ADDRESS

0x00000000

29 0

Reset

XTS_AES_PHYSICAL_ADDRESS Physical address. (R/W)

Register 13.5. XTS_AES_TRIGGER_REG (0x004C)

(re
se

rve
d)

0x00000000

31 1

XT
S_A

ES_T
RIG

GER

x

0

Reset

XTS_AES_TRIGGER Write 1 to enable manual encryption. (WO)

Register 13.6. XTS_AES_RELEASE_REG (0x0050)

(re
se

rve
d)

0x00000000

31 1

XT
S_A

ES_R
ELE

ASE

x

0

Reset

XTS_AES_RELEASE Write 1 to grant SPI1 access to encrypted result. (WO)

Register 13.7. XTS_AES_DESTROY_REG (0x0054)

(re
se

rve
d)

0x00000000

31 1

XT
S_A

ES_D
ESTR

OY

x

0

Reset

XTS_AES_DESTROY Write 1 to destroy encrypted result. (WO)

Espressif Systems 197
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

13 External Memory Encryption and Decryption (XTS_AES)

Register 13.8. XTS_AES_STATE_REG (0x0058)

(re
se

rve
d)

0x00000000

31 2

XT
S_A

ES_S
TA

TE

0x0

1 0

Reset

XTS_AES_STATE Indicates the status of the Manual Encryption block. (RO)

• 0x0 (XTS_AES_IDLE): idle;

• 0x1 (XTS_AES_BUSY): busy with encryption;

• 0x2 (XTS_AES_DONE): encryption is completed, but the encrypted result is not accessible to

SPI;

• 0x3 (XTS_AES_RELEASE): encrypted result is accessible to SPI.

Register 13.9. XTS_AES_DATE_REG (0x005C)

(re
se

rve
d)

0 0

31 30

XT
S_A

ES_D
AT

E

0x20200111

29 0

Reset

XTS_AES_DATE Version control register. (R/W)

Espressif Systems 198
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

14 Random Number Generator (RNG)

14 Random Number Generator (RNG)

14.1 Introduction

The ESP32-S3 contains a true random number generator, which generates 32-bit random numbers that can be

used for cryptographical operations, among other things.

14.2 Features

The random number generator in ESP32-S3 generates true random numbers, which means random number

generated from a physical process, rather than by means of an algorithm. No number generated within the

specified range is more or less likely to appear than any other number.

14.3 Functional Description

Every 32-bit value that the system reads from the RNG_DATA_REG register of the random number generator is a

true random number. These true random numbers are generated based on the thermal noise in the system and

the asynchronous clock mismatch.

Thermal noise comes from the high-speed ADC or SAR ADC or both. Whenever the high-speed ADC or SAR

ADC is enabled, bit streams will be generated and fed into the random number generator through an XOR logic

gate as random seeds.

When the RTC20M_CLK clock is enabled for the digital core, the random number generator will also sample

RTC20M_CLK (20 MHz) as a random bit seed. RTC20M_CLK is an asynchronous clock source and it increases

the RNG entropy by introducing circuit metastability. However, to ensure maximum entropy, it’s recommended to

always enable an ADC source as well.

SAR ADC

Random
Number

Generator
High Speed

ADC

 Random bit
 seeds

 Random bit
 seeds

RNG_DATA_REG

XOR
XOR

RTC20M_CLK Random bit
seeds

Figure 14­1. Noise Source

When there is noise coming from the SAR ADC, the random number generator is fed with a 2-bit entropy in one

clock cycle of RTC20M_CLK (20 MHz), which is generated from an internal RC oscillator (see Chapter 3 Reset

and Clock for details). Thus, it is advisable to read the RNG_DATA_REG register at a maximum rate of 500 kHz to

obtain the maximum entropy.

When there is noise coming from the high-speed ADC, the random number generator is fed with a 2-bit entropy

in one APB clock cycle, which is normally 80 MHz. Thus, it is advisable to read the RNG_DATA_REG register at a

maximum rate of 5 MHz to obtain the maximum entropy.

A data sample of 2 GB, which is read from the random number generator at a rate of 5 MHz with only the

Espressif Systems 199
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

14 Random Number Generator (RNG)

high-speed ADC being enabled, has been tested using the Dieharder Random Number Testsuite (version 3.31.1).

The sample passed all tests.

14.4 Programming Procedure

When using the random number generator, make sure at least either the SAR ADC, high-speed ADC, or

RTC20M_CLK is enabled. Otherwise, pseudo-random numbers will be returned.

• SAR ADC can be enabled by using the DIG ADC controller. For details, please refer to Chapter 13 On-Chip

Sensors and Analog Signal Processing [to be added later].

• High-speed ADC is enabled automatically when the Wi-Fi or Bluetooth modules is enabled.

• RTC20M_CLK is enabled by setting the RTC_CNTL_DIG_CLK20M_EN bit in the

RTC_CNTL_CLK_CONF_REG register.

Note:

Note that, when the Wi-Fi module is enabled, the value read from the high-speed ADC can be saturated in some extreme

cases, which lowers the entropy. Thus, it is advisable to also enable the SAR ADC as the noise source for the random

number generator for such cases.

When using the random number generator, read the RNG_DATA_REG register multiple times until sufficient

random numbers have been generated. Ensure the rate at which the register is read does not exceed the

frequencies described in section 14.3 above.

14.5 Register Summary

The address in the following table is relative to the random number generator base address provided in Table 1-4

in Chapter 1 System and Memory.

Name Description Address Access

RNG_DATA_REG Random number data 0x0110 RO

14.6 Register

The address in this section is relative to the random number generator base address provided in Table 1-4 in

Chapter 1 System and Memory.

Register 14.1. RNG_DATA_REG (0x0110)

0x00000000

31 0

Reset

RNG_DATA Random number source. (RO)

Espressif Systems 200
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

15 Two­wire Automotive Interface® (TWAI)

15.1 Overview

The Two-wire Automotive Interface (TWAI)® is a multi-master, multi-cast communication protocol with error

detection and signaling and inbuilt message priorities and arbitration.The TWAI protocol is suited for automotive

and industrial applications (see Section 15.3 for more details).

ESP32-S3 contains a TWAI controller that can be connected to a TWAI bus via an external transceiver. The TWAI

controller contains numerous advanced features, and can be utilized in a wide range of use cases such as

automotive products, industrial automation controls, building automation etc.

15.2 Features

ESP32-S3 TWAI controller supports the following features:

• Compatible with ISO 11898-1 protocol

• Supports Standard Frame Format (11-bit ID) and Extended Frame Format (29-bit ID)

• Bit rates from 1 Kbit/s to 1 Mbit/s

• Multiple modes of operation

– Normal

– Listen-only (no influence on bus)

– Self-test (no acknowledgment required during data transmission)

• 64-byte Receive FIFO

• Special transmissions

– Single-shot transmissions (does not automatically re-transmit upon error)

– Self Reception (the TWAI controller transmits and receives messages simultaneously)

• Acceptance Filter (supports single and dual filter modes)

• Error detection and handling

– Error Counters

– Configurable Error Warning Limit

– Error Code Capture

– Arbitration Lost Capture

15.3 Functional Protocol

15.3.1 TWAI Properties

The TWAI protocol connects two or more nodes in a bus network, and allows nodes to exchange messages in a

latency bounded manner. A TWAI bus has the following properties.

Espressif Systems 201
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Single Channel and Non­Return­to­Zero: The bus consists of a single channel to carry bits, thus

communication is half-duplex. Synchronization is also implemented in this channel, so extra channels (e.g., clock

or enable) are not required. The bit stream of a TWAI message is encoded using the Non-Return-to-Zero (NRZ)

method.

Bit Values: The single channel can either be in a dominant or recessive state, representing a logical 0 and a

logical 1 respectively. A node transmitting data in a dominant state will always override another node transmitting

data in a recessive state. The physical implementation on the bus is left to the application level to decide (e.g.,

differential pair or a single wire).

Bit Stuffing: Certain fields of TWAI messages are bit-stuffed. A transmitter that transmits five consecutive bits of

the same value should automatically insert a complementary bit. Likewise, a receiver that receives five

consecutive bits should treat the next bit as a stuffed bit. Bit stuffing is applied to the following fields: SOF,

arbitration field, control field, data field, and CRC sequence (see Section 15.3.2 for more details).

Multi­cast: All nodes receive the same bits as they are connected to the same bus. Data is consistent across all

nodes unless there is a bus error (see Section 15.3.3 for more details).

Multi­master: Any node can initiate a transmission. If a transmission is already ongoing, a node will wait until the

current transmission is over before beginning its own transmission.

Message Priorities and Arbitration: If two or more nodes simultaneously initiate a transmission, the TWAI

protocol ensures that one node will win arbitration of the bus. The arbitration field of the message transmitted by

each node is used to determine which node will win arbitration.

Error Detection and Signaling: Each node will actively monitor the bus for errors, and signal the detection

errors by transmitting an error frame.

Fault Confinement: Each node will maintain a set of error counts that are incremented/decremented according

to a set of rules. When the error counts surpass a certain threshold, a node will automatically eliminate itself from

the network by switching itself off.

Configurable Bit Rate: The bit rate for a single TWAI bus is configurable. However, all nodes within the same

bus must operate at the same bit rate.

Transmitters and Receivers: At any point in time, a TWAI node can either be a transmitter or a receiver.

• A node originating a message is a transmitter. The node remains a transmitter until the bus is idle or until

the node loses arbitration. Note that multiple nodes can be transmitters if they have yet to lose arbitration.

• All nodes that are not transmitters are receivers.

15.3.2 TWAI Messages

TWAI nodes use messages to transmit data, and signal errors to other nodes. Messages are split into various

frame types, and some frame types will have different frame formats.

The TWAI protocol has of the following frame types:

• Data frames

• Remote frames

• Error frames

• Overload frames

Espressif Systems 202
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

• Interframe space

The TWAI protocol has the following frame formats:

• Standard Frame Format (SFF) that consists of a 11-bit identifier

• Extended Frame Format (EFF) that consists of a 29-bit identifier

15.3.2.1 Data Frames and Remote Frames

Data frames are used by nodes to send data to other nodes, and can have a payload of 0 to 8 data bytes.

Remote frames are used for nodes to request a data frame with the same identifier from another node, thus they

do not contain any data bytes. However, data frames and remote frames share many common fields. Figure

15-1 illustrates the fields and sub-fields of different frames and formats.

Figure 15­1. Bit Fields in Data Frames and Remote Frames

Arbitration Field

When two or more nodes transmits a data or remote frame simultaneously, the arbitration field is used to

determine which node will win arbitration of the bus. During the arbitration field, if a node transmits a recessive bit

while observes a dominant bit, this indicates that another node has overridden its recessive bit. Therefore, the

node transmitting the recessive bit has lost arbitration of the bus and should immediately switch to be a

receiver.

The arbitration field primarily consists of the frame identifier that is transmitted from the most significant bit first.

Given that a dominant bit represents a logical 0, and a recessive bit represents a logical 1:

• A frame with the smallest ID value will always win arbitration.

Espressif Systems 203
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

• Given the same ID and format, data frames will always prevail over remote frames.

• Given the same first 11 bits of ID, a Standard Format Data Frame will prevail over an Extended Format Data

Frame due to the SRR being recessive.

Control Field

The control field primarily consists of the DLC (Data Length Code) which indicates the number of payload data

bytes for a data frame, or the number of requested data bytes for a remote frame. The DLC is transmitted from

the most significant bit first.

Data Field

The data field contains the actual payload data bytes of a data frame. Remote frames do not contain a data

field.

CRC Field

The CRC field primarily consists of a CRC sequence. The CRC sequence is a 15-bit cyclic redundancy code

calculated form the de-stuffed contents (everything from the SOF to the end of the data field) of a data or remote

frame.

ACK Field

The ACK field primarily consists of an ACK Slot and an ACK Delim. The ACK field is mainly intended for the

receiver to indicate to a transmitter that it has received an effective message.

Table 15­1. Data Frames and Remote Frames in SFF and EFF

Data/Remote Frames Description

SOF The SOF (Start of Frame) is a single dominant bit used to synchronize nodes on

the bus.

Base ID The Base ID (ID.28 to ID.18) is the 11-bit identifier for SFF, or the first 11-bits of

the 29-bit identifier for EFF.

RTR The RTR (Remote Transmission Request) bit indicates whether the message is a

data frame (dominant) or a remote frame (recessive). This means that a remote

frame will always lose arbitration to a data frame given they have the same ID.

SRR The SRR (Substitute Remote Request) bit is transmitted in EFF to substitute for

the RTR bit at the same position in SFF.

IDE The IDE (Identifier Extension) bit indicates whether the message is SFF (dominant)

or EFF (recessive). This means that a SFF frame will always win arbitration over

an EFF frame given they have the same Base ID.

Extd ID The Extended ID (ID.17 to ID.0) is the remaining 18-bits of the 29-bit identifier for

EFF.

r1 The r1 bit (reserved bit 1) is always dominant.

r0 The r0 bit (reserved bit 0) is always dominant.

DLC The DLC (Data Length Code) is 4-bit long and should contain any value from 0

to 8. Data frames use the DLC to indicate the number of data bytes in the data

frame. Remote frames used the DLC to indicate the number of data bytes to

request from another node.

Data Bytes The data payload of data frames. The number of bytes should match the value

of DLC. Data byte 0 is transmitted first, and each data byte is transmitted from

the most significant bit first.

Espressif Systems 204
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Data/Remote Frames Description

CRC Sequence The CRC sequence is a 15-bit cyclic redundancy code.

CRC Delim The CRC Delim (CRC Delimiter) is a single recessive bit that follows the CRC

sequence.

ACK Slot The ACK Slot (Acknowledgment Slot) is intended for receiver nodes to indicate

that the data or remote frame was received without an issue. The transmitter

node will send a recessive bit in the ACK Slot and receiver nodes should override

the ACK Slot with a dominant bit if the frame was received without errors.

ACK Delim The ACK Delim (Acknowledgment Delimiter) is a single recessive bit.

EOF The EOF (End of Frame) marks the end of a data or remote frame, and consists

of seven recessive bits.

15.3.2.2 Error and Overload Frames

Error Frames

Error frames are transmitted when a node detects a bus error. Error frames notably consist of an Error Flag which

is made up of 6 consecutive bits of the same value, thus violating the bit-stuffing rule. Therefore, when a

particular node detects a bus error and transmits an error frame, all other nodes will then detect a stuff error and

transmit their own error frames in response. This has the effect of propagating the detection of a bus error across

all nodes on the bus.

When a node detects a bus error, it will transmit an error frame starting from the next bit. However, if the type of

bus error was a CRC error, then the error frame will start at the bit following the ACK Delim (see Section 15.3.3

for more details). The following Figure 15-2 shows different fields of an error frame:

Figure 15­2. Fields of an Error Frame

Table 15­2. Error Frame

Error Frame Description

Error Flag The Error Flag has two forms, the Active Error Flag consisting of 6 domi-

nant bits and the Passive Error Flag consisting of 6 recessive bits (unless

overridden by dominant bits of other nodes). Active Error Flags are sent

by error active nodes, whilst Passive Error Flags are sent by error passive

nodes.

Error Flag Superposition The Error Flag Superposition field meant to allow for other nodes on the

bus to transmit their respective Active Error Flags. The superposition field

can range from 0 to 6 bits, and ends when the first recessive bit is detected

(i.e., the first it of the Delimiter).

Error Delimeter The Delimiter field marks the end of the error/overload frame, and consists

of 8 recessive bits.

Espressif Systems 205
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Overload Frames

An overload frame has the same bit fields as an error frame containing an Active Error Flag. The key difference is

in the conditions that can trigger the transmission of an overload frame. Figure 15-3 below shows the bit fields of

an overload frame.

Figure 15­3. Fields of an Overload Frame

Table 15­3. Overload Frame

Overload Flag Description

Overload Flag Consists of 6 dominant bits. Same as an Active Error Flag.

Overload Flag Superposition Allows for the superposition of Overload Flags from other nodes, similar to an

Error Flag Superposition.

Overload Delimiter Consists of 8 recessive bits. Same as an Error Delimiter.

Overload frames will be transmitted under the following conditions:

1. A receiver requires a delay of the next data or remote frame.

2. A dominant bit is detected at the first and second bit of intermission.

3. A dominant bit is detected at the eighth (last) bit of an Error Delimiter. Note that in this case, TEC and REC

will not be incremented (see Section 15.3.3 for more details).

Transmitting an overload frame due to one of the conditions must also satisfy the following rules:

• Transmitting an overload frame due to condition 1 must only be started at the first bit of intermission.

• Transmitting an overload frame due to condition 2 and 3 must start one bit after the detecting the dominant

bit of the condition.

• A maximum of two overload frames may be generated in order to delay the next data or remote frame.

15.3.2.3 Interframe Space

The Interframe Space acts as a separator between frames. Data frames and remote frames must be separated

from preceding frames by an Interframe Space, regardless of the preceding frame’s type (data frame, remote

frame, error frame, overload frame). However, error frames and overload frames do not need to be separated

from preceding frames.

Figure 15-4 shows the fields within an Interframe Space:

Table 15­4. Interframe Space

Interframe Space Description

Intermission The Intermission consists of 3 recessive bits.

Espressif Systems 206
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Interframe Space Description

Suspend Transmission An Error Passive node that has just transmitted a message must include

a Suspend Transmission field. This field consists of 8 recessive bits. Error

Active nodes should not include this field.

Bus Idle The Bus Idle field is of arbitrary length. Bus Idle ends when an SOF is

transmitted. If a node has a pending transmission, the SOF should be

transmitted at the first bit following Intermission.

15.3.3 TWAI Errors

15.3.3.1 Error Types

Bus Errors in TWAI are categorized into one of the following types:

Bit Error

A Bit Error occurs when a node transmits a bit value (i.e., dominant or recessive) but the opposite bit is detected

(e.g., a dominant bit is transmitted but a recessive is detected). However, if the transmitted bit is recessive and is

located in the Arbitration Field or ACK Slot or Passive Error Flag, then detecting a dominant bit will not be

considered a Bit Error.

Stuff Error

A stuff error is detected when 6 consecutive bits of the same value are detected (thus violating the bit-stuffing

encoding rules).

CRC Error

A receiver of a data or remote frame will calculate a CRC based on the bits it has received. A CRC error occurs

when the CRC calculated by the receiver does not match the CRC sequence in the received data or remote

Frame.

Format Error

A Format Error is detected when a fixed-form bit field of a message contains an illegal bit. For example, the r1

and r0 fields must be dominant.

ACK Error

An ACK Error occurs when a transmitter does not detect a dominant bit at the ACK Slot.

15.3.3.2 Error States

TWAI nodes implement fault confinement by each maintaining two error counters, where the counter values

determine the error state. The two error counters are known as the Transmit Error Counter (TEC) and Receive

Error Counter (REC). TWAI has the following error states.

Error Active

An Error Active node is able to participate in bus communication and transmit an Active Error Flag when it

detects an error.

Error Passive

An Error Passive node is able to participate in bus communication, but can only transmit an Passive Error Flag

when it detects an error. Error Passive nodes that have transmitted a data or remote frame must also include the

Suspend Transmission field in the subsequent Interframe Space.

Espressif Systems 207
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Figure 15­4. The Fields within an Interframe Space

Bus Off

A Bus Off node is not permitted to influence the bus in any way (i.e., is not allowed to transmit anything).

15.3.3.3 Error Counters

The TEC and REC are incremented/decremented according to the following rules. Note that more than one

rule can apply for a given message transfer.

1. When a receiver detects an error, the REC is increased by 1, except when the detected error was a Bit

Error during the transmission of an Active Error Flag or an Overload Flag.

2. When a receiver detects a dominant bit as the first bit after sending an Error Flag, the REC is increased by 8.

3. When a transmitter sends an Error Flag, the TEC is increased by 8. However, the following scenarios are

exempt from this rule:

• If a transmitter is Error Passive that detects an Acknowledgment Error due to not detecting a

dominant bit in the ACK Slot, it should send a Passive Error Flag. If no dominant bit is detected in that

Passive Error Flag, the TEC should not be increased.

• A transmitter transmits an Error Flag due to a Stuff Error during Arbitration. If the offending bit should

have been recessive but was monitored as dominant, then the TEC should not be increased.

4. If a transmitter detects a Bit Error whilst sending an Active Error Flag or Overload Flag, the TEC is increased

by 8.

5. If a receiver detects a Bit Error while sending an Active Error Flag or Overload Flag, the REC is increased by

8.

6. A node can tolerate up to 7 consecutive dominant bits after sending an Active/Passive Error Flag, or

Overload Flag. After detecting the 14th consecutive dominant bit (when sending an Active Error Flag or

Overload Flag), or the 8th consecutive dominant bit following a Passive Error Flag, a transmitter will

increase its TEC by 8 and a receiver will increase its REC by 8. Every additional eight consecutive dominant

bits will also increase the TEC (for transmitters) or REC (for receivers) by 8 as well.

7. When a transmitter successfully transmits a message (getting ACK and no errors until the EOF is complete),

the TEC is decremented by 1, unless the TEC is already at 0.

8. When a receiver successfully receives a message (no errors before ACK Slot, and successful sending of

ACK), the REC is decremented.

• If the REC was between 1 and 127, the REC is decremented by 1.

• If the REC was greater than 127, the REC is set to 127.

• If the REC was 0, the REC remains 0.

Espressif Systems 208
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

9. A node becomes Error Passive when its TEC and/or REC is greater than or equal to 128. The error

condition that causes a node to become Error Passive will cause the node to send an Active Error Flag.

Note that once the REC has reached to 128, any further increases to its value are invalid until the REC

returns to a value less than 128.

10. A node becomes Bus Off when its TEC is greater than or equal to 256.

11. An Error Passive node becomes Error Active when both the TEC and REC are less than or equal to 127.

12. A Bus Off node can become Error Active (with both its TEC and REC reset to 0) after it monitors 128

occurrences of 11 consecutive recessive bits on the bus.

15.3.4 TWAI Bit Timing

15.3.4.1 Nominal Bit

The TWAI protocol allows a TWAI bus to operate at a particular bit rate. However, all nodes within a TWAI bus

must operate at the same bit rate.

• The Nominal Bit Rate is defined as the number of bits transmitted per second from an ideal transmitter

and without any synchronization.

• The Nominal Bit Time is defined as 1/Nominal Bit Rate.

A single Nominal Bit Time is divided into multiple segments, and each segment is made up of multiple Time

Quanta. A Time Quantum is a fixed unit of time, and is implemented as some form of prescaled clock signal in

each node. Figure 15-5 illustrates the segments within a single Nominal Bit Time.

TWAI controllers will operate in time steps of one Time Quanta where the state of the TWAI bus is analyzed. If

two consecutive Time Quantas have different bus states (i.e., recessive to dominant or vice versa), this will be

considered an edge. When the bus is analyzed at the intersection of PBS1 and PBS2, this is considered the

Sample Point and the sampled bus value is considered the value of that bit.

Figure 15­5. Layout of a Bit

Table 15­5. Segments of a Nominal Bit Time

Segment Description

SS The SS (Synchronization Segment) is 1 Time Quantum long. If all nodes are perfectly

synchronized, the edge of a bit will lie in the SS.

PBS1 PBS1 (Phase Buffer Segment 1) can be 1 to 16 Time Quanta long. PBS1 is meant

to compensate for the physical delay times within the network. PBS1 can also be

lengthened for synchronization purposes.

Espressif Systems 209
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Segment Description

PBS2 PBS2 (Phase Buffer Segment 2) can be 1 to 8 Time Quanta long. PBS2 is meant to

compensate for the information processing time of nodes. PBS2 can also be shortened

for synchronization purposes.

15.3.4.2 Hard Synchronization and Resynchronization

Due to clock skew and jitter, the bit timing of nodes on the same bus may become out of phase. Therefore, a bit

edge may come before or after the SS. To ensure that the internal bit timing clocks of each node are kept in

phase, TWAI has various methods of synchronization. The Phase Error “e” is measured in the number of Time

Quanta and relative to the SS.

• A positive Phase Error (e > 0) is when the edge lies after the SS and before the Sample Point (i.e., the edge

is late).

• A negative Phase Error (e < 0) is when the edge lies after the Sample Point of the previous bit and before

SS (i.e., the edge is early).

To correct for Phase Errors, there are two forms of synchronization, known as Hard Synchronization and

Resynchronization. Hard Synchronization and Resynchronization obey the following rules:

• Only one synchronization may occur in a single bit time.

• Synchronizations only occurs on recessive to dominant edges.

Hard Synchronization

Hard Synchronization occurs on the recessive to dominant edges when the bus is idle (i.e., the first SOF bit after

Bus Idle). All nodes will restart their internal bit timings so that the recessive to dominant edge lies within the SS

of the restarted bit timing.

Resynchronization

Resynchronization occurs on recessive to dominant edges not during Bus Idle. If the edge has a positive Phase

Error (e > 0), PBS1 is lengthened by a certain number of Time Quanta. If the edge has a negative Phase Error (e

< 0), PBS2 will be shortened by a certain number of Time Quanta.

The number of Time Quanta to lengthen or shorten depends on the magnitude of the Phase Error, and is also

limited by the Synchronization Jump Width (SJW) value which is programmable.

• When the magnitude of the Phase Error (e) is less than or equal to the SJW, PBS1/PBS2 are

lengthened/shortened by the e number of Time Quanta. This has a same effect as Hard Synchronization.

• When the magnitude of the Phase Error is greater to the SJW, PBS1/PBS2 are lengthened/shortened by

the SJW number of Time Quanta. This means it may take multiple bits of synchronization before the Phase

Error is entirely corrected.

15.4 Architectural Overview

The major functional blocks of the TWAI controller are shown in Figure 15-6.

Espressif Systems 210
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Figure 15­6. TWAI Overview Diagram

15.4.1 Registers Block

The ESP32-S3 CPU accesses peripherals using 32-bit aligned words. However, the majority of registers in the

TWAI controller only contain useful data at the least significant byte (bits [7:0]). Therefore, in these registers, bits

[31:8] are ignored on writes, and return 0 on reads.

Configuration Registers

The configuration registers store various configuration items for the TWAI controller such as bit rates, operation

mode, Acceptance Filter etc. Configuration registers can only be modified whilst the TWAI controller is in Reset

Mode (See Section 15.5.1).

Command Registers

The command register is used by the CPU to drive the TWAI controller to initiate certain actions such as

transmitting a message or clearing the Receive Buffer. The command register can only be modified when the

TWAI controller is in Operation Mode (see section 15.5.1).

Interrupt & Status Registers

The interrupt register indicates what events have occurred in the TWAI controller (each event is represented by a

separate bit). The status register indicates the current status of the TWAI controller.

Error Management Registers

The error management registers include error counters and capture registers. The error counter registers

represent TEC and REC values. The capture registers will record information about instances where TWAI

controller detects a bus error, or when it loses arbitration.

Transmit Buffer Registers

The transmit buffer is a 13-byte buffer used to store a TWAI message to be transmitted.

Espressif Systems 211
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Receive Buffer Registers

The Receive Buffer is a 13-byte buffer which stores a single message. The Receive Buffer acts as a window of

Receive FIFO, whose first message will be mapped into the Receive Buffer.

Note that the Transmit Buffer registers, Receive Buffer registers, and the Acceptance Filter registers share the

same address range (offset 0x0040 to 0x0070). Their access is governed by the following rules:

• When the TWAI controller is in Reset Mode, all reads and writes to the address range maps to the

Acceptance Filter registers.

• When the TWAI controller is in Operation Mode:

– All reads to the address range maps to the Receive Buffer registers.

– All writes to the address range maps to the Transmit Buffer registers.

15.4.2 Bit Stream Processor

The Bit Stream Processing (BSP) module frames data from the Transmit Buffer (e.g. bit stuffing and additional

CRC fields) and generating a bit stream for the Bit Timing Logic (BTL) module. At the same time, the BSP module

is also responsible for processing the received bit stream (e.g., de-stuffing and verifying CRC) from the BTL

module and placing the message into the Receive FIFO. The BSP will also detect errors on the TWAI bus and

report them to the Error Management Logic (EML).

15.4.3 Error Management Logic

The Error Management Logic (EML) module updates the TEC and REC, recording error information like error

types and positions, and updating the error state of the TWAI controller such that the BSP module generates the

correct Error Flags. Furthermore, this module also records the bit position when the TWAI controller loses

arbitration.

15.4.4 Bit Timing Logic

The Bit Timing Logic (BTL) module transmits and receives messages at the configured bit rate. The BTL module

also handles synchronization of out of phase bits so that communication remains stable. A single bit time

consists of multiple programmable segments that allows users to set the length of each segment to account for

factors such as propagation delay and controller processing time etc.

15.4.5 Acceptance Filter

The Acceptance Filter is a programmable message filtering unit that allows the TWAI controller to accept or reject

a received message based on the message’s ID field. Only accepted messages will be stored in the Receive

FIFO. The Acceptance Filter’s registers can be programmed to specify a single filter, or two separate filters (dual

filter mode).

15.4.6 Receive FIFO

The Receive FIFO is a 64-byte buffer (inside the TWAI controller) that stores received messages accepted by the

Acceptance Filter. Messages in the Receive FIFO can vary in size (between 3 to 13-bytes). When the Receive

FIFO is full (or does not have enough space to store the next received message in its entirety), the Overrun

Interrupt will be triggered, and any subsequent received messages will be lost until adequate space is cleared in

the Receive FIFO. The first message in the Receive FIFO will be mapped to the 13-byte Receive Buffer until that

Espressif Systems 212
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

message is cleared (using the Release Receive Buffer command bit). After clearing, the Receive Buffer will map

to the next message in the Receive FIFO, and the space occupied by the previous message in the Receive FIFO

can be used to receive new messages.

15.5 Functional Description

15.5.1 Modes

The ESP32-S3 TWAI controller has two working modes: Reset Mode and Operation Mode. Reset Mode and

Operation Mode are entered by setting or clearing the TWAI_RESET_MODE bit.

15.5.1.1 Reset Mode

Entering Reset Mode is required in order to modify the various configuration registers of the TWAI controller.

When entering Reset Mode, the TWAI controller is essentially disconnected from the TWAI bus. When in Reset

Mode, the TWAI controller will not be able to transmit any messages (including error signals). Any transmission in

progress is immediately terminated. Likewise, the TWAI controller will not be able to receive any messages

either.

15.5.1.2 Operation Mode

In operation mode, the TWAI controller connects to the bus and write-protect all configuration registers to ensure

consistency during operation. When in Operation Mode, the TWAI controller can transmit and receive messages

(including error signaling) depending on which operation sub-mode the TWAI controller was configured with. The

TWAI controller supports the following operation sub-modes:

• Normal Mode: The TWAI controller can transmit and receive messages including error signaling (such as

error and overload Frames).

• Self­test Mode: Self-test mode is similar to normal Mode, but the TWAI controller will consider the

transmission of a data or RTR frame successful and do not generate ACK error even if it was not

acknowledged. This is commonly used when self-testing the TWAI controller.

• Listen­only Mode: The TWAI controller will be able to receive messages, but will remain completely

passive on the TWAI bus. Thus, the TWAI controller will not be able to transmit any messages,

acknowledgments, or error signals. The error counters will remain frozen. This mode is useful for TWAI bus

monitoring.

Note that when exiting Reset Mode (i.e., entering Operation Mode), the TWAI controller must wait for 11

consecutive recessive bits to occur before being able to fully connect the TWAI bus (i.e., be able to transmit or

receive).

15.5.2 Bit Timing

The operating bit rate of the TWAI controller must be configured whilst the TWAI controller is in Reset Mode. The

bit rate is configured using TWAI_BUS_TIMING_0_REG and TWAI_BUS_TIMING_1_REG, and the two registers

contain the following fields:

The following Table 15-6 illustrates the bit fields of TWAI_BUS_TIMING_0_REG.

Espressif Systems 213
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Table 15­6. Bit Information of TWAI_BUS_TIMING_0_REG (0x18)

Bit 31-16 Bit 15 Bit 14 Bit 13 Bit 12 Bit 1 Bit 0

Reserved SJW.1 SJW.0 Reserved BRP.12 BRP.1 BRP.0

Notes:

• BRP: The TWAI Time Quanta clock is derived from the APB clock that is usually 80 MHz. The Baud Rate

Prescaler (BRP) field is used to define the prescaler according to the equation below, where tTq is the Time

Quanta clock cycle and tCLK is APB clock cycle:

tTq = 2 × tCLK × (212 × BRP.12 + 211 × BRP.11 + ... + 21 × BRP.1 + 20 × BRP.0 + 1)

• SJW: Synchronization Jump Width (SJW) is configured in SJW.0 and SJW.1 where SJW = (2 x SJW.1 +

SJW.0 + 1)�

The following Table 15-7 illustrates the bit fields of TWAI_BUS_TIMING_1_REG.

Table 15­7. Bit Information of TWAI_BUS_TIMING_1_REG (0x1c)

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved SAM PBS2.2 PBS2.1 PBS2.0 PBS1.3 PBS1.2 PBS1.1 PBS1.0

Notes:

• PBS1: The number of Time Quanta in Phase Buffer Segment 1 is defined according to the following

equation: (8 x PBS1.3 + 4 x PBS1.2 + 2 x PBS1.1 + PBS1.0 + 1)�

• PBS2: The number of Time Quanta in Phase Buffer Segment 2 is defined according to the following

equation: (4 x PBS2.2 + 2 x PBS2.1 + PBS2.0 + 1)�

• SAM: Enables triple sampling if set to 1. This is useful for low/medium speed buses to filter spikes on the

bus line.

15.5.3 Interrupt Management

The ESP32-S3 TWAI controller provides eight interrupts, each represented by a single bit in the

TWAI_INT_RAW_REG. For a particular interrupt to be triggered, the corresponding enable bit in TWAI_INT

ENA_REG must be set.

The TWAI controller provides the following interrupts:

• Receive Interrupt

• Transmit Interrupt

• Error Warning Interrupt

• Data Overrun Interrupt

• Error Passive Interrupt

• Arbitration Lost Interrupt

• Bus Error Interrupt

• Bus Status Interrupt

The TWAI controller’s interrupt signal to the interrupt matrix will be asserted whenever one or more interrupt bits

are set in the TWAI_INT_RAW_REG, and deasserted when all bits in TWAI_INT_RAW_REG are cleared. The

Espressif Systems 214
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

majority of interrupt bits in TWAI_INT_RAW_REG are automatically cleared when the register is read, except for

the Receive Interrupt which can only be cleared when all the messages are released by setting the

TWAI_RELEASE_BUF bit.

15.5.3.1 Receive Interrupt (RXI)

The Receive Interrupt (RXI) is asserted whenever the TWAI controller has received messages that are pending to

be read from the Receive Buffer (i.e., when TWAI_RX_MESSAGE_CNT_REG > 0). Pending received messages

includes valid messages in the Receive FIFO and also overrun messages. The RXI will not be deasserted until all

pending received messages are cleared using the TWAI_RELEASE_BUF command bit.

15.5.3.2 Transmit Interrupt (TXI)

The Transmit Interrupt (TXI) is triggered whenever Transmit Buffer becomes free, indicating another message can

be loaded into the Transmit Buffer to be transmitted. The Transmit Buffer becomes free under the following

scenarios:

• A message transmission has completed successfully, i.e., acknowledged without any errors. (Any failed

messages will automatically be resent.)

• A single shot transmission has completed (successfully or unsuccessfully, indicated by the

TWAI_TX_COMPLETE bit).

• A message transmission was aborted using the TWAI_ABORT_TX command bit.

15.5.3.3 Error Warning Interrupt (EWI)

The Error Warning Interrupt (EWI) is triggered whenever there is a change to the TWAI_ERR_ST and

TWAI_BUS_OFF_ST bits of the TWAI_STATUS_REG (i.e., transition from 0 to 1 or vice versa). Thus, an EWI

could indicate one of the following events, depending on the values TWAI_ERR_ST and TWAI_BUS_OFF_ST at

the moment when the EWI is triggered.

• If TWAI_ERR_ST = 0 and TWAI_BUS_OFF_ST = 0:

– If the TWAI controller was in the Error Active state, it indicates both the TEC and REC have returned

below the threshold value set by TWAI_ERR_WARNING_LIMIT_REG.

– If the TWAI controller was previously in the Bus Off Recovery state, it indicates that Bus Recovery has

completed successfully.

• If TWAI_ERR_ST = 1 and TWAI_BUS_OFF_ST = 0: The TEC or REC error counters have exceeded the

threshold value set by TWAI_ERR_WARNING_LIMIT_REG.

• If TWAI_ERR_ST = 1 and TWAI_BUS_OFF_ST = 1: The TWAI controller has entered the BUS_OFF state

(due to the TEC >= 256).

• If TWAI_ERR_ST = 0 and TWAI_BUS_OFF_ST = 1: The TWAI controller’s TEC has dropped below the

threshold value set by TWAI_ERR_WARNING_LIMIT_REG during BUS_OFF recovery.

15.5.3.4 Data Overrun Interrupt (DOI)

The Data Overrun Interrupt (DOI) is triggered whenever the Receive FIFO has overrun. The DOI indicates that the

Receive FIFO is full and should be cleared immediately to prevent any further overrun messages.

Espressif Systems 215
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

The DOI is only triggered by the first message that causes the Receive FIFO to overrun (i.e., the transition from

the Receive FIFO not being full to the Receive FIFO overrunning). Any subsequent overrun messages will not

trigger the DOI again. The DOI could be triggered again when all received messages (valid or overrun) have been

cleared.

15.5.3.5 Error Passive Interrupt (TXI)

The Error Passive Interrupt (EPI) is triggered whenever the TWAI controller switches from Error Active to Error

Passive, or vice versa.

15.5.3.6 Arbitration Lost Interrupt (ALI)

The Arbitration Lost Interrupt (ALI) is triggered whenever the TWAI controller is attempting to transmit a message

and loses arbitration. The bit position where the TWAI controller lost arbitration is automatically recorded in

Arbitration Lost Capture register (TWAI_ARB LOST CAP_REG). When the ALI occurs again, the Arbitration Lost

Capture register will no longer record new bit location until it is cleared (via reading this register through the

CPU).

15.5.3.7 Bus Error Interrupt (BEI)

The Bus Error Interrupt (BEI) is triggered whenever TWAI controller detects an error on the TWAI bus. When a

bus error occurs, the Bus Error type and its bit position are automatically recorded in the Error Code Capture

register (TWAI_ERR_CODE_CAP_REG). When the BEI occurs again, the Error Code Capture register will no

longer record new error information until it is cleared (via a read from the CPU).

15.5.3.8 Bus Status Interrupt (BSI)

The Bus Status Interrupt (BSI) is triggered whenever TWAI controller is switching between receive/transmit status

and idle status. When a BSI occurs, the current status of TWAI controller can be measured by reading

TWAI_RX_ST and TWAI_TX_ST in TWAI_STATUS_REG register.

15.5.4 Transmit and Receive Buffers

15.5.4.1 Overview of Buffers

Table 15­8. Buffer Layout for Standard Frame Format and Extended Frame Format

Standard Frame Format (SFF) Extended Frame Format (EFF)

TWAI Address Content TWAI Address Content

0x40 TX/RX frame information 0x40 TX/RX frame information

0x44 TX/RX identifier 1 0x44 TX/RX identifier 1

0x48 TX/RX identifier 2 0x48 TX/RX identifier 2

0x4c TX/RX data byte 1 0x4c TX/RX identifier 3

0x50 TX/RX data byte 2 0x50 TX/RX identifier 4

0x54 TX/RX data byte 3 0x54 TX/RX data byte 1

0x58 TX/RX data byte 4 0x58 TX/RX data byte 2

0x5c TX/RX data byte 5 0x5c TX/RX data byte 3

Espressif Systems 216
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Standard Frame Format (SFF) Extended Frame Format (EFF)

TWAI Address Content TWAI Address Content

0x60 TX/RX data byte 6 0x60 TX/RX data byte 4

0x64 TX/RX data byte 7 0x64 TX/RX data byte 5

0x68 TX/RX data byte 8 0x68 TX/RX data byte 6

0x6c reserved 0x6c TX/RX data byte 7

0x70 reserved 0x70 TX/RX data byte 8

Table 15-8 illustrates the layout of the Transmit Buffer and Receive Buffer registers. Both the Transmit and

Receive Buffer registers share the same address space and are only accessible when the TWAI controller is in

Operation Mode. CPU write operations access the Transmit Buffer registers, and CPU read operations access

the Receive Buffer registers. However, both buffers share the exact same register layout and fields to represent a

message (received or to be transmitted). The Transmit Buffer registers are used to configure a TWAI message to

be transmitted. The CPU would write to the Transmit Buffer registers specifying the message’s frame type, frame

format, frame ID, and frame data (payload). Once the Transmit Buffer is configured, the CPU would then initiate

the transmission by setting the TWAI_TX_REQ bit in TWAI_CMD_REG.

• For a self-reception request, set the TWAI_SELF_RX_REQ bit instead.

• For a single-shot transmission, set both the TWAI_TX_REQ and the TWAI_ABORT_TX simultaneously.

The Receive Buffer registers map the first message in the Receive FIFO. The CPU would read the Receive Buffer

registers to obtain the first message’s frame type, frame format, frame ID, and frame data (payload). Once the

message has been read from the Receive Buffer registers, the CPU can set the TWAI_RELEASE_BUF bit in

TWAI_CMD_REG to clear the Receive Buffer registers. If there are still messages in the Receive FIFO, the

Receive Buffer registers will map the first message again.

15.5.4.2 Frame Information

The frame information is one byte long and specifies a message’s frame type, frame format, and length of data.

The frame information fields are shown in Table 15-9.

Table 15­9. TX/RX Frame Information (SFF/EFF)�TWAI Address 0x40

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved FF1 RTR2 X3 X3 DLC.34 DLC.24 DLC.14 DLC.04

Notes:

1. FF: The Frame Format (FF) bit specifies whether the message is Extended Frame Format (EFF) or Standard

Frame Format (SFF). The message is EFF when FF bit is 1, and SFF when FF bit is 0.

2. RTR: The Remote Transmission Request (RTR) bit specifies whether the message is a data frame or a

remote frame. The message is a remote frame when the RTR bit is 1, and a data frame when the RTR bit is

0.

3. X: Don’t care, can be any value.

4. DLC: The Data Length Code (DLC) field specifies the number of data bytes for a data frame, or the number

of data bytes to request in a remote frame. TWAI data frames are limited to a maximum payload of 8 data

bytes, and thus the DLC should range anywhere from 0 to 8.

Espressif Systems 217
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

15.5.4.3 Frame Identifier

The Frame Identifier fields is two-byte (11-bit) long if the message is SFF, and four-byte (29-bit) long if the

message is EFF.

The Frame Identifier fields for an SFF (11-bit) message is shown in Table 15-10-15-11.

Table 15­10. TX/RX Identifier 1 (SFF); TWAI Address 0x44

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3

Table 15­11. TX/RX Identifier 2 (SFF); TWAI Address 0x48

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.2 ID.1 ID.0 X1 X2 X2 X2 X2

Notes:

1. Don’t care. Recommended to be compatible with receive buffer (i.e., set to RTR) in case of using the self

reception functionality (or together with self-test functionality).

2. Don’t care. Recommended to be compatible with receive buffer (i.e., set to 0) in case of using the self

reception functionality (or together with self-test functionality).

The Frame Identifier fields for an EFF (29-bits) message is shown in Table 15-12-15-15.

Table 15­12. TX/RX Identifier 1 (EFF); TWAI Address 0x44

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

Table 15­13. TX/RX Identifier 2 (EFF); TWAI Address 0x48

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

Table 15­14. TX/RX Identifier 3 (EFF); TWAI Address 0x4c

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

Table 15­15. TX/RX Identifier 4 (EFF); TWAI Address 0x50

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.4 ID.3 ID.2 ID.1 ID.0 X1 X2 X2

Notes:

1. Don’t care. Recommended to be compatible with receive buffer (i.e., set to RTR) in case of using the self

reception functionality (or together with self-test functionality).

Espressif Systems 218
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

2. Don’t care. Recommended to be compatible with receive buffer (i.e., set to 0) in case of using the self

reception functionality (or together with self-test functionality).

15.5.4.4 Frame Data

The Frame Data field contains the payloads of transmitted or received data frame, and can range from 0 to eight

bytes. The number of valid bytes should be equal to the DLC. However, if the DLC is larger than eight, the

number of valid bytes would still be limited to eight. Remote frames do not have data payloads, thus their Frame

Data fields will be unused.

For example, when transmitting a data frame with five bytes, the CPU should write five to the DLC field, and then

write data to the corresponding register of the first to the fifth data field. Likewise, when receiving a data frame

with a DLC of five data bytes, only the first to the fifth data byte will contain valid payload data for the CPU to

read.

15.5.5 Receive FIFO and Data Overruns

The Receive FIFO is a 64-byte internal buffer used to store received messages in First In First Out order. A single

received message can occupy between three to 13 bytes of space in the Receive FIFO, and their endianness is

identical to the register layout of the Receive Buffer registers. The Receive Buffer registers are mapped to the

bytes of the first message in the Receive FIFO.

When the TWAI controller receives a message, it will increment the value of TWAI_RX_MESSAGE_COUNTER up

to a maximum of 64. If there is adequate space in the Receive FIFO, the message contents will be written into

the Receive FIFO. Once a message has been read from the Receive Buffer, the TWAI_RELEASE_BUF bit should

be set. This will decrement TWAI_RX_MESSAGE_COUNTER and free the space occupied by the first message

in the Receive FIFO. The Receive Buffer will then map to the next message in the Receive FIFO.

A data overrun occurs when the TWAI controller receives a message, but the Receive FIFO lacks the adequate

free space to store the received message in its entirety (either due to the message contents being larger than the

free space in the Receive FIFO, or the Receive FIFO being completely full).

When a data overrun occurs:

• The free space left in the Receive FIFO is filled with the partial contents of the overrun message. If the

Receive FIFO is already full, then none of the overrun message’s contents will be stored.

• When data in the Receive FIFO overruns for the first time, a Data Overrun Interrupt will be triggered.

• Each overrun message will still increment the TWAI_RX_MESSAGE_COUNTER up to a maximum of 64.

• The RX FIFO will internally mark overrun messages as invalid. The TWAI_MISS_ST bit can be used to

determine whether the message currently mapped to by the Receive Buffer is valid or overrun.

To clear an overrun Receive FIFO, the TWAI_RELEASE_BUF must be called repeatedly until

TWAI_RX_MESSAGE_COUNTER is 0. This has the effect of freeing all valid messages in the Receive FIFO and

clearing all overrun messages.

The Acceptance Filter allows the TWAI controller to filter out received messages based on their ID (and optionally

their first data byte and frame type). Only accepted messages are passed on to the Receive FIFO. The use of

Acceptance Filters allows a more lightweight operation of the TWAI controller (e.g., less use of Receive FIFO,

fewer Receive Interrupts) since the TWAI Controller only need to handle a subset of messages.

Espressif Systems 219
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

The Acceptance Filter configuration registers can only be accessed whilst the TWAI controller is in Reset Mode,

since they share the same address spaces as the Transmit Buffer and Receive Buffer registers.

The configuration registers consist of a 32-bit Acceptance Code Value and a 32-bit Acceptance Mask Value. The

Acceptance Code value specifies a bit pattern which each filtered bit of the message must match in order for the

message to be accepted. The Acceptance Mask Value is able to mask out certain bits of the Code value (i.e., set

as “Don’t Care” bits). Each filtered bit of the message must either match the acceptance code or be masked in

order for the message to be accepted, as demonstrated in Figure 15-7.

Figure 15­7. Acceptance Filter

The TWAI controller Acceptance Filter allows the 32-bit Acceptance Code and Mask Values to either define a

single filter (i.e., Single Filter Mode), or two filters (i.e., Dual Filter Mode). How the Acceptance Filter interprets the

32-bit code and mask values is dependent on whether Single Filter Mode is enabled, and the received message

format (i.e., SFF or EFF).

15.5.5.1 Single Filter Mode

Single Filter Mode is enabled by setting the TWAI_RX_FILTER_MODE bit to 1. This will cause the 32-bit code and

mask values to define a single filter. The single filter can filter the following bits of a data or remote frame:

• SFF

– The entire 11-bit ID

– RTR bit

– Data byte 1 and Data byte 2

• EFF

– The entire 29-bit ID

– RTR bit

The following Figure 15-8 illustrates how the 32-bit code and mask values will be interpreted under Single Filter

Mode.

15.5.5.2 Dual FIlter Mode

Dual Filter Mode is enabled by clearing the TWAI_RX_FILTER_MODE bit to 0. This will cause the 32-bit code and

mask values to define a two separate filters referred to as filter 1 or filter 2. Under Dual Filter Mode, a message

will be accepted if it is accepted by one of the two filters.

The two filters can filter the following bits of a data or remote frame:

• SFF

– The entire 11-bit ID

Espressif Systems 220
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Figure 15­8. Single Filter Mode

– RTR bit

– Data byte 1 (for filter 1 only)

• EFF

– The first 16 bits of the 29-bit ID

The following Figure 15-9 illustrates how the 32-bit code and mask values will be interpreted in Dual Filter

Mode.

15.5.6 Error Management

The TWAI protocol requires that each TWAI node maintains the Transmit Error Count (TEC) and Receive Error

Count (REC). The value of both error counts determines the current error state of the TWAI controller (i.e., Error

Active, Error Passive, Bus-Off). The TWAI controller stores the TEC and REC values in the

TWAI_TX_ERR_CNT_REG and TWAI_RX_ERR_CNT_REG respectively, and they can be read by the CPU

anytime. In addition to the error states, the TWAI controller also offers an Error Warning Limit (EWL) feature that

can warn the user of the occurrence of severe bus errors before the TWAI controller enters the Error Passive

state.

The current error state of the TWAI controller is indicated via a combination of the following values and status bits:

TEC, REC, TWAI_ERR_ST, and TWAI_BUS_OFF_ST. Certain changes to these values and bits will also trigger

interrupts, thus allowing the users to be notified of error state transitions (see section 15.5.3). The following figure

15-10 shows the relation between the error states, values and bits, and error state related interrupts.

15.5.6.1 Error Warning Limit

The Error Warning Limit (EWL) feature is a configurable threshold value for the TEC and REC, which will trigger an

interrupt when exceeded. The EWL is intended to serve as a warning about severe TWAI bus errors, and is

triggered before the TWAI controller enters the Error Passive state. The EWL is configured in the

TWAI_ERR_WARNING_LIMIT_REG and can only be configured whilst the TWAI controller is in Reset Mode. The

TWAI_ERR_WARNING_LIMIT_REG has a default value of 96. When the values of TEC and/or REC are larger than

or equal to the EWL value, the TWAI_ERR_ST bit is immediately set to 1. Likewise, when the values of both the

Espressif Systems 221
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Figure 15­9. Dual Filter Mode

Figure 15­10. Error State Transition

TEC and REC are smaller than the EWL value, the TWAI_ERR_ST bit is immediately reset to 0. The Error Warning

Interrupt is triggered whenever the value of the TWAI_ERR_ST bit (or the TWAI_BUS_OFF_ST) changes.

Espressif Systems 222
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

15.5.6.2 Error Passive

The TWAI controller is in the Error Passive state when the TEC or REC value exceeds 127. Likewise, when both

the TEC and REC are less than or equal to 127, the TWAI controller enters the Error Active state. The Error

Passive Interrupt is triggered whenever the TWAI controller transitions from the Error Active state to the Error

Passive state or vice versa.

15.5.6.3 Bus­Off and Bus­Off Recovery

The TWAI controller enters the Bus-Off state when the TEC value exceeds 255. On entering the Bus-Off state,

the TWAI controller will automatically do the following:

• Set REC to 0

• Set TEC to 127

• Set the TWAI_BUS_OFF_ST bit to 1

• Enter Reset Mode

The Error Warning Interrupt is triggered whenever the value of the TWAI_BUS_OFF_ST bit (or the TWAI_ERR_ST

bit) changes.

To return to the Error Active state, the TWAI controller must undergo Bus-Off Recovery. Bus-Off Recovery

requires the TWAI controller to observe 128 occurrences of 11 consecutive recessive bits on the bus. To initiate

Bus-Off Recovery (after entering the Bus-Off state), the TWAI controller should enter Operation Mode by setting

the TWAI_RESET_MODE bit to 0. The TEC tracks the progress of Bus-Off Recovery by decrementing the TEC

each time when the TWAI controller observes 11 consecutive recessive bits. When Bus-Off Recovery has

completed (i.e., TEC has decremented from 127 to 0), the TWAI_BUS_OFF_ST bit will automatically be reset to

0, thus triggering the Error Warning Interrupt.

15.5.7 Error Code Capture

The Error Code Capture (ECC) feature allows the TWAI controller to record the error type and bit position of a

TWAI bus error in the form of an error code. Upon detecting a TWAI bus error, the Bus Error Interrupt is triggered

and the error code is recorded in the TWAI_ERR_CODE_CAP_REG. Subsequent bus errors will trigger the Bus

Error Interrupt, but their error codes will not be recorded until the current error code is read from the

TWAI_ERR_CODE_CAP_REG.

The following Table 15-16 shows the fields of the TWAI_ERR_CODE_CAP_REG:

Table 15­16. Bit Information of TWAI_ERR_CODE_CAP_REG (0x30)

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ERRC.11 ERRC.01 DIR2 SEG.43 SEG.33 SEG.23 SEG.13 SEG.03

Notes:

• ERRC: The Error Code (ERRC) indicates the type of bus error: 00 for bit error, 01 for format error, 10 for

stuff error, 11 for other types of error.

• DIR: The Direction (DIR) indicates whether the TWAI controller was transmitting or receiving when the bus

error occurred: 0 for transmitter, 1 for receiver.

• SEG: The Error Segment (SEG) indicates which segment of the TWAI message (i.e., bit position) the bus

Espressif Systems 223
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

error occurred at.

The following Table 15-17 shows how to interpret the SEG.0 to SEG.4 bits.

Table 15­17. Bit Information of Bits SEG.4 ­ SEG.0

Bit SEG.4 Bit SEG.3 Bit SEG.2 Bit SEG.1 Bit SEG.0 Description

0 0 0 1 1 start of frame

0 0 0 1 0 ID.28 ~ ID.21

0 0 1 1 0 ID.20 ~ ID.18

0 0 1 0 0 bit SRTR

0 0 1 0 1 bit IDE

0 0 1 1 1 ID.17 ~ ID.13

0 1 1 1 1 ID.12 ~ ID.5

0 1 1 1 0 ID.4 ~ ID.0

0 1 1 0 0 bit RTR

0 1 1 0 1 reserved bit 1

0 1 0 0 1 reserved bit 0

0 1 0 1 1 data length code

0 1 0 1 0 data field

0 1 0 0 0 CRC sequence

1 1 0 0 0 CRC delimiter

1 1 0 0 1 ACK slot

1 1 0 1 1 ACK delimiter

1 1 0 1 0 end of frame

1 0 0 1 0 intermission

1 0 0 0 1 active error flag

1 0 1 1 0 passive error flag

1 0 0 1 1 tolerate dominant bits

1 0 1 1 1 error delimiter

1 1 1 0 0 overload flag

Notes:

• Bit SRTR: under Standard Frame Format.

• Bit IDE: Identifier Extension Bit, 0 for Standard Frame Format.

15.5.8 Arbitration Lost Capture

The Arbitration Lost Capture (ALC) feature allows the TWAI controller to record the bit position where it loses

arbitration. When the TWAI controller loses arbitration, the bit position is recorded in the TWAI_ARB LOST

CAP_REG and the Arbitration Lost Interrupt is triggered.

Subsequent loses in arbitration will trigger the Arbitration Lost Interrupt, but will not be recorded in the TWAI_ARB

LOST CAP_REG until the current Arbitration Lost Capture is read from the TWAI_ERR_CODE_CAP_REG.

Table 15-18 illustrates bits and fields of the TWAI_ERR_CODE_CAP_REG whilst Figure 15-11 illustrates the bit

positions of a TWAI message.

Espressif Systems 224
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Table 15­18. Bit Information of TWAI_ARB LOST CAP_REG (0x2c)

Bit 31-5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved BITNO.41 BITNO.31 BITNO.21 BITNO.11 BITNO.01

Notes:

• BITNO: Bit Number (BITNO) indicates the nth bit of a TWAI message where arbitration was lost.

Figure 15­11. Positions of Arbitration Lost Bits

Espressif Systems 225
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

15.6 Register Summary

’|’ here means separate line. The left describes the access in Operation Mode. The right belongs to Reset Mode.

The addresses in this section are relative to the [Two-wire Automotive Interface] base address provided in Table

1-4 in Chapter 1 System and Memory.

Name Description Address Access

Configuration Registers

TWAI_MODE_REG Mode Register 0x0000 R/W

TWAI_BUS_TIMING_0_REG Bus Timing Register 0 0x0018 RO | R/W

TWAI_BUS_TIMING_1_REG Bus Timing Register 1 0x001C RO | R/W

TWAI_ERR_WARNING_LIMIT_REG Error Warning Limit Register 0x0034 RO | R/W

TWAI_DATA_0_REG Data Register 0 0x0040 WO | R/W

TWAI_DATA_1_REG Data Register 1 0x0044 WO | R/W

TWAI_DATA_2_REG Data Register 2 0x0048 WO | R/W

TWAI_DATA_3_REG Data Register 3 0x004C WO | R/W

TWAI_DATA_4_REG Data Register 4 0x0050 WO | R/W

TWAI_DATA_5_REG Data Register 5 0x0054 WO | R/W

TWAI_DATA_6_REG Data Register 6 0x0058 WO | R/W

TWAI_DATA_7_REG Data Register 7 0x005C WO | R/W

TWAI_DATA_8_REG Data Register 8 0x0060 WO | RO

TWAI_DATA_9_REG Data Register 9 0x0064 WO | RO

TWAI_DATA_10_REG Data Register 10 0x0068 WO | RO

TWAI_DATA_11_REG Data Register 11 0x006C WO | RO

TWAI_DATA_12_REG Data Register 12 0x0070 WO | RO

TWAI_CLOCK_DIVIDER_REG Clock Divider Register 0x007C varies

Contro Registers

TWAI_CMD_REG Command Register 0x0004 WO

Status Register

TWAI_STATUS_REG Status Register 0x0008 RO

TWAI_ARB LOST CAP_REG Arbitration Lost Capture Register 0x002C RO

TWAI_ERR_CODE_CAP_REG Error Code Capture Register 0x0030 RO

TWAI_RX_ERR_CNT_REG Receive Error Counter Register 0x0038 RO | R/W

TWAI_TX_ERR_CNT_REG Transmit Error Counter Register 0x003C RO | R/W

TWAI_RX_MESSAGE_CNT_REG Receive Message Counter Register 0x0074 RO

Interrupt Registers

TWAI_INT_RAW_REG Interrupt Register 0x000C RO

TWAI_INT ENA_REG Interrupt Enable Register 0x0010 R/W

Espressif Systems 226
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

15.7 Registers

’|’ here means separate line. The left describes the access in Operation Mode. The right belongs to Reset Mode

with red color. The addresses in this section are relative to the Two-wire Automotive Interface base address

provided in Table 1-4 in Chapter 1 System and Memory.

Register 15.1. TWAI_MODE_REG (0x0000)

(re
se

rve
d)

0 0

31 4

TW
AI_R

X_
FIL

TE
R_M

ODE

0

3

TW
AI_S

ELF
_T

EST_
M

ODE

0

2

TW
AI_L

IS
TE

N_O
NLY

_M
ODE

0

1

TW
AI_R

ESET_
M

ODE

1

0

Reset

TWAI_RESET_MODE This bit is used to configure the operation mode of the TWAI Controller. 1:

Reset mode; 0: Operation mode (R/W)

TWAI_LISTEN_ONLY_MODE 1: Listen only mode. In this mode the nodes will only receive messages

from the bus, without generating the acknowledge signal nor updating the RX error counter. (R/W)

TWAI_SELF_TEST_MODE 1: Self test mode. In this mode the TX nodes can perform a successful

transmission without receiving the acknowledge signal. This mode is often used to test a single

node with the self reception request command. (R/W)

TWAI_RX_FILTER_MODE This bit is used to configure the filter mode. 0: Dual filter mode; 1: Single

filter mode (R/W)

Register 15.2. TWAI_BUS_TIMING_0_REG (0x0018)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

TW
AI_S

YNC_J
UM

P_W
ID

TH

0x0

15 14

(re
se

rve
d)

0x0

13

TW
AI_B

AUD_P
RESC

0x00

12 0

Reset

TWAI_BAUD_PRESC Baud Rate Prescaler value, determines the frequency dividing ratio. (RO | R/W)

TWAI_SYNC_JUMP_WIDTH Synchronization Jump Width (SJW), 1 ~ 14 Tq wide. (RO | R/W)

Espressif Systems 227
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Register 15.3. TWAI_BUS_TIMING_1_REG (0x001C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

IM
E_S

AM
P

0

7

TW
AI_T

IM
E_S

EG2

0x0

6 4

TW
AI_T

IM
E_S

EG1

0x0

3 0

Reset

TWAI_TIME_SEG1 The width of PBS1. (RO | R/W)

TWAI_TIME_SEG2 The width of PBS2. (RO | R/W)

TWAI_TIME_SAMP The number of sample points. 0: the bus is sampled once; 1: the bus is sampled

three times (RO | R/W)

Register 15.4. TWAI_ERR_WARNING_LIMIT_REG (0x0034)

(re
se

rve
d)

0 0

31 8

TW
AI_E

RR_W
ARNIN

G_L
IM

IT

0x60

7 0

Reset

TWAI_ERR_WARNING_LIMIT Error warning threshold. In the case when any of an error counter

value exceeds the threshold, or all the error counter values are below the threshold, an error warning

interrupt will be triggered (given the enable signal is valid). (RO | R/W)

Espressif Systems 228
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Register 15.5. TWAI_DATA_0_REG (0x0040)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_0
| T

W
AI_A

CCEPTA
NCE_C

ODE_0

0x0

7 0

Reset

TWAI_TX_BYTE_0 Stored the 0th byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_CODE_0 Stored the 0th byte of the filter code in reset mode. (R/W)

Register 15.6. TWAI_DATA_1_REG (0x0044)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_1
| T

W
AI_A

CCEPTA
NCE_C

ODE_1

0x0

7 0

Reset

TWAI_TX_BYTE_1 Stored the 1st byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_CODE_1 Stored the 1st byte of the filter code in reset mode. (R/W)

Espressif Systems 229
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Register 15.7. TWAI_DATA_2_REG (0x0048)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_2
| T

W
AI_A

CCEPTA
NCE_C

ODE_2

0x0

7 0

Reset

TWAI_TX_BYTE_2 Stored the 2nd byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_CODE_2 Stored the 2nd byte of the filter code in reset mode. (R/W)

Register 15.8. TWAI_DATA_3_REG (0x004C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_3
| T

W
AI_A

CCEPTA
NCE_C

ODE_3

0x0

7 0

Reset

TWAI_TX_BYTE_3 Stored the 3rd byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_CODE_3 Stored the 3rd byte of the filter code in reset mode. (R/W)

Espressif Systems 230
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Register 15.9. TWAI_DATA_4_REG (0x0050)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_4
| T

W
AI_A

CCEPTA
NCE_M

ASK_0

0x0

7 0

Reset

TWAI_TX_BYTE_4 Stored the 4th byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_MASK_0 Stored the 0th byte of the filter code in reset mode. (R/W)

Register 15.10. TWAI_DATA_5_REG (0x0054)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_5
| T

W
AI_A

CCEPTA
NCE_M

ASK_1

0x0

7 0

Reset

TWAI_TX_BYTE_5 Stored the 5th byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_MASK_1 Stored the 1st byte of the filter code in reset mode. (R/W)

Espressif Systems 231
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Register 15.11. TWAI_DATA_6_REG (0x0058)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_6
| T

W
AI_A

CCEPTA
NCE_M

ASK_2

0x0

7 0

Reset

TWAI_TX_BYTE_6 Stored the 6th byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_MASK_2 Stored the 2nd byte of the filter code in reset mode. (R/W)

Register 15.12. TWAI_DATA_7_REG (0x005C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_7
| T

W
AI_A

CCEPTA
NCE_M

ASK_3

0x0

7 0

Reset

TWAI_TX_BYTE_7 Stored the 7th byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_MASK_3 Stored the 3rd byte of the filter code in reset mode. (R/W)

Espressif Systems 232
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Register 15.13. TWAI_DATA_8_REG (0x0060)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_8

0x0

7 0

Reset

TWAI_TX_BYTE_8 Stored the 8th byte information of the data to be transmitted in operation mode.

(WO)

Register 15.14. TWAI_DATA_9_REG (0x0064)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_9

0x0

7 0

Reset

TWAI_TX_BYTE_9 Stored the 9th byte information of the data to be transmitted in operation mode.

(WO)

Register 15.15. TWAI_DATA_10_REG (0x0068)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_1
0

0x0

7 0

Reset

TWAI_TX_BYTE_10 Stored the 10th byte information of the data to be transmitted in operation mode.

(WO)

Espressif Systems 233
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Register 15.16. TWAI_DATA_11_REG (0x006C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_1
1

0x0

7 0

Reset

TWAI_TX_BYTE_11 Stored the 11th byte information of the data to be transmitted in operation mode.

(WO)

Register 15.17. TWAI_DATA_12_REG (0x0070)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_1
2

0x0

7 0

Reset

TWAI_TX_BYTE_12 Stored the 12th byte information of the data to be transmitted in operation mode.

(WO)

Register 15.18. TWAI_CLOCK_DIVIDER_REG (0x007C)

(re
se

rve
d)

0 0

31 9

TW
AI_C

LO
CK_O

FF

0

8

TW
AI_C

D

0x0

7 0

Reset

TWAI_CD These bits are used to configure the divisor of the external CLKOUT pin. (R/W)

TWAI_CLOCK_OFF This bit can be configured in reset mode. 1: Disable the external CLKOUT pin;

0: Enable the external CLKOUT pin (RO | R/W)

Espressif Systems 234
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Register 15.19. TWAI_CMD_REG (0x0004)

(re
se

rve
d)

0 0

31 5

TW
AI_S

ELF
_R

X_
REQ

0

4

TW
AI_C

LR
_O

VERRUN

0

3

TW
AI_R

ELE
ASE_B

UF

0

2

TW
AI_A

BORT_
TX

0

1

TW
AI_T

X_
REQ

0

0

Reset

TWAI_TX_REQ Set the bit to 1 to drive nodes to start transmission. (WO)

TWAI_ABORT_TX Set the bit to 1 to cancel a pending transmission request. (WO)

TWAI_RELEASE_BUF Set the bit to 1 to release the RX buffer. (WO)

TWAI_CLR_OVERRUN Set the bit to 1 to clear the data overrun status bit. (WO)

TWAI_SELF_RX_REQ Self reception request command. Set the bit to 1 to allow a message be

transmitted and received simultaneously. (WO)

Register 15.20. TWAI_STATUS_REG (0x0008)

(re
se

rve
d)

0 0

31 9

TW
AI_M

IS
S_S

T

0

8

TW
AI_B

US_O
FF

_S
T

0

7

TW
AI_E

RR_S
T

0

6

TW
AI_T

X_
ST

0

5

TW
AI_R

X_
ST

0

4

TW
AI_T

X_
COM

PLE
TE

1

3

TW
AI_T

X_
BUF_

ST

1

2

TW
AI_O

VERRUN_S
T

0

1

TW
AI_R

X_
BUF_

ST

0

0

Reset

TWAI_RX_BUF_ST 1: The data in the RX buffer is not empty, with at least one received data packet.

(RO)

TWAI_OVERRUN_ST 1: The RX FIFO is full and data overrun has occurred. (RO)

TWAI_TX_BUF_ST 1: The TX buffer is empty, the CPU may write a message into it. (RO)

TWAI_TX_COMPLETE 1: The TWAI controller has successfully received a packet from the bus. (RO)

TWAI_RX_ST 1: The TWAI Controller is receiving a message from the bus. (RO)

TWAI_TX_ST 1: The TWAI Controller is transmitting a message to the bus. (RO)

TWAI_ERR_ST 1: At least one of the RX/TX error counter has reached or exceeded the value set in

register TWAI_ERR_WARNING_LIMIT_REG. (RO)

TWAI_BUS_OFF_ST 1: In bus-off status, the TWAI Controller is no longer involved in bus activities.

(RO)

TWAI_MISS_ST This bit reflects whether the data packet in the RX FIFO is complete. 1: The current

packet is missing; 0: The current packet is complete (RO)

Espressif Systems 235
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Register 15.21. TWAI_ARB LOST CAP_REG (0x002C)

(re
se

rve
d)

0 0

31 5

TW
AI_A

RB_L
OST_

CAP

0x0

4 0

Reset

TWAI_ARB_LOST_CAP This register contains information about the bit position of lost arbitration.

(RO)

Register 15.22. TWAI_ERR_CODE_CAP_REG (0x0030)

(re
se

rve
d)

0 0

31 8

TW
AI_E

CC_T
YPE

0x0

7 6

TW
AI_E

CC_D
IR

ECTIO
N

0

5

TW
AI_E

CC_S
EGM

ENT

0x0

4 0

Reset

TWAI_ECC_SEGMENT This register contains information about the location of errors, see Table 15-

16 for details. (RO)

TWAI_ECC_DIRECTION This register contains information about transmission direction of the node

when error occurs. 1: Error occurs when receiving a message; 0: Error occurs when transmitting

a message (RO)

TWAI_ECC_TYPE This register contains information about error types: 00: bit error; 01: form error;

10: stuff error; 11: other type of error (RO)

Register 15.23. TWAI_RX_ERR_CNT_REG (0x0038)

(re
se

rve
d)

0 0

31 8

TW
AI_R

X_
ERR_C

NT

0x0

7 0

Reset

TWAI_RX_ERR_CNT The RX error counter register, reflects value changes in reception status. (RO |

R/W)

Espressif Systems 236
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Register 15.24. TWAI_TX_ERR_CNT_REG (0x003C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
ERR_C

NT

0x0

7 0

Reset

TWAI_TX_ERR_CNT The TX error counter register, reflects value changes in transmission status. (RO

| R/W)

Register 15.25. TWAI_RX_MESSAGE_CNT_REG (0x0074)

(re
se

rve
d)

0 0

31 7

TW
AI_R

X_
M

ESSAGE_C
OUNTE

R

0x0

6 0

Reset

TWAI_RX_MESSAGE_COUNTER This register reflects the number of messages available within the

RX FIFO. (RO)

Espressif Systems 237
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Register 15.26. TWAI_INT_RAW_REG (0x000C)

(re
se

rve
d)

0 0

31 9

TW
AI_B

US_S
TA

TE
_IN

T_
ST

0

8

TW
AI_B

US_E
RR_IN

T_
ST

0

7

TW
AI_A

RB_L
OST_

IN
T_

ST

0

6

TW
AI_E

RR_P
ASSIVE_IN

T_
ST

0

5

(re
se

rve
d)

0

4

TW
AI_O

VERRUN_IN
T_

ST

0

3

TW
AI_E

RR_W
ARN_IN

T_
ST

0

2

TW
AI_T

X_
IN

T_
ST

0

1

TW
AI_R

X_
IN

T_
ST

0

0

Reset

TWAI_RX_INT_ST Receive interrupt. If this bit is set to 1, it indicates there are messages to be

handled in the RX FIFO. (RO)

TWAI_TX_INT_ST Transmit interrupt. If this bit is set to 1, it indicates the message transmission is

finished and a new transmission is able to start. (RO)

TWAI_ERR_WARN_INT_ST Error warning interrupt. If this bit is set to 1, it indicates the error status

signal and the bus-off status signal of Status register have changed (e.g., switched from 0 to 1 or

from 1 to 0). (RO)

TWAI_OVERRUN_INT_ST Data overrun interrupt. If this bit is set to 1, it indicates a data overrun

interrupt is generated in the RX FIFO. (RO)

TWAI_ERR_PASSIVE_INT_ST Error passive interrupt. If this bit is set to 1, it indicates the TWAI

Controller is switched between error active status and error passive status due to the change of

error counters. (RO)

TWAI_ARB_LOST_INT_ST Arbitration lost interrupt. If this bit is set to 1, it indicates an arbitration

lost interrupt is generated. (RO)

TWAI_BUS_ERR_INT_ST Error interrupt. If this bit is set to 1, it indicates an error is detected on the

bus. (RO)

TWAI_BUS_STATE_INT_ST Bus state interrupt. If this bit is set to 1, it indicates the status of TWAI

controller has changed. (RO)

Espressif Systems 238
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

15 Two-wire Automotive Interface® (TWAI)

Register 15.27. TWAI_INT ENA_REG (0x0010)

(re
se

rve
d)

0 0

31 9

TW
AI_B

US_S
TA

TE
_IN

T_
ENA

0

8

TW
AI_B

US_E
RR_IN

T_
ENA

0

7

TW
AI_A

RB_L
OST_

IN
T_

ENA

0

6

TW
AI_E

RR_P
ASSIVE_IN

T_
ENA

0

5

(re
se

rve
d)

0

4

TW
AI_O

VERRUN_IN
T_

ENA

0

3

TW
AI_E

RR_W
ARN_IN

T_
ENA

0

2

TW
AI_T

X_
IN

T_
ENA

0

1

TW
AI_R

X_
IN

T_
ENA

0

0

Reset

TWAI_RX_INT_ENA Set this bit to 1 to enable receive interrupt. (R/W)

TWAI_TX_INT_ENA Set this bit to 1 to enable transmit interrupt. (R/W)

TWAI_ERR_WARN_INT_ENA Set this bit to 1 to enable error warning interrupt. (R/W)

TWAI_OVERRUN_INT_ENA Set this bit to 1 to enable data overrun interrupt. (R/W)

TWAI_ERR_PASSIVE_INT_ENA Set this bit to 1 to enable error passive interrupt. (R/W)

TWAI_ARB_LOST_INT_ENA Set this bit to 1 to enable arbitration lost interrupt. (R/W)

TWAI_BUS_ERR_INT_ENA Set this bit to 1 to enable bus error interrupt. (R/W)

TWAI_BUS_STATE_INT_ENA Set this bit to 1 to enable bus state interrupt. (R/W)

Espressif Systems 239
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

16 USB On­The­Go (USB)

16.1 Overview

The ESP32-S3 features a USB On-The-Go peripheral (henceforth referred to as OTG_FS) along with an

integrated transceiver. The OTG_FS can operate as either a USB Host or Device and supports 12 Mbit/s

full-speed (FS) and 1.5 Mbit/s low-speed (LS) data rates of the USB1.1 specification. The Host Negotiation

Protocol (HNP) and the Session Request Protocol (SRP) are also supported.

16.2 Features

16.2.1 General Features

• FS and LS data rates

• HNP and SRP as A-device or B-device

• Dynamic FIFO (DFIFO) sizing

• Multiple modes of memory access

– Scatter/Gather DMA mode

– Buffer DMA mode

– Slave mode

• Can choose integrated transceiver or external transceiver

• Utilizing integrated transceiver with USB Serial/JTAG by time-division multiplexing when only integrated

transceiver is used

• Support USB OTG using one of the transceivers while USB Serial/JTAG using the other one when both

integrated transceiver or external transceiver are used

• Can be used as a light sleep wake-up source

16.2.2 Device Mode Features

• Endpoint number 0 always present (bi-directional, consisting of EP0 IN and EP0 OUT)

• Six additional endpoints (endpoint numbers 1 to 6), configurable as IN or OUT

• Maximum of five IN endpoints concurrently active at any time (including EP0 IN)

• All OUT endpoints share a single RX FIFO

• Each IN endpoint has a dedicated TX FIFO

16.2.3 Host Mode Features

• Eight channels (pipes)

– A control pipe consists of two channels (IN and OUT), as IN and OUT transactions must be handled

separately. Only Control transfer type is supported.

Espressif Systems 240
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

– Each of the other seven channels is dynamically configurable to be IN or OUT, and supports Bulk,

Isochronous, and Interrupt transfer types.

• All channels share an RX FIFO, non-periodic TX FIFO, and periodic TX FIFO. The size of each FIFO is

configurable.

16.3 Functional Description

16.3.1 Controller Core and Interfaces

Figure 16­1. OTG_FS System Architecture

The core part of the OTG_FS peripheral is the USB Controller Core. The controller core has the following

interfaces (see Figure 16-1):

• CPU Interface

Provides the CPU with read/write access to the controller core’s various registers and FIFOs. This interface

is internally implemented as an AHB Slave Interface. The way to access the FIFOs through the CPU

interface is called Slave mode.

• APB Interface

Allows the CPU to control the USB controller core via the USB external controller.

• DMA Interface

Provides the controller core’s internal DMA with read/write access to system memory (e.g., fetching and

writing data payloads when operating in DMA mode). This interface is internally implemented as an AHB

Master interface.

• USB1.1 Interface

This interface is used to connect the controller core to a USB1.1 FS serial transceiver. Aside from USB

OTG, ESP32-S3 also includes a USB Serial/JTAG controller (see Chapter 20 USB Serial/JTAG Controller

(USB_SERIAL_JTAG) [to be added later]). These two USB controllers can utilize the integrated internal

transceiver by time-division multiplexing or one USB controller connects to internal transceiver and the

other one connects to an external transceiver.

When only internal transceiver is used, it is shared by USB OTG and USB Serial/JTAG. In default, internal

transceiver is connected to USB Serial/JTAG. When RTC_CNTL_SW _HW_USB_PHY_SEL_CFG is 0, the

connection of internal transceiver is controlled by efuse bit EFUSE_USB_PHY_SEL. When

EFUSE_USB_PHY_SEL is 0, internal transceiver is connected with USB Serial/JTAG. Otherwise, it is

Espressif Systems 241
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

connected to USB OTG. When RTC_CNTL_SW _HW_USB_PHY_SEL_CFG is 1, the connection switching

is controlled by RTC_CNTL_SW _USB_PHY_SEL_CFG(it has the same meaning with

EFUSE_USB_PHY_SEL).

When both internal transceiver and external transceiver are used, one USB controller select one of

transceivers, the other would select the other transceiver. The specific connection mapping please refer to

Chapter 20 USB Serial/JTAG Controller (USB_SERIAL_JTAG) [to be added later].

• USB External Controller

The USB External Controller is primarily used to control the routing of the USB1.1 FS serial interface to

either the internal or external transceiver. The External Controller can also enable a power saving mode by

gating the controller core’s clock (AHB clock) or powering down the connected SPRAM. Note that this

power saving mode is different for the power savings via SRP.

• Data FIFO RAM Interface

The multiple FIFOs used by the controller core are not actually located within the controller core itself, but

on the SPRAM (Single-Port RAM). FIFOs are dynamically sized, thus are allocated at run-time in the

SPRAM. When the CPU, DMA, or the controller core attempts to read/write to FIFOs, those accesses are

routed through the data FIFO RAM interface.

16.3.2 Memory Layout

The following diagram illustrates the memory layout of the OTG_FS registers which are used to configure and

control the USB Controller Core. Note that USB External Controller uses a separate set of registers (called wrap

registers).

Figure 16­2. OTG_FS Register Layout

Espressif Systems 242
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

16.3.2.1 Control & Status Registers

• Global CSRs

These registers are responsible for the configuration/control/status of the global features of OTG_FS (i.e.,

features which are common to both Host and Device modes). These features include OTG control (HNP,

SRP, and A/B-device detection), USB configuration (selecting Host or Device mode and PHY selection),

and system-level interrupts. Software can access these registers whilst in Host or Device modes.

• Host Mode CSRs

These registers are responsible for the configuration/control/status when operating in Host mode, thus

should only be accessed when operating in Host mode. Each channel will have its own set of registers

within the Host mode CSRs.

• Device Mode CSRs

These registers are responsible for the configuration/control/status when operating in Device mode, thus

should only be accessed when operating in Device mode. Each Endpoint will have its own set of registers

within the Device mode CSRs.

• Power and Clock Gating

A single register used to control power-down and gate various clocks.

16.3.2.2 FIFO Access

The OTG_FS makes use of multiple FIFOs to buffer transmitted or received data payloads. The number and type

of FIFOs are dependent on Host or Device mode, and the number of channels or endpoints used (see Section

16.3.3). There are two ways to access the FIFOs: DMA mode and Slave mode. When using Slave mode, the

CPU will need to access to these FIFOs by reading and writing to either the DFIFO push/pop regions or the

DFIFO read/write debug region. FIFO access is governed by the following rules:

• Read access to any address in any one of the 4 KB push/pop regions will result in a pop from the shared

RX FIFO.

• Write access to a particular 4 KB push/pop region will result in a push to the corresponding endpoint or

channel’s TX FIFO given that the endpoint is an IN endpoint, or the channel is an OUT channel.

– In Device mode, data is pushed to the corresponding IN endpoint’s dedicated TX FIFO.

– In Host mode, data is pushed to the non-periodic TX FIFO or the periodic TX FIFO depending on

whether the channel is a non-periodic channel, or a periodic channel.

• Access to the 128 KB read/write region will result in direct read/write instead of a push/pop. This is

generally used for debugging purposes only.

Note that pushing and popping data to and from the FIFOs by the CPU is only required when operating in Slave

mode. When operating in DMA mode, the internal DMA will handle all pushing/popping of data to and from the

TX and RX FIFOs.

16.3.3 FIFO and Queue Organization

The FIFOs in OTG_FS are primarily used to hold data packet payloads (the data field of USB Data packets). TX

FIFOs are used to store data payloads that will be transmitted by OUT transactions in Host mode or IN

transactions in Device mode. RX FIFOs are used to store received data payloads of IN transactions in Host mode

Espressif Systems 243
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

or OUT transactions in Device mode. In addition to storing data payloads, RX FIFOs also store a status entry for

each data payload. Each status entry contains information about a data payload such as channel number, byte

count, and validity status. When operating in slave mode, status entries are also used to indicate various channel

events.

The portion of SPRAM that can be used for FIFO allocation has a depth of 256 and a width of 35 bits (32 data

bits plus 3 control bits). The multiple FIFOs used by each channel (in Host mode) or endpoint (in Device mode)

are allocated into the SPRAM and can be dynamically sized.

16.3.3.1 Host Mode FIFOs and Queues

The following FIFOs are used when operating in Host mode (see Figure 16-3):

• Non­periodic TX FIFO: Stores data payloads of bulk and control OUT transactions for all channels.

• Periodic TX FIFO: Stores data payloads of interrupt or isochronous OUT transactions for all channels.

• RX FIFO: Stores data payloads of all IN transactions, and status entries that are used to indicate size of

data payloads and transaction/channel events such as transfer complete or channel halted.

Figure 16­3. Host Mode FIFOs

In addition to FIFOs, Host mode also contains two request queues used to queue up the various transaction

request from the multiple channels. Each entry in a request queue holds the IN/OUT channel number along with

other information to perform the transaction (such as transaction type). Request queues are also used to queue

other types of requests such as a channel halt request.

Unlike FIFOs, request queues are fixed in size and cannot be accessed directly by software. Rather, once a

channel is enabled, requests will be automatically written to the request queue by the Host core. The order in

which the requests are written into the queue determines the sequence of transactions on the USB.

Host mode contains the following request queues:

• Non­periodic request queue: Request queue for all non-periodic channels (bulk and control). The queue

has a depth of four entries.

Espressif Systems 244
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

• Periodic request queue: Request queue for all periodic channels (interrupt and isochronous). The queue

has a depth of eight entries.

When scheduling transactions, hardware will execute all requests on the periodic request queue first before

executing requests on the non-periodic request queue.

16.3.3.2 Device Mode FIFOs

Figure 16­4. Device Mode FIFOs

The following FIFOs are used when operating in Device mode (See Figure 16-4):

• RX FIFO: Stores data payloads received in Data packet, and status entries (used to indicate size of those

data payloads).

• Dedicated TX FIFO: Each active IN endpoint will have a dedicated TX FIFO used to store all IN data

payloads of that endpoint, regardless of the transaction type (both periodic and non-periodic IN

transactions).

Due to the dedicated FIFOs, Device mode does not use any request queues. Instead, the order of IN

transactions are determined by the Host.

16.3.4 Interrupt Hierarchy

OTG_FS provides a single interrupt line which can be routed via the interrupt matrix to one of the CPUs. The

interrupt signal can be unmasked by setting USB_GLBLINTRMSK. The OTG_FS interrupt is an OR of all bits in

the USB_GINTSTS_REG register, and the bits in USB_GINTSTS_REG can be unmasked by setting the

corresponding bits in the USB_GINTMSK_REG register. USB_GINTSTS_REG contains system level interrupts,

Espressif Systems 245
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

and also specific bits for Host or Device mode interrupts, and OTG specific interrupts. OTG_FS interrupt sources

are organized as Figure 16-5 shows.

The following bits of the USB_GINTSTS_REG register indicate an interrupt source lower in the hierarchy:

• USB_PRTINT indicates that the Host port has a pending interrupt. The USB_HPRT_REG register indicates

the interrupt source.

• USB_HCHINT indicates that one or more Host channels have a pending interrupt. Read the

USB_HAINT_REG register to determine which channel(s) have a pending interrupt, then read the pending

channel’s USB_HCINTn_REG register to determine the interrupt source.

• USB_OEPINT indicates that one or more OUT endpoints have a pending interrupt. Read the

USB_DAINT_REG register to determine which OUT endpoint(s) have a pending interrupt, then read the

USB_DOEPINTn_REG register to determine the interrupt source.

• USB_IEPINT indicates that one or more IN endpoints have a pending interrupt. Read the

USB_DAINT_REG register to determine which IN endpoint(s) are pending, then read the pending IN

endpoint’s USB_DIEPINTn_REG register to determine the interrupt source.

• USB_OTGINT indicates an On-The-Go event has triggered an interrupt. Read the USB_GOTGINT_REG

register to determine which OTG event(s) triggered the interrupt.

Figure 16­5. OTG_FS Interrupt Hierarchy

Espressif Systems 246
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

16.3.5 DMA Modes and Slave Mode

USB On-The-Go supports three ways to access memory: Scatter/Gather DMA mode, Buffer DMA mode, and

Slave mode.

16.3.5.1 Slave Mode

When operating in Slave mode, all data payloads must be pushed/popped to and from the FIFOs by the

CPU.

• When transmitting a packet using IN endpoints or OUT channels, the data payload must be pushed into

the corresponding endpoint or channel’s TX FIFO.

• When receiving a packet, the packet’s status entry must first be popped off the RX FIFO by reading

USB_GRXSTSP_REG. The status entry should be used to determine the length of the packet’s payload (in

bytes). The corresponding number of bytes must then be manually popped off the RX FIFO by reading from

the RX FIFO’s memory region.

16.3.5.2 Buffer DMA Mode

Buffer mode is similar to Slave mode but utilizes the internal DMA to push and pop data payloads to the

FIFOs.

• When transmitting a packet using IN endpoints or OUT channels, the data payload’s address in memory

should be written to the USB_HCDMAn_REG (in Host mode) or USB_DOEPDMAn_REG (in Device mode)

registers. When the endpoint or channel is enabled, the internal DMA will push the data payload from

memory into the TX FIFO of the channel or endpoint.

• When receiving a packet using OUT endpoints or IN channels, the address of an empty buffer in memory

should be written to the USB_HCDMAn_REG (in Host mode) or USB_DOEPDMAn_REG (in Device mode)

registers. When the endpoint or channel is enabled, the internal DMA will pop the data payload from RX

FIFO into the buffer.

16.3.5.3 Scatter/Gather DMA Mode

Figure 16­6. Scatter/Gather DMA Descriptor List

Espressif Systems 247
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

When operating in Scatter/Gather DMA mode, buffers containing data payloads can be scattered throughout

memory. Each endpoint or channel will have a contiguous DMA descriptor list, where each descriptor contains a

32-bit pointer to the data payload or buffer and a 32-bit buffer descriptor (BufferStatus Quadlet). The data

payloads and buffers can correspond to a single transaction (i.e., < 1 MPS bytes) or an entire transfer (> 1 MPS

bytes). (MPS: maximum packet size) The list is implemented as a ring buffer meaning that the DMA will return to

the first entry when it encounters the last entry on the list.

• When transmitting a transfer/transaction using IN endpoints or OUT channels, the DMA will gather the data

payloads from the multiple buffers and push them into a TX FIFO.

• When receiving a transfer/transaction using OUT endpoints or IN channels, the DMA will pop the received

data payloads from the RX FIFO and scatter them to the multiple buffers pointed to by the DMA list entries.

16.3.6 Transaction and Transfer Level Operation

When operating in either Host or Device mode, communication can operate either at the transaction level or the

transfer level.

16.3.6.1 Transaction and Transfer Level in DMA Mode

When operating at the transfer level in DMA Host mode, software is interrupted only when a channel has been

halted. Channels are halted when their programmed transfer size has completed successfully, has received a

STALL, or if there are excessive transaction errors (i.e., 3 consecutive transaction errors). When operating in DMA

Device mode, all errors are handled by the controller core itself.

When operating at the transaction level in DMA mode, the transfer size is set to the size of one data packet

(either a maximum packet size or a short packet size).

16.3.6.2 Transaction and Transfer Level in Slave Mode

When operating at the transaction level in Slave Mode, transfers are handled one transaction at a time. Each

data payload should correspond to a single data packet, and software must determine whether a retry of the

transaction is necessary based on the handshake response received on the USB (e.g., ACK or NAK).

The following table describes transaction level operation in Slave mode for both IN and OUT transactions.

Espressif Systems 248
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

Table 16­1. IN and OUT Transactions in Slave Mode

Host Mode Device Mode

OUT Transactions

1. Software specifies the size of the data packet

and the number of data packets (1 data

packet) in the USB_HCTSIZn_REG regis-

ter, enables the channel, then copies the

packet’s data payload into the TX FIFO.

2. When the last DWORD of the data payload

has been pushed, the controller core will au-

tomatically write a request into the appropri-

ate request queue.

3. If the transaction was successful, the

USB_XFERCOMPL interrupt will be gener-

ated. If the transaction was unsuccessful,

an error interrupt (e.g. USB_H_NACKn) will

occur.

1. Software specifies the expected size of

the data packet (1 MPS) and the num-

ber of data packets (1 data packet) in the

USB_DIEPTSIZn_REG register. Once the

endpoint is enabled, it will wait for the host

to transmit a packet to it.

2. The received packet will be pushed into the

RX FIFO along with a packet status entry.

3. If the transaction was unsuccessful (e.g., due

to a full RX FIFO), the endpoint will automat-

ically NAK the incoming packet.

IN Transactions

1. Software specifies the expected size of the

data packet and the number of packets (1

data packet) in the USB_HCTSIZn_REG reg-

ister, then enables the channel.

2. The controller core will automatically write a

request into the appropriate request queue.

3. If the transaction was successful, the re-

ceived data along with a status entry should

be written to the RX FIFO. If the transaction

was unsuccessful, an error interrupt (e.g.,

USB_H_NACKn) will occur.

1. Software specifies the size of the data packet

and the number of data packets (1 data

packet) in the USB_DIEPTSIZn_REG regis-

ter. Once the endpoint is enabled, it will wait

for the host to read the packet.

2. When the packet has been transmitted, the

USB_XFERCOMPL interrupt will be gener-

ated.

When operating at the transfer level in Slave mode, one or more transaction-level operations can be pipelined

thus being analogous to transfer level operation in DMA mode. Within pipelined transactions, multiple packets of

the same transfer can be read/written from the FIFOs in single instance, thus preventing the need for interrupting

the software on a per-packet basis.

Operating on a transfer level in Slave mode is similar to operating on the transaction-level, except the transfer size

and packet count for each transfer in the USB_HCTSIZn_REG or USB_DIEPTSIZn_REG register will need to be

set to reflect the entire transfer. After the channel or endpoint is enabled, multiple data packets worth of payloads

should be written to or read from the TX or RX FIFOs respectively (given that there is enough space or enough

data).

Espressif Systems 249
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

16.4 OTG

USB OTG allows OTG devices to act in the USB Host role or the USB Device role. Thus, OTG devices will

typically have a Mini-AB or Micro-AB receptacle so that it can receive an A-plug or B-plug. OTG devices will

become either an A-device or a B-device depending on whether an A-plug or a B-plug is connected.

• A-device defaults to the Host role (A-Host) whilst B-device defaults to the Device role (B-Peripheral).

• A-device and B-device may exchange roles by using the Host Negotiation Protocol (HNP), thus becoming

A-peripheral and B-Host.

• A-device can turn off Vbus to save power. B-device can then wake up the A-device by requesting it to turn

on Vbus and start a new session. This mechanism is called session request protocol (SRP).

• A-device always powers Vbus even if it is an A-peripheral.

OTG devices are able to determine whether they are connected to an A plug or a B plug using the ID pin of the

plugs. The ID pin in A-plugs are pulled to ground whilst B-plugs have the ID pin left floating.

16.4.1 OTG Interface

The OTG_FS supports both the Session Request Protocol (SRP) and Host Negotiation Protocol (HNP) of the

OTG Revision 1.3 specification. The OTG_FS controller core interfaces with the transceiver (internal or external)

using the UTMI+ OTG interface. The UTMI+ OTG interface allows the controller core to manipulate the

transceiver for OTG purposes (e.g., enabling/disabling pull-ups and pull-downs in HNP), and also allows the

transceiver to indicate OTG related events. If an external transceiver is used instead, the UTMI+ OTG interface

signals will be routed to the ESP32-S3’s GPIOs instead through GPIO Matrix, please refer to Chapter 2 IO MUX

and GPIO Matrix (GPIO, IO MUX). The UTMI+ OTG interface signals are described in Table 16-2.

Table 16­2. UTMI OTG Interface

Signal Name I/O Description

usb_otg_iddig_in I

Mini A/B Plug Indicator. Indicates whether the connected plug is mini-A or

mini-B. Valid only when usb_otg_idpullup is sampled asserted.

1’b0: Mini-A connected

1’b1: Mini-B connected

usb_otg_avalid_in I

A-Peripheral Session Valid. Indicates if the voltage Vbus is at a valid level

for an A-peripheral session. The comparator thresholds are:

1’b0: Vbus <0.8 V

1’b1: Vbus = 0.2 V to 2.0 V

usb_otg_bvalid_in I

B-Peripheral Session Valid. Indicates if the voltage Vbus is at a valid level

for a B-peripheral session. The comparator thresholds are:

1’b0: Vbus <0.8 V

1’b1: Vbus = 0.8 V to 4 V

usb_otg_vbusvalid_in I

Vbus Valid. Indicates if the voltage Vbus is valid for A/B-device/peripheral

operation. The comparator thresholds are:

1’b0: Vbus <4.4 V

1’b1: Vbus >4.75 V

Espressif Systems 250
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

Signal Name I/O Description

usb_srp_sessend_in I

B-device Session End. Indicates if the voltage Vbus is below the B-device

Session End threshold. The comparator thresholds are:

1’b0: Vbus >0.8 V

1’b1: Vbus <0.2 V

usb_otg_idpullup O
Analog ID input Sample Enable. Enables sampling the analog ID line.

1’b0: ID pin sampling disabled

1’b1: ID pin sampling enabled

usb_otg_dppulldown O
D+ Pull-down Resistor Enable. Enables the 15 kΩ pull-down resistor on

the D+ line.

usb_otg_dmpulldown O
D- Pull-down Resistor Enable. Enables the 15 kΩ pull-down resistor on

the D- line.

usb_otg_drvvbus O

Drive Vbus. Enables driving Vbus to 5 V.

1’b0: Do not drive Vbus

1’b1: Drive Vbus

usb_srp_chrgvbus O

Vbus Input Charge Enable. Directs the PHY to charge Vbus.

1’b0: Do not charge Vbus through a resistor

1’b1: Charge Vbus through a resistor (must be active for at least 30 ms)

usb_srp_dischrgvbus O

Vbus Input Discharge Enable. Directs the PHY to discharge Vbus.

1’b0: Do not discharge Vbus through a resistor.

1’b1: Discharge Vbus through a resistor (must be active for at least 50

ms).

16.4.2 ID Pin Detection

Bit USB_CONIDSTS in register USB_GOTGCTL_REG indicates whether the OTG controller is an A-device (1’b0)

or a B-device (1’b1). The USB_CONIDSTSCHNG interrupt will trigger whenever there is a change to

USB_CONIDSTS (i.e., when a plug is connected or disconnected).

16.4.3 Session Request Protocol (SRP)

16.4.3.1 A­Device SRP

Figure 16-7 illustrates the flow of SRP when the OTG_FS is acting as an A-device (i.e., default host and the

device that powers Vbus).

1. To save power, the application suspends and turns off port power when the bus is idle by writing to the

Port Suspend (USB_PRTSUSP to 1’b0) and Port Power (USB_PRTPWR to 1’b0) bits in the Host Port

Control and Status register.

2. PHY indicates port power off by deasserting the usb_otg_vbusvalid_in signal.

3. The A-device must detect SE0 for at least 2 ms to start SRP when Vbus power is off.

4. To initiate SRP, the B-device turns on its data line pull-up resistor for 5 to 10 ms. The OTG_FS core detects

data-line pulsing.

5. The device drives Vbus above the A-device session valid (2.0 V minimum) for Vbus pulsing. The OTF_FS

core interrupts the application on detecting SRP. The Session Request Detected bit (USB_SESSREQINT) is

set in Global Interrupt Status register.

Espressif Systems 251
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

Figure 16­7. A­Device SRP

6. The application must service the Session Request Detected interrupt and turn on the Port Power bit by

writing the Port Power bit in the Host Port Control and Status register. The PHY indicates port power-on by

asserting usb_otg_vbusvalid_in signal.

7. When the USB is powered, the B-device connects, completing the SRP process.

16.4.3.2 B­Device SRP

Figure 16-8 illustrates the flow of SRP when the OTG_FS is acting as a B-device (i.e., does not power

Vbus).

Figure 16­8. B­Device SRP

1. To save power, the host (A-device) suspends and turns off port power when the bus is idle. PHY indicates

port power off by deasserting the usb_otg_vbusvalid_in signal. The OTG_FS core sets the Early Suspend

bit in the Core Interrupt register (USB_ERLYSUSP interrupt) after detecting 3 ms of bus idleness. Following

this, the OTF_FS core sets the USB Suspend bit (USB_USBSUSP) in the Core Interrupt register. The PHY

Espressif Systems 252
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

indicates the end of the B-device session by deasserting the usb_otg_bvalid_in signal.

2. The OTG_FS core asserts the usb_otg_dischrgvbus signal to indicate to the PHY to speed up Vbus

discharge.

3. The PHY indicates the session’s end by asserting the usb_otg_sessend_in signal. This is the initial condition

for SRP. The OTG_FS core requires 2 ms of SE0 before initiating SRP. For a USB 1.1 full-speed serial

transceiver, the application must wait until Vbus discharges to 0.2 V after USB_BSESVLD is deasserted.

4. The application waits for 1.5 seconds (TB_SE0_SRP time) before initiating SRP by writing the Session

Request bit (USB_SESREQ) in the OTG Control and Status register. The OTG_FS core performs data-line

pulsing followed by Vbus pulsing.

5. The host (A-device) detects SRP from either the data-line or Vbus pulsing, and turns on Vbus. The PHY

indicates Vbus power-on by asserting usb_otg_vbusvalid_in.

6. The OTG_FS core performs Vbus pulsing by asserting usb_srp_chrgvbus. The host (A-device) starts a new

session by turning on Vbus, indicating SRP success. The OTG_FS core interrupts the application by setting

the Session Request Success Status Change bit (USB_SESREQSC) in the OTG Interrupt Status register.

The application reads the Session Request Success bit in the OTG Control and Status register.

7. When the USB is powered, the OTG_FS core connects, completing the SRP process.

16.4.4 Host Negotiation Protocol (HNP)

16.4.4.1 A­Device HNP

Figure 16-9 illustrates the flow of HNP when the OTG_FS is acting as an A-device.

Figure 16­9. A­Device HNP

1. The OTG_FS core sends the B-device a SetFeature b_hnp_enable descriptor to enable HNP support. The

B-device’s ACK response indicates that the B-device supports HNP. The application must set Host Set

HNP Enable bit (USB_HSTSETHNPEN) in the OTG Control and Status register to indicate to the OTG_FS

core that the B-device supports HNP.

2. When it has finished using the bus, the application suspends by writing the Port Suspend bit

(USB_PRTSUSP) in the Host Port Control and Status register.

3. When the B-device observes a USB suspend, it disconnects, indicating the initial condition for HNP. The

B-device initiates HNP only when it must switch to the host role; otherwise, the bus continues to be

Espressif Systems 253
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

suspended. The OTG_FS core sets the Host Negotiation Detected interrupt (USB_HSTNEGDET) in the

OTG Interrupt Status register, indicating the start of HNP. The OTG_FS core deasserts the

usb_otg_dppulldown and usb_otg_dmpulldown signals to indicate a device role. The PHY enables the D+

pull-up resistor, thus indicates a connection for the B-device. The application must read the Current Mode

bit (USB_CURMOD_INT) in the OTG Control and Status register to determine Device mode operation.

4. The B-device detects the connection, issues a USB reset, and enumerates the OTG_FS core for data traffic.

5. The B-device continues the host role, initiating traffic, and suspends the bus when done. The OTG_FS core

sets the Early Suspend bit (USB_ERLYSUSP) in the Core Interrupt register after detecting 3 ms of bus

idleness. Following this, the OTG_FS core sets the USB Suspend bit (USB_USBSUSP) in the Core Interrupt

register.

6. In Negotiated mode, the OTG_FS core detects the suspend, disconnects, and switches back to the host

role. The OTG_FS core asserts the usb_otg_dppulldown and usb_otg_dmpulldown signals to indicate its

assumption of the host role.

7. The OTG_FS core sets the Connector ID Status Change interrupt (USB_CONIDSTS) in the OTG Interrupt

Status register. The application must read the connector ID status in the OTG Control and Status register to

determine the OTG_FS core’s operation as an A-device. This indicates the completion of HNP to the

application. The application must read the Current Mode bit in the OTG Control and Status register to

determine Host mode operation.

8. The B-device connects, completing the HNP process.

16.4.4.2 B­Device HNP

Figure 16-10 illustrates the flow of HNP when the OTG_FS is acting as an B-device.

Figure 16­10. B­Device HNP

1. The A-device sends the SetFeature b_hnp_enable descriptor to enable HNP support. The OTG_FS core’s

ACK response indicates that it supports HNP. The application must set the Device HNP Enable bit

(USB_DEVHNPEN) in the OTG Control and Status register to indicate HNP support. The application sets

the HNP Request bit (USB_DEVHNPEN) in the OTG Control and Status register to indicate to the OTG_FS

core to initiate HNP.

2. When A-device has finished using the bus, it suspends the bus.

Espressif Systems 254
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

16 USB On-The-Go (USB)

(a) The OTG_FS core sets the Early Suspend bit (USB_ERLYSUSP) in the Core Interrupt register after 3

ms of bus idleness. Following this, the OTG_FS core sets the USB Suspend bit (USB_USBSUSP) in

the Core Interrupt register. The OTG_FS core disconnects and the A-device detects SE0 on the bus,

indicating HNP.

(b) The OTG_FS core asserts the usb_otg_dppulldown and usb_otg_dmpulldown signals to indicate its

assumption of the host role.

(c) The A-device responds by activating its D+ pull-up resistor within 3 ms of detecting SE0. The

OTG_FS core detects this as a connect.

(d) The OTG_FS core sets the Host Negotiation Success Status Change interrupt in the OTG Interrupt

Status register (USB_CONIDSTS), indicating the HNP status. The application must read the Host

Negotiation Success bit (USB_HSTNEGSCS) in the OTG Control and Status register to determine

host negotiation success. The application must read the Current Mode bit (USB_CURMOD_INT) in

the Core Interrupt register to determine Host mode operation.

3. Program the USB_PRTPWR bit to 1’b1. This drives Vbus on the USB.

4. Wait for the USB_PRTCONNDET interrupt. This indicates that a device is connected to the port.

5. The application sets the reset bit (USB_PRTRST) and the OTG_FS core issues a USB reset and

enumerates the A-device for data traffic.

6. Wait for the USB_PRTENCHNG interrupt.

7. The OTG_FS core continues the host role of initiating traffic, and when done, suspends the bus by writing

the Port Suspend bit (USB_PRTSUSP) in the Host Port Control and Status register.

8. In Negotiated mode, when the A-device detects a suspend, it disconnects and switches back to the host

role. The OTG_FS core deasserts the usb_otg_dppulldown and usb_otg_dmpulldown signals to indicate

the assumption of the device role.

9. The application must read the Current Mode bit (USB_CURMOD_INT) in the Core Interrupt register to

determine the Host mode operation.

10. The OTG_FS core connects, completing the HNP process.

Espressif Systems 255
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

17 SD/MMC Host Controller (SDHOST)

17.1 Overview

The ESP32-S3 memory card interface controller provides a hardware interface between the Advanced Peripheral

Bus (APB) and an external memory device. The memory card interface allows the ESP32-S3 to be connected to

SDIO memory cards, MMC cards and devices with a CE-ATA interface. It supports two external cards (Card0

and Card1). And all SD/MMC module interface signal only connect to GPIO pad by GPIO matrix.

17.2 Features

This module supports the following features:

• Two external cards

• SD Memory Card standard: V3.0 and V3.01

• MMC: V4.41, V4.5, and V4.51

• CE-ATA: V1.1

• 1-bit, 4-bit, and 8-bit modes

The SD/MMC controller topology is shown in Figure 17-1. The controller supports two peripherals which cannot

be functional at the same time.

Figure 17­1. SD/MMC Controller Topology

17.3 SD/MMC External Interface Signals

The primary external interface signals, which enable the SD/MMC controller to communicate with an external

device, are clock (sdhost_cclk_out_1.eg:card1), command (sdhost_ccmd_out_1) and data signals

(sdhost_cdata_in_1[7:0]/sdhost_cdata_out_1[7:0]). Additional signals include the card interrupt, card detect, and

write-protect signals. The direction of each signal is shown in Figure 17-2. The direction and description of each

pin are listed in Table 17-1.

Espressif Systems 256
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Figure 17­2. SD/MMC Controller External Interface Signals

Table 17­1. SD/MMC Signal Description

Pin Direction Description

sdhost_cclk_out Output Clock signals for slave device

sdhost_ccmd Duplex Duplex command/response lines

sdhost_cdata Duplex Duplex data read/write lines

sdhost_card_detect_n Input Card detection input line

sdhost_card_write_prt Input Card write protection status input

sdhost_rst_n Output Hardware reset for MMC4.4 cards

sdhost_ccmd_od_pullup_en_n output Card Cmd Open-Drain Pullup

sdhost_card_int_n Input Interrupt pin for eSDIO devices

sdhost_data_strobe_n Input Card HS400 Data Strobe

17.4 Functional Description

17.4.1 SD/MMC Host Controller Architecture

The SD/MMC host controller consists of two main functional blocks, as shown in Figure 17-3:

• Bus Interface Unit (BIU): It provides APB interfaces for registers, data access method for RMA, and data

read and write operation by DMA.

• Card Interface Unit (CIU): It handles external memory card interface protocols. It also provides clock control.

Espressif Systems 257
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Figure 17­3. SDIO Host Block Diagram

17.4.1.1 Bus Interface Unit (BIU)

The BIU provides the access to registers and RAM data through the Host Interface Unit (HIU). Additionally, it

provides a method to access to memory data through a DMA interface. Figure 17-3 illustrates the internal

components of the BIU. Figure 17-9 illustrates the clcok slection. The BIU provides the following functions:

• Host interface

• DMA interface

• Interrupt control

• Register access

• FIFO access

• Power/pull-up control and card detection

17.4.1.2 Card Interface Unit (CIU)

The CIU module implements the card-specific protocols. Within the CIU, the command path control unit and

data path control unit are used to interface with the command and data ports, respectively, of the

SD/MMC/CE-ATA cards. The CIU also provides clock control. Figure 17-3 illustrates the internal structure of the

CIU, which consists of the following primary functional blocks:

• Command path

• Data path

• SDIO interrupt control

• Clock control

• Mux/De-Mux unit

17.4.2 Command Path

The command path performs the following functions:

Espressif Systems 258
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

• Configures clock parameters

• Configures card command parameters

• Sends commands to card bus (sdhost_ccmd_out line)

• Receives responses from card bus (sdhost_ccmd_in line)

• Sends responses to BIU

• Drives the P-bit on the command line

The command path State Machine is shown in Figure 17-4.

Figure 17­4. Command Path State Machine

17.4.3 Data Path

The data path block pops RAM data and transmits them on sdhost_cdata_out during a write-data transfer, or it

receives data on sdhost_cdata_in and pushes them into RAM during a read-data transfer. The data path loads

new data parameters, i.e., expected data, read/write data transfer, stream/block transfer, block size, byte count,

card type, timeout registers, etc., whenever a data transfer command is not in progress.

If the SDHOST_DATA_EXPECTED bit is set in SDHOST_CMD_REG register, the new command is a data-transfer

command and the data path starts one of the following operations:

• Transmitting data if the SDHOST_READ_WRITE bit is 1

• Receiving data if the SDHOST_READ_WRITE bit is 0

17.4.3.1 Data Transmit Operation

The module starts data transmission two clock cycles after a response for the data-write command is received.

This occurs even if the command path detects a response error or a cyclic redundancy check (CRC) error in a

response. If no response is received from the card until the response timeout, no data are transmitted.

Depending on the value of the SDHOST_TRANSFER_MODE bit in SDHOST_CMD_REG register, the

data-transmit state machine adds data to the card’s data bus in a stream or in block(s). The data transmit state

machine is shown in Figure 17-5.

Espressif Systems 259
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Figure 17­5. Data Transmit State Machine

17.4.3.2 Data Receive Operation

The module receives data two clock cycles after the end bit of a data-read command, even if the command path

detects a response error or a CRC error. If no response is received from the card and a response timeout occurs,

the BIU does not receive a signal about the completion of the data transfer. If the command sent by the CIU is an

illegal operation for the card, it would prevent the card from starting a read-data transfer, and the BIU will not

receive a signal about the completion of the data transfer.

If no data is received by the data timeout, the data path signals a data timeout to the BIU, which marks an end to

the data transfer. Based on the value of the SDHOST_TRANSFER_MODE bit in SDHOST_CMD_REG register,

the data-receive state machine gets data from the card’s data bus in a stream or block(s). The data receive state

machine is shown in Figure 17-6.

Figure 17­6. Data Receive State Machine

17.5 Software Restrictions for Proper CIU Operation

• Only one card at a time can be selected to execute a command or data transfer. For example, when data

are being transferred to or from a card, a new command must not be issued to another card. A new

command, however, can be issued to the same card, allowing it to read the device status or stop the

transfer.

• Only one command at a time can be issued for data transfers.

Espressif Systems 260
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

• During an open-ended card-write operation, if the card clock is stopped due to RAM being empty, the

software must fill RAM with data first, and then start the card clock. Only then can it issue a stop/abort

command to the card.

• During an SDIO/Combo card transfer, if the card function is suspended and the software wants to resume

the suspended transfer, it must first reset RAM, setting SDHOST_FIFO_RESET bits and then issue the

resume command as if it were a new data-transfer command.

• When issuing card reset commands (CMD0, CMD15 or CMD52_reset), while a card data transfer is in

progress, the software must set the SDHOST_STOP_ABORT_CMD bit in SDHOST_CMD_REG register, so

that the CIU can stop the data transfer after issuing the card reset command.

• When the data’s end bit error is set in the SDHOST_RINTSTS_REG register, the CIU does not guarantee

SDIO interrupts. In such a case, the software ignores SDIO interrupts and issues a stop/abort command to

the card, so that the card stops sending read-data.

• If the card clock is stopped due to RAM being full during a card read, the software will read at least two

RAM locations to restart the card clock.

• Only one CE-ATA device at a time can be selected for a command or data transfer. For example, when

data are transferred from a CE-ATA device, a new command should not be sent to another CE-ATA device.

• If a CE-ATA device’s interrupts are enabled (nIEN=0), a new SDHOST_RW_BLK command should not be

sent to the same device if the execution of a SDHODT_RW_BLK command is already in progress. Only the

CCSD can be sent while waiting for the CCS.

• If, however, a CE-ATA device’s interrupts are disabled (nIEN=1), a new command can be issued to the

same device, allowing it to read status information.

• Open-ended transfers are not supported in CE-ATA devices.

• The sdhost_send_auto_stop signal is not supported (software should not set the sdhost_send_auto_stop

bit) in CE-ATA transfers.

After configuring the command start bit to 1, the values of the following registers cannot be changed before a

command has been issued:

• CMD - command

• CMDARG - command argument

• BYTCNT - byte count

• BLKSIZ - block size

• CLKDIV - clock divider

• CKLENA - clock enable

• CLKSRC - clock source

• TMOUT - timeout

• CTYPE - card type

Espressif Systems 261
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

17.6 RAM for Receiving and Sending Data

The submodule RAM is a buffer area for sending and receiving data. It can be divided into two units: the one is for

sending data, and the other is for receiving data. The process of sending and receiving data can also be achieved

by the CPU and DMA for reading and writing. The latter method is described in detail in Section 17.8.

17.6.1 TX RAM Module

There are two ways to enable a write operation: DMA and CPU read/write.

If SDIO-sending is enabled, data can be written to the TX RAM module by APB interface. Data will be written to

register SDHOST_BUFFIFO_REG from the CPU, directly, by an APB interface.

Another way of data transmission is by DMA.

17.6.2 RX RAM Module

There are two ways to enable a read operation: DMA and CPU read/write.

When the data path receives data, the data will be written to the RX RAM. Then, these data can be read with the

APB method at the reading end. Register SDHOST_BUFFIFO_REG can be read by the APB directly.

Another way of receiving data is by DMA.

17.7 DMA Descriptor Chain

Each linked list module consists of two parts: the linked list itself and a data buffer. In other words, each module

points to a unique data buffer and the linked list that follows the module. Figure 17-7 shows the descriptor

chain.

Figure 17­7. Descriptor Chain

17.8 The Structure of DMA descriptor chain

Each linked list consists of four words. As is shown below, Figure 17-8 demonstrates the linked list’s structure,

and Table 17-2, Table 17-3, Table 17-4, Table 17-5 provide the descriptions of linked lists.

Espressif Systems 262
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Figure 17­8. The Structure of a Linked List

The DES0 element contains control and status information.

Table 17­2. Word DES0 of SD/MMC GDMA Linked List

Bits Name Description

31 OWNER

When set, this bit indicates that the descriptor is

owned by the DMA Controller. When reset, it indi-

cates that the descriptor is owned by the Host. The

DMA clears this bit when it completes the data trans-

fer.

30 CES (Card Error Summary)

These error bits indicate the status of the transition to

or from the card.

The following bits are also present in SD-

HOST_RINTSTS_REG, which indicates their digital

logic OR gate.

• EBE: End Bit Error

• RTO: Response Time out

• RCRC: Response CRC

• SBE: Start Bit Error

• DRTO: Data Read Timeout

• DCRC: Data CRC for Receive

• RE: Response Error

29:6 Reserved Reserved

5 ER (End of Ring)

When set, this bit indicates that the descriptor list has

reached its final descriptor. The DMA Controller then

returns to the base address of the list, creating a De-

scriptor Chain.

4
CH

(Second Address Chained)

When set, this bit indicates that the second address in

the descriptor is the Next Descriptor address. When

this bit is set, BS2 (DES1[25:13]) should be all zeros.

Espressif Systems 263
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Bits Name Description

3 FD (First Descriptor)

When set, this bit indicates that this descriptor con-

tains the first buffer of the data. If the size of the first

buffer is 0, the Next Descriptor contains the beginning

of the data.

2 LD (Last Descriptor)

This bit is associated with the last block of a DMA

transfer. When set, the bit indicates that the buffers

pointed by this descriptor are the last buffers of the

data. After this descriptor is completed, the remain-

ing byte count is 0. In other words, after the descriptor

with the LD bit set is completed, the remaining byte

count should be 0.

1
DIC (Disable Interrupt

on Completion)

When set, this bit will prevent the setting of the TI/RI

bit of the DMA Status Register (IDSTS) for the data

that ends in the buffer pointed by this descriptor.

0 Reserved Reserved

The DES1 element contains the buffer size.

Table 17­3. Word DES1 of SD/MMC GDMA Linked List

Bits Name Description

31:26 Reserved Reserved

25:13 Reserved Reserved

12:0 BS (Buffer Size)

Indicates the size of the data buffer (in Byte), which

must be a multiple of four. In the case where the buffer

size is not a multiple of four, the resulting behavior is

undefined. This field should not be zero.

The DES2 element contains the address pointer to the data buffer.

Table 17­4. Word DES2 of SD/MMC GDMA Linked List

Bits Name Description

31:0 Buffer Address Pointer
These bits indicate the physical address of the data

buffer. And the buffer address must be word-aligned.

The DES3 element contains the address pointer to the next descriptor if the present descriptor is not the last one

in a chained descriptor structure.

Table 17­5. Word DES3 of SD/MMC GDMA Linked List

Bits Name Description

31:0 Next Descriptor Address

If CH (DES0[4]) is set, this bit contains the address

pointer to the next descriptor.

Espressif Systems 264
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Bits Name Description

If this is not the last descriptor in a chained descriptor

structure, the address pointer to the next descriptor

should be: DES3[1:0] = 0.

17.9 Initialization

17.9.1 DMA Initialization

The DMA Controller initialization should proceed as follows:

1. Write to the DMA Bus Mode Register (SDHOST_BMOD_REG) will set the Host bus’s access parameters.

2. Write to the DMA Interrupt Enable Register (SDHOST_IDINTEN_REG) will mask any unnecessary interrupt

causes.

3. The software driver creates either the inlink or the outlink descriptors. Then, it writes to the DMA Descriptor

List Base Address Register (SDHOST_DBADDR_REG), providing the DMA Controller with the starting

address of the list.

4. The DMA Controller engine attempts to acquire descriptors from descriptor lists.

17.9.2 DMA Transmission Initialization

The DMA transmission occurs as follows:

1. The Host sets up the elements (DES0-DES3) for transmission, and sets the OWNER bit (DES0[31]). The

Host also prepares the data buffer.

2. The Host programs the write-data command in the CMD register in BIU.

3. The Host also programs the required transmit threshold (SDHOST_TX_WMARK field in

SDHOST_FIFOTH_REG register).

4. The DMA Controller engine fetches the descriptor and checks the OWNER bit. If the OWNER bit is not set,

it means that the host owns the descriptor. In this case, the DMA Controller enters a suspend-state and

asserts the Descriptor Unable interrupt in the SDHOST_IDSTS_REG register. In such a case, the host

needs to release the DMA Controller by writing any value to SDHOST_PLDMND_REG.

5. It then waits for the Command Done (CD) bit in DHOST_RINTSTS_REG register and no errors from BIU,

which indicates that a transfer has completed.

6. Subsequently, the DMA Controller engine waits for a DMA interface request from BIU. This request will be

generated, based on the programmed transmit-threshold value. For the last bytes of data which cannot be

accessed using a burst, single transfers are performed on the AHB Master Interface.

7. The DMA Controller fetches the transmit data from the data buffer in the Host memory and transfers them

to RAM for transmission to card.

8. When data span across multiple descriptors, the DMA Controller fetches the next descriptor and extends

its operation using the following descriptor. The last descriptor bit indicates whether the data span multiple

descriptors or not.

Espressif Systems 265
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

9. When data transmission is complete, the status information is updated in the SDHOST_IDSTS_REG

register by setting the SDHOST_IDSTS_TI, if it has already been enabled. Also, the OWNER bit is cleared

by the DMA Controller by performing a write transaction to DES0.

17.9.3 DMA Reception Initialization

The DMA reception occurs as follows:

1. The Host sets up the element (DES0-DES3) for reception, and sets the OWNER bit (DES0[31]).

2. The Host programs the read-data command in the CMD register in BIU.

3. Then, the Host programs the required level of the receive-threshold (SDHOST_RX_WMARK field in

SDHOST_FIFOTH_REG register).

4. The DMA Controller engine fetches the descriptor and checks the OWNER bit. If the OWNER bit is not set,

it means that the host owns the descriptor. In this case, the DMA enters a suspend-state and asserts the

Descriptor Unable interrupt in the SDHOST_IDSTS_REG register. In such a case, the host needs to release

the DMA Controller by writing any value to SDHOST_PLDMND_REG.

5. It then waits for the Command Done (CD) bit and no errors from BIU, which indicates that a reception can

be done.

6. The DMA Controller engine then waits for a DMA interface request from BIU. This request will be generated,

based on the programmed receive-threshold value. For the last bytes of the data which cannot be

accessed using a burst, single transfers are performed on the AHB.

7. The DMA Controller fetches the data from RAM and transfers them to the Host memory.

8. When data span across multiple descriptors, the DMA Controller will fetch the next descriptor and extend

its operation using the following descriptor. The last descriptor bit indicates whether the data span multiple

descriptors or not.

9. When data reception is complete, the status information is updated in the SDHOST_IDSTS_REG register

by setting SDHOST_IDSTS_RI, if it has already been enabled. Also, the OWNER bit is cleared by the DMA

Controller by performing a write-transaction to DES0.

17.10 Clock Phase Selection

If the setup time requirements for the input or output data signal are not met, users can specify the clock phase,

as shown in the figure 17-9.

Espressif Systems 266
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Figure 17­9. Clock Phase Selection

This issue can be fixed by configuring register SDHOST_CLK_DIV_EDGE_REG. For example, set

CCLKIN_EDGE_DRV_SEL bit to 0 to drive the output data in phase0, and set the CCLKIN_EDGE_SAM_SEL bit

to 1 to select phase90 to sample the data from SDIO slave, if there are still timing issue, please set bit 4 or 6 to

use phase180 or phase 270 to sample the data from SDIO slave.

Please find detailed information on the clock phase selection register SDHOST_CLK_DIV_EDGE_REG in Section

Registers.

Table 17­6. SDHOST Clk Phase Selection

Clock phase phase_select value

0 0

90 1

180 4

270 6

17.11 Interrupt

Interrupts can be generated as a result of various events. The SDHOST_IDSTS_REG register contains all the bits

that might cause an interrupt. The SDHOST_IDINTEN_REG register contains an enable bit for each of the events

that can cause an interrupt.

There are two groups of summary interrupts, ”Normal” ones (bit8 SDHOST_IDSTS_NIS) and ”Abnormal” ones

(bit9 SDHOST_IDSTS_AIS), as outlined in the SDHOST_IDSTS_REG register. Interrupts are cleared by writing 1

to the position of the corresponding bit. When all the enabled interrupts within a group are cleared, the

corresponding summary bit is also cleared. When both summary bits are cleared, the interrupt signal connected

to CPU is de-asserted (stops signalling).

Espressif Systems 267
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Interrupts are not queued up, and if a new interrupt-event occurs before the driver has responded to it, no

additional interrupts are generated. For example, the SDHOST_IDSTS_RI indicates that one or more data were

transferred to the Host buffer.

An interrupt is generated only once for concurrent events. The driver must scan the SDHOST_IDSTS_REG

register for the interrupt cause.

Espressif Systems 268
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

17.12 Register Summary

The addresses in this section are relative to SD/MMC Host Controller base address provided in Table 1-4 in

Chapter 1 System and Memory.

Name Description Address Access

SDHOST_CTRL_REG Control register 0x0000 R/W

SDHOST_CLKDIV_REG Clock divider configuration register 0x0008 R/W

SDHOST_CLKSRC_REG Clock source selection register 0x000C R/W

SDHOST_CLKENA_REG Clock enable register 0x0010 R/W

SDHOST_TMOUT_REG Data and response timeout configuration register 0x0014 R/W

SDHOST_CTYPE_REG Card bus width configuration register 0x0018 R/W

SDHOST_BLKSIZ_REG Card data block size configuration register 0x001C R/W

SDHOST_BYTCNT_REG Data transfer length configuration register 0x0020 R/W

SDHOST_INTMASK_REG SDIO interrupt mask register 0x0024 R/W

SDHOST_CMDARG_REG Command argument data register 0x0028 R/W

SDHOST_CMD_REG Command and boot configuration register 0x002C R/W

SDHOST_RESP0_REG Response data register 0x0030 RO

SDHOST_RESP1_REG Long response data register 0x0034 RO

SDHOST_RESP2_REG Long response data register 0x0038 RO

SDHOST_RESP3_REG Long response data register 0x003C RO

SDHOST_MINTSTS_REG Masked interrupt status register 0x0040 RO

SDHOST_RINTSTS_REG Raw interrupt status register 0x0044 R/W

SDHOST_STATUS_REG SD/MMC status register 0x0048 RO

SDHOST_FIFOTH_REG FIFO configuration register 0x004C R/W

SDHOST_CDETECT_REG Card detect register 0x0050 RO

SDHOST_WRTPRT_REG Card write protection (WP) status register 0x0054 RO

SDHOST_TCBCNT_REG Transferred byte count register 0x005C RO

SDHOST_TBBCNT_REG Transferred byte count register 0x0060 RO

SDHOST_DEBNCE_REG Debounce filter time configuration register 0x0064 R/W

SDHOST_USRID_REG User ID (scratchpad) register 0x0068 R/W

SDHOST_VERID_REG Version ID (scratchpad) register 0x006C RO

SDHOST_HCON_REG Hardware feature register 0x0070 RO

SDHOST_UHS_REG UHS-1 register 0x0074 R/W

SDHOST_RST_N_REG Card reset register 0x0078 R/W

SDHOST_BMOD_REG Burst mode transfer configuration register 0x0080 R/W

SDHOST_PLDMND_REG Poll demand configuration register 0x0084 WO

SDHOST_DBADDR_REG Descriptor base address register 0x0088 R/W

SDHOST_IDSTS_REG IDMAC status register 0x008C R/W

SDHOST_IDINTEN_REG IDMAC interrupt enable register 0x0090 R/W

SDHOST_DSCADDR_REG Host descriptor address pointer 0x0094 RO

SDHOST_BUFADDR_REG Host buffer address pointer register 0x0098 RO

SDHOST_CARDTHRCTL_REG Card Threshold Control register 0x0100 R/W

SDHOST_EMMCDDR_REG eMMC DDR register 0x010C R/W

SDHOST_ENSHIFT_REG Enable Phase Shift register 0x0110 R/W

Espressif Systems 269
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Name Description Address Access

SDHOST_BUFFIFO_REG CPU write and read transmit data by FIFO 0x0200 R/W

SDHOST_CLK_DIV_EDGE_REG Clock phase selection register 0x0800 R/W

Espressif Systems 270
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

17.13 Registers

The addresses in this section are relative to SD/MMC Host Controller base address provided in Table 1-4 in

Chapter 1 System and Memory.

Register 17.1. SDHOST_CTRL_REG (0x0000)

(re
se

rve
d)

0x00

31 25

(re
se

rve
d)

1

24

(re
se

rve
d)

0x000

23 12

SDHOST_
CEAT

A_D
EVIC

E_IN
TE

RRUPT_
STA

TU
S

0

11

SDHOST_
SEND_A

UTO
_S

TO
P_C

CSD

0

10

SDHOST_
SEND_C

CSD

0

9

SDHOST_
ABORT_

READ_D
AT

A

0

8

SDHOST_
SEND_IR

Q_R
ESPONSE

0

7

SDHOST_
READ_W

AIT

0

6

(re
se

rve
d)

0

5

SDHOST_
IN

T_
ENABLE

0

4

(re
se

rve
d)

0

3

SDHOST_
DM

A_R
ESET

0

2

SDHOST_
FIF

O_R
ESET

0

1

SDHOST_
CONTR

OLL
ER_R

ESET

0

0

Reset

SDHOST_CEATA_DEVICE_INTERRUPT_STATUS Software should appropriately write to this bit af-

ter the power-on reset or any other reset to the CE-ATA device. After reset, the CE-ATA device’s

interrupt is usually disabled (nIEN = 1). If the host enables the CE-ATA device’s interrupt, then

software should set this bit. (R/W)

SDHOST_SEND_AUTO_STOP_CCSD Always set SDHOST_SEND_AUTO_STOP_CCSD and SD-

HOST_SEND_CCSD bits together; SDHOST_SEND_AUTO_STOP_CCSD should not be set inde-

pendently of send_ccsd. When set, SD/MMC automatically sends an internally-generated STOP

command (CMD12) to the CE-ATA device. After sending this internally-generated STOP command,

the Auto Command Done (ACD) bit in SDHOST_RINTSTS_REG is set and an interrupt is generated

for the host, in case the ACD interrupt is not masked. After sending the Command Completion

Signal Disable (CCSD), SD/MMC automatically clears the SDHOST_SEND_AUTO_STOP_CCSD

bit. (R/W)

SDHOST_SEND_CCSD When set, SD/MMC sends CCSD to the CE-ATA device. Software sets

this bit only if the current command is expecting CCS (that is, RW_BLK), and if interrupts are

enabled for the CE-ATA device. Once the CCSD pattern is sent to the device, SD/MMC auto-

matically clears the SDHOST_SEND_CCSD bit. It also sets the Command Done (CD) bit in the

SDHOST_RINTSTS_REG register, and generates an interrupt for the host, in case the Command

Done interrupt is not masked.

NOTE: Once the SDHOST_SEND_CCSD bit is set, it takes two card clock cycles to drive the CCSD

on the CMD line. Due to this, within the boundary conditions the CCSD may be sent to the CE-ATA

device, even if the device has signalled CCS. (R/W)

Continued on the next page...

Espressif Systems 271
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.1. SDHOST_CTRL_REG (0x0000)

Continued from the previous page...

SDHOST_ABORT_READ_DATA After a suspend-command is issued during a read-operation, soft-

ware polls the card to find when the suspend-event occurred. Once the suspend-event has oc-

curred, software sets the bit which will reset the data state machine that is waiting for the next

block of data. This bit is automatically cleared once the data state machine is reset to idle. (R/W)

SDHOST_SEND_IRQ_RESPONSE Bit automatically clears once response is sent. To wait for MMC

card interrupts, host issues CMD40 and waits for interrupt response from MMC card(s). In the

meantime, if host wants SD/MMC to exit waiting for interrupt state, it can set this bit, at which

time SD/MMC command state-machine sends CMD40 response on bus and returns to idle state.

(R/W)

SDHOST_READ_WAIT For sending read-wait to SDIO cards. (R/W)

SDHOST_INT_ENABLE Global interrupt enable/disable bit. 0: Disable; 1: Enable. (R/W)

SDHOST_DMA_RESET To reset DMA interface, firmware should set bit to 1. This bit is auto-cleared

after two AHB clocks. (R/W)

SDHOST_FIFO_RESET To reset FIFO, firmware should set bit to 1. This bit is auto-cleared after

completion of reset operation.

Note: FIFO pointers will be out of reset after 2 cycles of system clocks in addition to synchronization

delay (2 cycles of card clock), after the fifo_reset is cleared. (R/W)

SDHOST_CONTROLLER_RESET To reset controller, firmware should set this bit. This bit is auto-

cleared after two AHB and two sdhost_cclk_in clock cycles. (R/W)

Register 17.2. SDHOST_CLKDIV_REG (0x0008)

SDHOST_
CLK

_D
IVID

ER3

0x000

31 24

SDHOST_
CLK

_D
IVID

ER2

0x000

23 16

SDHOST_
CLK

_D
IVID

ER1

0x000

15 8

SDHOST_
CLK

_D
IVID

ER0

0x000

7 0

Reset

SDHOST_CLK_DIVIDERm Clock divider (m) value. Clock divisor is 2*n, where n = 0 bypasses the

divider (divisor of 1). For example, a value of 1 means divided by 2*1 = 2, a value of 0xFF means

divided by 2*255 = 510, and so on. The range of m is 0 ~ 3. (R/W)

Espressif Systems 272
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.3. SDHOST_CLKSRC_REG (0x000C)

(re
se

rve
d)

0x0000000

31 4

SDHOST_
CLK

SRC_R
EG

0x0

3 0

Reset

SDHOST_CLKSRC_REG Clock divider source for two SD cards is supported. Each card has two

bits assigned to it. For example, bit[1:0] are assigned for card 0, bit[3:2] are assigned for card 1.

Card 0 maps and internally routes clock divider[0:3] outputs to cclk_out[1:0] pins, depending on

bit value. (R/W)

00 : Clock divider 0;

01 : Clock divider 1;

10 : Clock divider 2;

11 : Clock divider 3.

Register 17.4. SDHOST_CLKENA_REG (0x0010)

(re
se

rve
d)

0x0000

31 18

SDHOST_
LP

_E
NABEL

0x0

17 16

(re
se

rve
d)

0x0000

15 2

SDHOST_
CCLK

_E
NABEL

0x0

1 0

Reset

SDHOST_LP_ENABLE Disable clock when the card is in IDLE state. One bit per card. (R/W)

0: clock disabled;

1: clock enabled.

SDHOST_CCLK_ENABLE Clock-enable control for two SD card clocks and one MMC card clock is

supported. One bit per card. (R/W)

0: Clock disabled;

1: Clock enabled.

Espressif Systems 273
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.5. SDHOST_TMOUT_REG (0x0014)

SDHOST_
DAT

A_T
IM

EOUT

0xFFFFFF

31 8

SDHOST_
RESPONSE_T

IM
EOUT

0x40

7 0

Reset

SDHOST_DATA_TIMEOUT Value for card data read timeout. This value is also used for data starva-

tion by host timeout. The timeout counter is started only after the card clock is stopped. This value

is specified in number of card output clocks, i.e. sdhost_cclk_out of the selected card. (R/W)

NOTE: The software timer should be used if the timeout value is in the order of 100 ms. In this

case, read data timeout interrupt needs to be disabled.

SDHOST_RESPONSE_TIMEOUT Response timeout value. Value is specified in terms of number of

card output clocks, i.e., sdhost_cclk_out. (R/W)

Register 17.6. SDHOST_CTYPE_REG (0x0018)

(re
se

rve
d)

0x0000

31 18

SDHOST_
CARD_W

ID
TH

8

0x0

17 16

(re
se

rve
d)

0x0000

15 2

SDHOST_
CARD_W

ID
TH

4

0x0

1 0

Reset

SDHOST_CARD_WIDTH8 One bit per card indicates if card is in 8-bit mode. (R/W)

0: Non 8-bit mode;

1: 8-bit mode.

Bit[17:16] correspond to card[1:0] respectively.

SDHOST_CARD_WIDTH4 One bit per card indicates if card is 1-bit or 4-bit mode. (R/W)

0: 1-bit mode;

1: 4-bit mode.

Bit[1:0] correspond to card[1:0] respectively.

Espressif Systems 274
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.7. SDHOST_BLKSIZ_REG (0x001C)

(re
se

rve
d)

0 x 0 0 0 0

31 16

SDHOST_
BLO

CK_S
IZE

0x200

15 0

Reset

SDHOST_BLOCK_SIZE Block size. (R/W)

Register 17.8. SDHOST_BYTCNT_REG (0x0020)

0x200

31 0

Reset

SDHOST_BYTCNT_REG Number of bytes to be transferred, should be an integral multiple of Block

Size for block transfers. For data transfers of undefined byte lengths, byte count should be set to

0. When byte count is set to 0, it is the responsibility of host to explicitly send stop/abort command

to terminate data transfer. (R/W)

Espressif Systems 275
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.9. SDHOST_INTMASK_REG (0x0024)

(re
se

rve
d)

0x0000

31 18

SDHOST_
SDIO

_IN
T_

M
ASK

0x0

17 16

SDHOST_
IN

T_
M

ASK

0x0000

15 0

Reset

SDHOST_SDIO_INT_MASK SDIO interrupt mask, one bit for each card. Bit[17:16] correspond to

card[15:0] respectively. When masked, SDIO interrupt detection for that card is disabled. 0 masks

an interrupt, and 1 enables an interrupt. (R/W)

SDHOST_INT_MASK These bits used to mask unwanted interrupts. A value of 0 masks interrupt,

and a value of 1 enables the interrupt. (R/W)

Bit 15 (EBE): End-bit error/no CRC error;

Bit 14 (ACD): Auto command done;

Bit 13 (SBE/BCI): Rx Start Bit Error;

Bit 12 (HLE): Hardware locked write error;

Bit 11 (FRUN): FIFO underrun/overrun error;

Bit 10 (HTO): Data starvation-by-host timeout;

Bit 9 (DRTO): Data read timeout;

Bit 8 (RTO): Response timeout;

Bit 7 (DCRC): Data CRC error;

Bit 6 (RCRC): Response CRC error;

Bit 5 (RXDR): Receive FIFO data request;

Bit 4 (TXDR): Transmit FIFO data request;

Bit 3 (DTO): Data transfer over;

Bit 2 (CD): Command done;

Bit 1 (RE): Response error;

Bit 0 (CD): Card detect.

Register 17.10. SDHOST_CMDARG_REG (0x0028)

0x00000000

31 0

Reset

SDHOST_CMDARG_REG Value indicates command argument to be passed to the card. (R/W)

Espressif Systems 276
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.11. SDHOST_CMD_REG (0x002C)

SDHOST_
STA

RT_
CM

D

0

31

(re
se

rve
d)

0

30

SDHOST_
USE_H

OLE

1

29

(re
se

rve
d)

0

28

(re
se

rve
d)

0

27

(re
se

rve
d)

0

26

(re
se

rve
d)

0

25

(re
se

rve
d)

0

24

SDHOST_
CCS_E

XP
ECTE

D

0

23

SDHOST_
READ_C

EAT
A_D

EVIC
E

0

22

SDHOST_
UPDAT

E_C
LO

CK_R
EGIS

TE
RS_O

NLY

0

21

SDHOST_
CARD_N

UM
BER

0x00

20 16

SDHOST_
SEND_IN

ITI
ALIZ

AT
IO

N

0

15

SDHOST_
STO

P_A
BORT_

CM
D

0

14

SDHOST_
W

AIT_
PRVDAT

A_C
OM

PLE
TE

0

13

SDHOST_
SEND_A

UTO
_S

TO
P

0

12

SDHOST_
TR

ANSFE
R_M

ODE

0

11

SDHOST_
READ_W

RITE

0

10

SDHOST_
DAT

A_E
XP

ECTE
D

0

9

SDHOST_
CHECK_R

ESPONSE_C
RC

0

8

SDHOST_
RESPONSE_L

ENGTH

0

7

SDHOST_
RESPONSE_E

XP
ECT

0

6

SDHOST_
CM

D_IN
DEX

0x00

5 0

Reset

SDHOST_START_CMD Start command. Once command is served by the CIU, this bit is automati-

cally cleared. When this bit is set, host should not attempt to write to any command registers. If a

write is attempted, hardware lock error is set in raw interrupt register. Once command is sent and

a response is received from SD_MMC_CEATA cards, Command Done bit is set in the raw interrupt

Register. (R/W)

SDHOST_USE_HOLE Use Hold Register. (R/W)

0: CMD and DATA sent to card bypassing HOLD Register;

1: CMD and DATA sent to card through the HOLD Register.

SDHOST_CCS_EXPECTED Expected Command Completion Signal (CCS) configuration. (R/W)

0: Interrupts are not enabled in CE-ATA device (nIEN = 1 in ATA control register), or command

does not expect CCS from device;

1: Interrupts are enabled in CE-ATA device (nIEN = 0), and RW_BLK command expects command

completion signal from CE-ATA device.

If the command expects Command Completion Signal (CCS) from the CE-ATA device, the software

should set this control bit. SD/MMC sets Data Transfer Over (DTO) bit in RINTSTS register and

generates interrupt to host if Data Transfer Over interrupt is not masked.

SDHOST_READ_CEATA_DEVICE Read access flag. (R/W)

0: Host is not performing read access (RW_REG or RW_BLK)towards CE-ATA device;

1: Host is performing read access (RW_REG or RW_BLK) towards CE-ATA device.

Software should set this bit to indicate that CE-ATA device is being accessed for read transfer.

This bit is used to disable read data timeout indication while performing CE-ATA read transfers.

Maximum value of I/O transmission delay can be no less than 10 seconds. SD/MMC should not

indicate read data timeout while waiting for data from CE-ATA device.

Continued on the next page...

Espressif Systems 277
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.11. SDHOST_CMD_REG (0x002C)

Continued from the previous page...

SDHOST_UPDATE_CLOCK_REGISTERS_ONLY 0: Normal command sequence; 1: Do not send

commands, just update clock register value into card clock domain. (R/W)

Following register values are transferred into card clock domain: CLKDIV, CLRSRC, and CLKENA.

Changes card clocks (change frequency, truncate off or on, and set low-frequency mode). This

is provided in order to change clock frequency or stop clock without having to send command to

cards.

During normal command sequence, when sdhost_update_clock_registers_only = 0, following con-

trol registers are transferred from BIU to CIU: CMD, CMDARG, TMOUT, CTYPE, BLKSIZ, and

BYTCNT. CIU uses new register values for new command sequence to card(s). When bit is set,

there are no Command Done interrupts because no command is sent to SD_MMC_CEATA cards.

SDHOST_CARD_NUMBER Card number in use. Represents physical slot number of card being

accessed. In SD-only mode, up to two cards are supported. (R/W)

SDHOST_SEND_INITIALIZATION 0: Do not send initialization sequence (80 clocks of 1) before

sending this command; 1: Send initialization sequence before sending this command. (R/W)

After powered on, 80 clocks must be sent to card for initialization before sending any commands

to card. Bit should be set while sending first command to card so that controller will initialize clocks

before sending command to card.

SDHOST_STOP_ABORT_CMD 0: Neither stop nor abort command can stop current data transfer.

If abort is sent to function-number currently selected or not in data-transfer mode, then bit should

be set to 0; 1: Stop or abort command intended to stop current data transfer in progress. (R/W)

When open-ended or predefined data transfer is in progress, and host issues stop or abort com-

mand to stop data transfer, bit should be set so that command/data state-machines of CIU can

return correctly to idle state.

SDHOST_WAIT_PRVDATA_COMPLETE 0: Send command at once, even if previous data transfer

has not completed; 1: Wait for previous data transfer to complete before sending Command. (R/W)

The SDHOST_WAIT_PRVDATA_COMPLETE] = 0 option is typically used to query status of card

during data transfer or to stop current data transfer. SDHOST_CARD_NUMBERr should be same

as in previous command.

SDHOST_SEND_AUTO_STOP 0: No stop command is sent at the end of data transfer; 1: Send

stop command at the end of data transfer. (R/W)

Continued on the next page...

Espressif Systems 278
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.11. SDHOST_CMD_REG (0x002C)

Continued from the previous page ...

SDHOST_TRANSFER_MODE 0: Block data transfer command; 1: Stream data transfer command.

(R/W)

Don’t care if no data expected.

SDHOST_READ_WRITE 0: Read from card; 1: Write to card.

Don’t care if no data is expected from card. (R/W)

SDHOST_DATA_EXPECTED 0: No data transfer expected; 1: Data transfer expected. (R/W)

SDHOST_CHECK_RESPONSE_CRC 0: Do not check; 1: Check response CRC.

Some of command responses do not return valid CRC bits. Software should disable CRC checks

for those commands in order to disable CRC checking by controller. (R/W)

SDHOST_RESPONSE_LENGTH 0: Short response expected from card; 1: Long response expected

from card. (R/W)

SDHOST_RESPONSE_EXPECT 0: No response expected from card; 1: Response expected from

card. (R/W)

SDHOST_CMD_INDEX Command index. (R/W)

Register 17.12. SDHOST_RESP0_REG (0x0030)

0x00000000

31 0

Reset

SDHOST_RESP0_REG Bit[31:0] of response. (RO)

Register 17.13. SDHOST_RESP1_REG (0x0034)

0x00000000

31 0

Reset

SDHOST_RESP1_REG Bit[63:32] of long response. (RO)

Register 17.14. SDHOST_RESP2_REG (0x0038)

0x00000000

31 0

Reset

SDHOST_RESP2_REG Bit[95:64] of long response. (RO)

Espressif Systems 279
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.15. SDHOST_RESP3_REG (0x003C)

0x00000000

31 0

Reset

SDHOST_RESP3_REG Bit[127:96] of long response. (RO)

Register 17.16. SDHOST_MINTSTS_REG (0x0040)

(re
se

rve
d)

0x0000

31 18

SDHOST_
SDIO

_IN
TE

RRUPT_
M

SK

0x0

17 16

SDHOST_
IN

T_
STA

TU
S_M

SK

0x0000

15 0

Reset

SDHOST_SDIO_INTERRUPT_MSK Interrupt from SDIO card, one bit for each card. Bit[17:16] cor-

respond to card1 and card0, respectively. SDIO interrupt for card is enabled only if corresponding

sdhost_sdio_int_mask bit is set in Interrupt mask register (Setting mask bit enables interrupt). (RO)

SDHOST_INT_STATUS_MSK Interrupt enabled only if corresponding bit in interrupt mask register is

set. (RO)

Bit 15 (EBE): End-bit error/no CRC error;

Bit 14 (ACD): Auto command done;

Bit 13 (SBE/BCI): RX Start Bit Error;

Bit 12 (HLE): Hardware locked write error;

Bit 11 (FRUN): FIFO underrun/overrun error;

Bit 10 (HTO): Data starvation by host timeout (HTO);

Bit 9 (DTRO): Data read timeout;

Bit 8 (RTO): Response timeout;

Bit 7 (DCRC): Data CRC error;

Bit 6 (RCRC): Response CRC error;

Bit 5 (RXDR): Receive FIFO data request;

Bit 4 (TXDR): Transmit FIFO data request;

Bit 3 (DTO): Data transfer over;

Bit 2 (CD): Command done;

Bit 1 (RE): Response error;

Bit 0 (CD): Card detect.

Espressif Systems 280
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.17. SDHOST_RINTSTS_REG (0x0044)

(re
se

rve
d)

0x0000

31 18

SDHOST_
SDIO

_IN
TE

RRUPT_
RAW

0x0

17 16

SDHOST_
IN

T_
STA

TU
S_R

AW

0x0000

15 0

Reset

SDHOST_SDIO_INTERRUPT_RAW Interrupt from SDIO card, one bit for each card. Bit[17:16] cor-

respond to card1 and card0, respectively. Setting a bit clears the corresponding interrupt bit and

writing 0 has no effect. (R/W)

0: No SDIO interrupt from card;

1: SDIO interrupt from card.

SDHOST_INT_STATUS_RAW Setting a bit clears the corresponding interrupt and writing 0 has no

effect. Bits are logged regardless of interrupt mask status. (R/W)

Bit 15 (EBE): End-bit error/no CRC error;

Bit 14 (ACD): Auto command done;

Bit 13 (SBE/BCI): RX Start Bit Error;

Bit 12 (HLE): Hardware locked write error;

Bit 11 (FRUN): FIFO underrun/overrun error;

Bit 10 (HTO): Data starvation by host timeout (HTO);

Bit 9 (DTRO): Data read timeout;

Bit 8 (RTO): Response timeout;

Bit 7 (DCRC): Data CRC error;

Bit 6 (RCRC): Response CRC error;

Bit 5 (RXDR): Receive FIFO data request;

Bit 4 (TXDR): Transmit FIFO data request;

Bit 3 (DTO): Data transfer over;

Bit 2 (CD): Command done;

Bit 1 (RE): Response error;

Bit 0 (CD): Card detect.

Espressif Systems 281
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.18. SDHOST_STATUS_REG (0x0048)

(re
se

rve
d)

0

31

(re
se

rve
d)

0

30

SDHOST_
FIF

O_C
OUNT

0x000

29 17

SDHOST_
RESPONSE_IN

DEX

0x00

16 11

SDHOST_
DAT

A_S
TA

TE
_M

C_B
USY

1

10

SDHOST_
DAT

A_B
USY

1

9

SDHOST_
DAT

A_3
_S

TA
TU

S

1

8

SDHOST_
COM

M
AND_F

SM
_S

TA
TE

S

0x1

7 4

SDHOST_
FIF

O_F
ULL

0

3

SDHOST_
FIF

O_E
M

PTY

1

2

SDHOST_
FIF

O_T
X_

W
AT

ERM
ARK

1

1

SDHOST_
FIF

O_R
X_

W
AT

ERM
ARK

0

0

Reset

SDHOST_FIFO_COUNT FIFO count, number of filled locations in FIFO. (RO)

SDHOST_RESPONSE_INDEX Index of previous response, including any auto-stop sent by core.

(RO)

SDHOST_DATA_STATE_MC_BUSY Data transmit or receive state-machine is busy. (RO)

SDHOST_DATA_BUSY Inverted version of raw selected sdhost_card_data[0].

0: Card data not busy;

1: Card data busy. (RO)

SDHOST_DATA_3_STATUS Raw selected sdhost_card_data[3], checks whether card is present.

0: card not present;

1: card present. (RO)

SDHOST_COMMAND_FSM_STATES Command FSM states. (RO)

0: Idle;

1: Send init sequence;

2: Send cmd start bit;

3: Send cmd tx bit;

4: Send cmd index + arg;

5: Send cmd crc7;

6: Send cmd end bit;

7: Receive resp start bit;

8: Receive resp IRQ response;

9: Receive resp tx bit;

10: Receive resp cmd idx;

11: Receive resp data;

12: Receive resp crc7;

13: Receive resp end bit;

14: Cmd path wait NCC;

15: Wait, cmd-to-response turnaround.

Continued on the next page...

Espressif Systems 282
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.18. SDHOST_STATUS_REG (0x0048)

Continued from the previous page ...

SDHOST_FIFO_FULL FIFO is full status. (RO)

SDHOST_FIFO_EMPTY FIFO is empty status. (RO)

SDHOST_FIFO_TX_WATERMARK FIFO reached Transmit watermark level, not qualified with data

transfer. (RO)

SDHOST_FIFO_RX_WATERMARK FIFO reached Receive watermark level, not qualified with data

transfer. (RO)

Espressif Systems 283
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.19. SDHOST_FIFOTH_REG (0x004C)

(re
se

rve
d)

0

31

SDHOST_
DM

A_M
ULT

IP
LE

_T
RANSACTIO

N_S
IZE

0x0

30 28

(re
se

rve
d)

0

27

SDHOST_
RX_

W
M

ARK

x x x x x x x x x x x

26 16

(re
se

rve
d)

0 0 0 0

15 12

SDHOST_
TX

_W
M

ARK

0x000

11 0

Reset

SDHOST_DMA_MULTIPLE_TRANSACTION_SIZE Burst size of multiple transaction, should be pro-

grammed same as DMA controller multiple-transaction-size SDHOST_SRC/DEST_MSIZE. (R/W)

000: 1-byte transfer;

001: 4-byte transfer;

010: 8-byte transfer;

011: 16-byte transfer;

100: 32-byte transfer;

101: 64-byte transfer;

110: 128-byte transfer;

111: 256-byte transfer.

SDHOST_RX_WMARK FIFO threshold watermark level when receiving data to card.When FIFO data

count reaches greater than this number , DMA/FIFO request is raised. During end of packet,

request is generated regardless of threshold programming in order to complete any remaining

data.In non-DMA mode, when receiver FIFO threshold (RXDR) interrupt is enabled, then interrupt

is generated instead of DMA request.During end of packet, interrupt is not generated if threshold

programming is larger than any remaining data. It is responsibility of host to read remaining bytes

on seeing Data Transfer Done interrupt.In DMA mode, at end of packet, even if remaining bytes

are less than threshold, DMA request does single transfers to flush out any remaining bytes before

Data Transfer Done interrupt is set. (R/W)

SDHOST_TX_WMARK FIFO threshold watermark level when transmitting data to card. When FIFO

data count is less than or equal to this number, DMA/FIFO request is raised. If Interrupt is en-

abled, then interrupt occurs. During end of packet, request or interrupt is generated, regardless of

threshold programming.In non-DMA mode, when transmit FIFO threshold (TXDR) interrupt is en-

abled, then interrupt is generated instead of DMA request. During end of packet, on last interrupt,

host is responsible for filling FIFO with only required remaining bytes (not before FIFO is full or after

CIU completes data transfers, because FIFO may not be empty). In DMA mode, at end of packet,

if last transfer is less than burst size, DMA controller does single cycles until required bytes are

transferred. (R/W)

Espressif Systems 284
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.20. SDHOST_CDETECT_REG (0x0050)

(re
se

rve
d)

0x0000000

31 2

SDHOST_
CARD_D

ETE
CT_

N

0x0

1 0

Reset

SDHOST_CARD_DETECT_N Value on sdhost_card_detect_n input ports (1 bit per card), read-only

bits. 0 represents presence of card. Only NUM_CARDS number of bits are implemented. (RO)

Register 17.21. SDHOST_WRTPRT_REG (0x0054)

(re
se

rve
d)

0x0000000

31 2

SDHOST_
W

RITE
_P

ROTE
CT

0x0

1 0

Reset

SDHOST_WRITE_PROTECT Value on sdhost_card_write_prt input ports (1 bit per card). 1 repre-

sents write protection. Only NUM_CARDS number of bits are implemented. (RO)

Register 17.22. SDHOST_TCBCNT_REG (0x005C)

0x00000000

31 0

Reset

SDHOST_TCBCNT_REG Number of bytes transferred by CIU unit to card. (RO)

Register 17.23. SDHOST_TBBCNT_REG (0x0060)

0x00000000

31 0

Reset

SDHOST_TBBCNT_REG Number of bytes transferred between Host/DMA memory and BIU FIFO.

(RO)

Espressif Systems 285
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.24. SDHOST_DEBNCE_REG (0x0064)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SDHOST_
DEBOUNCE_C

OUNT

0x000000

23 0

Reset

SDHOST_DEBOUNCE_COUNT Number of host clocks (clk) used by debounce filter logic. The typi-

cal debounce time is 5 ~ 25 ms to prevent the card instability when the card is inserted or removed.

(R/W)

Register 17.25. SDHOST_USRID_REG (0x0068)

0x00000000

31 0

Reset

SDHOST_USRID_REG User identification register, value set by user. Can also be used as a scratch-

pad register by user. (R/W)

Register 17.26. SDHOST_VERID_REG (0x006C)

0x5432270A

31 0

Reset

SDHOST_VERSIONID_REG Hardware version register. Can also be read by fireware. (RO)

Espressif Systems 286
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.27. SDHOST_HCON_REG (0x0070)

(re
se

rve
d)

0x0

31 27

(re
se

rve
d)

0x0

26

(S
DHOST_

NUM
_C

LK
_D

IV_R
EG)

0x3

25 24

(re
sv

rve
d)

0x1

23

(S
DHOST_

HOLD
_R

EG)

0x1

22

(S
DHOST_

RAM
_IN

DIS
E_R

EG)

0x0

21

(S
DHOST_

DM
A_W

ID
TH

_R
EG)

0x1

20 18

(re
se

rve
d)

0x0

17 16

(S
DHOST_

ADDR_W
ID

TH
_R

EG)

0x13

15 10

(S
DHOST_

DAT
A_W

ID
TH

_R
EG)

0x1

9 7

(S
DHOST_

BUS_T
YPE_R

EG)

0x1

6

(S
DHOST_

CARD_N
UM

_R
EG)

0x1

5 1

SDHOST_
CARD_T

YPE_R
EG

0x1

0

Reset

SDHOST_NUM_CLK_DIV_REG Have 4 clk divider in design . (RO)

SDHOST_HOLD_REG Have a hold regiser in data path . (RO)

SDHOST_RAM_INDISE_REG Inside RAM in SDMMC module. (RO)

SDHOST_DMA_WIDTH_REG DMA data witdth is 32. (RO)

SDHOST_ADDR_WIDTH_REG Register address width is 32. (RO)

SDHOST_DATA_WIDTH_REG Regisger data widht is 32. (RO)

SDHOST_BUS_TYPE_REG Register config is APB bus. (RO)

SDHOST_CARD_NUM_REG Support card number is 2. (RO)

SDHOST_CARD_TYPE_REG Hardware support SDIO and MMC. (RO)

Register 17.28. SDHOST_UHS_REG (0x0074)

res
er

ve
d

0x0000

31 18

(S
DHOST_

DDR_R
EG)

0x0

17 16

res
er

ve
d

0x0000

15 0

Reset

SDHOST_DDR_REG DDR mode selecton,1 bit for each card. (R/W)

0-Non-DDR mdoe.

1-DDR mdoe.

Espressif Systems 287
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.29. SDHOST_RST_N_REG (0x0078)

(re
se

rve
d)

0x00000000

31 2

SDHOST_
RST_

CARD_R
ESET

0x1

1 0

Reset

SDHOST_RST_CARD_RESET Hardware reset.

1: Active mode;

0: Reset.

These bits cause the cards to enter pre-idle state, which requires them to be re-

initialized. SDHOST_RST_CARD_RESET[0] should be set to 1’b0 to reset card0, SD-

HOST_RST_CARD_RESET[1] should be set to 1’b0 to reset card1. (R/W)

Espressif Systems 288
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.30. SDHOST_BMOD_REG (0x0080)

(re
se

rve
d)

0 0

31 11

SDHOST_
BM

OD_P
BL

0x0

10 8

SDHOST_
BM

OD_D
E

0

7

(re
se

rve
d)

0x00

6 2

SDHOST_
BM

OD_F
B

0

1

SDHOST_
BM

OD_S
W

R

0

0

Reset

SDHOST_BMOD_PBL Programmable Burst Length. These bits indicate the maximum number of

beats to be performed in one IDMAC�Internal DMA Control�transaction. The IDMAC will always

attempt to burst as specified in PBL each time it starts a burst transfer on the host bus. The

permissible values are 1, 4, 8, 16, 32, 64, 128 and 256. This value is the mirror of MSIZE of

FIFOTH register. In order to change this value, write the required value to FIFOTH register. This is

an encode value as follows: (RO)

000: 1-byte transfer;

001: 4-byte transfer;

010: 8-byte transfer;

011: 16-byte transfer;

100: 32-byte transfer;

101: 64-byte transfer;

110: 128-byte transfer;

111: 256-byte transfer.

PBL is a read-only value and is applicable only for data access, it does not apply to descriptor

access.

SDHOST_BMOD_DE IDMAC Enable. When set, the IDMAC is enabled. (RO)

SDHOST_BMOD_FB Fixed Burst. Controls whether the AHB Master interface performs fixed burst

transfers or not. When set, the AHB will use only SINGLE, INCR4, INCR8 or INCR16 during start of

normal burst transfers. When reset, the AHB will use SINGLE and INCR burst transfer operations.

(R/W)

SDHOST_BMOD_SWR Software Reset. When set, the DMA Controller resets all its internal registers.

It is automatically cleared after one clock cycle. (R/W)

Register 17.31. SDHOST_PLDMND_REG (0x0080)

0x00000000

31 0

Reset

SDHOST_PLDMND_REG Poll Demand. If the OWNER bit of a descriptor is not set, the FSM goes

to the Suspend state. The host needs to write any value into this register for the IDMAC FSM to

resume normal descriptor fetch operation. This is a write only . (WO)

Espressif Systems 289
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.32. SDHOST_DBADDR_REG (0x0088)

0x00000000

31 0

Reset

SDHOST_DBADDR_REG Start of Descriptor List. Contains the base address of the First Descriptor.

The LSB bits [1:0] are ignored and taken as all-zero by the IDMAC internally. Hence these LSB bits

may be treated as read-only. (R/W)

Espressif Systems 290
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.33. SDHOST_IDSTS_REG (0x008C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

SDHOST_
ID

STS
_F

SM

0x0

16 13

SDHOST_
ID

STS
_F

BE_C
ODE

0x0

12 10

SDHOST_
ID

STS
_A

IS

0

9

SDHOST_
ID

STS
_N

IS

0

8

(re
se

rve
d)

0 0

7 6

SDHOST_
ID

STS
_C

ES

0

5

SDHOST_
ID

STS
_D

U

0

4

(re
se

rve
d)

0

3

SDHOST_
ID

STS
_F

BE

0

2

SDHOST_
ID

STS
_R

I

0

1

SDHOST_
ID

STS
_T

I

0

0

Reset

SDHOST_IDSTS_FSM DMAC FSM present state. (RO)

0: DMA_IDLE (idle state);

1: DMA_SUSPEND (suspend state);

2: DESC_RD (descriptor reading state);

3: DESC_CHK (descriptor checking state);

4: DMA_RD_REQ_WAIT (read-data request waiting state);

5: DMA_WR_REQ_WAIT (write-data request waiting state);

6: DMA_RD (data-read state);

7: DMA_WR (data-write state);

8: DESC_CLOSE (descriptor close state).

SDHOST_IDSTS_FBE_CODE Fatal Bus Error Code. Indicates the type of error that caused a Bus

Error. Valid only when the Fatal Bus Error bit IDSTS[2] is set. This field does not generate an

interrupt. (RO)

001: Host Abort received during transmission;

010: Host Abort received during reception;

Others: Reserved.

SDHOST_IDSTS_AIS Abnormal Interrupt Summary. Logical OR of the following: IDSTS[2] : Fatal

Bus Interrupt, IDSTS[4] : DU bit Interrupt. Only unmasked bits affect this bit. This is a sticky bit

and must be cleared each time a corresponding bit that causes AIS to be set is cleared. Writing 1

clears this bit. (R/W)

SDHOST_IDSTS_NIS Normal Interrupt Summary. Logical OR of the following: IDSTS[0] : Transmit

Interrupt, IDSTS[1] : Receive Interrupt. Only unmasked bits affect this bit. This is a sticky bit and

must be cleared each time a corresponding bit that causes NIS to be set is cleared. Writing 1

clears this bit. (R/W)

Continued on the next page...

Espressif Systems 291
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.33. SDHOST_IDSTS_REG (0x008C)

Continued from the previous page...

SDHOST_IDSTS_CES Card Error Summary. Indicates the status of the transaction to/from the card,

also present in RINTSTS. Indicates the logical OR of the following bits: (R/W)

EBE : End Bit Error;

RTO : Response Timeout/Boot Ack Timeout;

RCRC : Response CRC;

SBE : Start Bit Error;

DRTO : Data Read Timeout/BDS timeout;

DCRC : Data CRC for Receive;

RE : Response Error.

Writing 1 clears this bit. The abort condition of the IDMAC depends on the setting of this CES bit.

If the CES bit is enabled, then the IDMAC aborts on a response error.

SDHOST_IDSTS_DU Descriptor Unavailable Interrupt. This bit is set when the descriptor is unavail-

able due to OWNER bit = 0 (DES0[31] = 0). Writing 1 clears this bit. (R/W)

SDHOST_IDSTS_FBE Fatal Bus Error Interrupt. Indicates that a Bus Error occurred (IDSTS[12:10]) .

When this bit is set, the DMA disables all its bus accesses. Writing 1 clears this bit. (R/W)

SDHOST_IDSTS_RI Receive Interrupt. Indicates the completion of data reception for a descriptor.

Writing 1 clears this bit. (R/W)

SDHOST_IDSTS_TI Transmit Interrupt. Indicates that data transmission is finished for a descriptor.

Writing 1 clears this bit. (R/W)

Espressif Systems 292
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.34. SDHOST_IDINTEN_REG (0x0090)

(re
se

rve
d)

0 0

31 10

SDHOST_
ID

IN
TE

N_A
I

0

9

SDHOST_
ID

IN
TE

N_N
I

0

8

(re
se

rve
d)

0 0

7 6

SDHOST_
ID

IN
TE

N_C
ES

0

5

SDHOST_
ID

IN
TE

N_D
U

0

4

(re
se

rve
d)

0

3

SDHOST_
ID

IN
TE

N_F
BE

0

2

SDHOST_
ID

IN
TE

N_R
I

0

1

SDHOST_
ID

IN
TE

N_T
I

0

0

Reset

SDHOST_IDINTEN_AI Abnormal Interrupt Summary Enable. When set, an abnormal interrupt is en-

abled. This bit enables the following bits:

IDINTEN[2]: Fatal Bus Error Interrupt; (R/W)

IDINTEN[4]: DU Interrupt.

SDHOST_IDINTEN_NI Normal Interrupt Summary Enable. When set, a normal interrupt is enabled.

When reset, a normal interrupt is disabled. This bit enables the following bits: (R/W)

IDINTEN[0]: Transmit Interrupt;

IDINTEN[1]: Receive Interrupt.

SDHOST_IDINTEN_CES Card Error summary Interrupt Enable. When set, it enables the Card Inter-

rupt summary. (R/W)

SDHOST_IDINTEN_DU Descriptor Unavailable Interrupt. When set along with Abnormal Interrupt

Summary Enable, the DU interrupt is enabled. (R/W)

SDHOST_IDINTEN_FBE Fatal Bus Error Enable. When set with Abnormal Interrupt Summary Enable,

the Fatal Bus Error Interrupt is enabled. When reset, Fatal Bus Error Enable Interrupt is disabled.

(R/W)

SDHOST_IDINTEN_RI Receive Interrupt Enable. When set with Normal Interrupt Summary Enable,

Receive Interrupt is enabled. When reset, Receive Interrupt is disabled. (R/W)

SDHOST_IDINTEN_TI Transmit Interrupt Enable. When set with Normal Interrupt Summary Enable,

Transmit Interrupt is enabled. When reset, Transmit Interrupt is disabled. (R/W)

Register 17.35. SDHOST_DSCADDR_REG (0x0094)

0x00000000

31 0

Reset

SDHOST_DSCADDR_REG Host Descriptor Address Pointer, updated by IDMAC during operation

and cleared on reset. This register points to the start address of the current descriptor read by the

IDMAC. (RO)

Espressif Systems 293
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.36. SDHOST_BUFADDR_REG (0x0098)

0x00000000

31 0

Reset

SDHOST_BUFADDR_REG Host Buffer Address Pointer, updated by IDMAC during operation and

cleared on reset. This register points to the current Data Buffer Address being accessed by the

IDMAC. (RO)

Register 17.37. SDHOST_CARDTHRCTL_REG (0x0100)

(S
DHOST_

CARDTH
RESHOLD

_R
EG)

0x000

31 16

(re
se

rve
d)

0x00

15 3

(S
DHOST_

CARDW
RTH

REN_R
EG)

0

2

(S
DHOST_

CARDCLR
IN

TE
N_R

EG)

0

1

(S
DHOST_

CARDRDTH
REN_R

EG)

0

0

Reset

SDHOST_CARDTHRESHOLD_REG The inside FIFO size is 512,This register is applicable when SD-

HOST_CARDERTHREN_REG is set to 1 or SDHOST_CARDRDTHREN_REG set to 1. (R/W)

SDHOST_CARDWRTHREN_REG Applicable when HS400 mode is enabled. (R/W)

1’b0-Card write Threshold disabled.

1’b1-Card write Threshold enabled.

SDHOST_CARDCLRINTEN_REG Busy clear interrupt generation: (R/W)

1’b0-Busy clear interrypt disabled.

1’b1-Busy clear interrypt enabled.

SDHOST_CARDRDTHREN_REG Card read threshold enable. (R/W)

1’b0-Card read threshold disabled.

1’b1-Card read threshold enabled.

Espressif Systems 294
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.38. SDHOST_EMMC_DDR_REG (0x010C)

(S
DHOST_

HS40
0_

M
ODE_R

EG)

0x0

31

(re
se

rve
d)

0x000000

30 2

(S
DHOST_

HALF
STA

RTB
IT_

REG)

0x0

1 0

Reset

SDHOST_HS400_MODE_REG Set 1 to enable HS400 mode. (R/W)

SDHOST_HALFSTARTBIT_REG Control for start bit detection mechanism duration of start bit.Each

bit refers to one slot.Set this bit to 1 for eMMC4.5 and above,set to 0 for SD applications.For

eMMC4.5,start bit can be: (R/W)

1’b0-Full cycle.

1’b1-less than one full cycle.

Register 17.39. SDHOST_ENSHIFT_REG (0x0110)

(re
se

rve
d)

0x0000000

31 4

(S
DHOST_

ENABLE
_S

HIFT
_R

EG)

0x0

3 0

Reset

DHOST_ENABLE_SHIFT_REG Control for the amount of phase shift provided on the default enables

in the design.Two bits assigned for each card. (R/W)

2’b00-Default phase shift.

2’b01-Enables shifted to next immediate positive edge.

2’b10-Enables shifted to next immediate negative edge.

2’b11-Reserved.

Register 17.40. SDHOST_BUFFIFO_REG (0x0200)

0x000000000

31 0

Reset

SDHOST_BUFFIFO_REG CPU write and read transmit data by FIFO. This register points to the cur-

rent Data FIFO . (RO)

Espressif Systems 295
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

17 SD/MMC Host Controller (SDHOST)

Register 17.41. SDHOST_CLK_DIV_EDGE_REG (0x0800)

(re
se

rve
d)

0x000

32 24

(S
DHOST_

CLK
_S

OURCE_R
EG)

0x0

23

(re
se

rve
d)

0x0

22 21

SDHOST_
CCLK

IN
_E

DGE_N

0x1

20 17

SDHOST_
CCLK

IN
_E

DGE_L

0x0

16 13

SDHOST_
CCLK

IN
_E

DGE_H

0x1

12 9

SDHOST_
CCLK

IN
_E

DGE_S
LF

_S
EL

0x0

8 6

SDHOST_
CCLK

IN
_E

DGE_S
AM

_S
EL

0x0

5 3

SDHOST_
CCLK

IN
_E

DGE_D
RV_S

EL

0x0

2 0

Reset

SDHOST_CLK_SOURCE_REG Set to 1 to use 160M PLL clock ,Set to 0 to use 40M XLTAL clock.

(R/W)

CCLKIN_EDGE_N This value should be equal to CCLKIN_EDGE_L. (R/W)

CCLKIN_EDGE_L The low level of the divider clock. The value should be larger than

CCLKIN_EDGE_H. (R/W)

CCLKIN_EDGE_H The high level of the divider clock. The value should be smaller than

CCLKIN_EDGE_L. (R/W)

CCLKIN_EDGE_SLF_SEL It is used to select the clock phase of the internal signal from phase90,

phase180, or phase270. (R/W)

CCLKIN_EDGE_SAM_SEL It is used to select the clock phase of the input signal from phase90,

phase180, or phase270. (R/W)

CCLKIN_EDGE_DRV_SEL It is used to select the clock phase of the output signal from phase90,

phase180, or phase270. (R/W)

Note: SD/MMC use this register to divide the 160M clock(CCLKIN_EDGE_H/CCLKIN_EDGE_L). The output

clock connect to sdio slave divider by this register and SDHOST_CLKDIV_REG,there are 4 clock source to

seleced by SDHOST_CLKSRC_REG register.

Espressif Systems 296
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

18 LED PWM Controller (LEDC)

18.1 Overview

The LED PWM Controller is a peripheral designed to generate PWM signals for LED control. It has specialized

features such as automatic duty cycle fading. However, the LED PWM Controller can also be used to generate

PWM signals for other purposes.

18.2 Features

The LED PWM Controller has the following features:

• Eight independent PWM generators (i.e. eight channels)

• Four independent timers that support division by fractions

• Automatic duty cycle fading (i.e. gradual increase/decrease of a PWM’s duty cycle without interference

from the processors) with interrupt generation on fade completion

• Adjustable phase of PWM signal output

• PWM signal output in low-power mode (Light-sleep mode)

• Maximum PWM resolution: 14 bits

Note that the four timers are identical regarding their features and operation. The following sections refer to the

timers collectively as Timerx (where x ranges from 0 to 3). Likewise, the eight PWM generators are also identical

in features and operation, and thus are collectively referred to as PWMn (where n ranges from 0 to 7).

Figure 18­1. LED PWM Architecture

18.3 Functional Description

18.3.1 Architecture

Figure 18-1 shows the architecture of the LED PWM Controller.

The four timers can be independently configured (i.e. clock divider, and counter overflow value) and each

internally maintains a timebase counter (i.e. a counter that counts on cycles of a reference clock). Each PWM

Espressif Systems 297
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

generator will select one of the timers and uses the timer’s counter value as a reference to generate its PWM

signal.

Figure 18-2 illustrates the main functional blocks of the timer and the PWM generator.

Figure 18­2. LED PWM Generator Diagram

18.3.2 Timers

Each timer in LED PWM Controller internally maintains a timebase counter. Referring to Figure 18-2, this clock

signal used by the timebase counter is named ref_pulsex. All timers use the same clock source LEDC_CLKx,

which is then passed through a clock divider to generate ref_pulsex for the counter.

18.3.2.1 Clock Source

Software configuring registers for LED PWM is clocked by APB_CLK. For more information about APB_CLK, see

Chapter 3 Reset and Clock. To use the LED PWM pheripheral, the APB_CLK signal to the LED PWM has to be

enabled. The APB_CLK signal to LED PWM can be enabled by setting the SYSTEM_LEDC_CLK_EN field in the

register SYSTEM_PERIP_CLK_EN0_REG and be reset via software by setting the SYSTEM_LEDC_RST field in

the register SYSTEM_PERIP_RST_EN0_REG. For more information, please refer to Table 21 in Chapter 11

System Registers (SYSREG) [to be added later].

Timers in the LED PWM Controller choose their common clock source from one of the following clock signals:

APB_CLK, FOSC_CLK and XTAL_CLK (see Chapter 3 Reset and Clock for more details about each clock signal).

The procedure for selecting a clock source signal for LEDC_CLKx is described below:

• APB_CLK: Set LEDC_APB_CLK_SEL[1:0] to 1

• FOSC_CLK: Set LEDC_APB_CLK_SEL[1:0] to 2

• XTAL_CLK: Set LEDC_APB_CLK_SEL[1:0] to 3

The LEDC_CLKx signal will then be passed through the clock divider.

Espressif Systems 298
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

18.3.2.2 Clock Divider Configuration

The LEDC_CLKx signal is passed through a clock divider to generate the ref_pulsex signal for the counter. The

frequency of ref_pulsex is equal to the frequency of LEDC_CLKx divided by the LEDC_CLK_DIV_TIMERx divider

value (see Figure 18-2).

The LEDC_CLK_DIV_TIMERx divider value is a fractional clock divider. Thus, it supports non-integer divider

values. LEDC_CLK_DIV_TIMERx is configured via the LEDC_CLK_DIV_TIMERx field according to the following

equation.

LEDC_CLK_DIV _TIMERx = A+ B
256

• A corresponds to the most significant 10 bits of LEDC_CLK_DIV_TIMERx (i.e.

LEDC_TIMERx_CONF_REG[21:12])

• The fractional part B corresponds to the least significant 8 bits of LEDC_CLK_DIV_TIMERx

(i.e. LEDC_TIMERx_CONF_REG[11:4])

When the fractional part B is zero, LEDC_CLK_DIV_TIMERx is equivalent to an integer divider value (i.e. an

integer prescaler). In other words, a ref_pulsex clock pulse is generated after every A number of LEDC_CLKx

clock pulses.

However, when B is nonzero, LEDC_CLK_DIV_TIMERx becomes a non-integer divider value. The clock divider

implements non-integer frequency division by alternating between A and (A+1) LEDC_CLKx clock pulses per

ref_pulsex clock pulse. This will result in the average frequency of ref_pulsex clock pulse being the desired

frequency (i.e. the non-integer divided frequency). For every 256 ref_pulsex clock pulses:

• A number of B ref_pulsex clock pulses will consist of (A+1) LEDC_CLKx clock pulses

• A number of (256-B) ref_pulsex clock pulses will consist of A LEDC_CLKx clock pulses

• The ref_pulsex clock pulses consisting of (A+1) pulses are evenly distributed amongst those consisting of A

pulses

Figure 18-3 illustrates the relation between LEDC_CLKx clock pulses and ref_pulsex clock pulses when dividing

by a non-integer LEDC_CLK_DIV_TIMERx.

Figure 18­3. Frequency Division When LEDC_CLK_DIV_TIMERx is a Non­Integer Value

To change the timer’s clock divider value at runtime, first set the LEDC_CLK_DIV_TIMERx field, and then set the

LEDC_TIMERx_PARA_UP field to apply the new configuration. This will cause the newly configured values to

take effect upon the next overflow of the counter. LEDC_TIMERx_PARA_UP field will be automatically cleared by

hardware.

Espressif Systems 299
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

18.3.2.3 14­bit Counter

Each timer contains a 14-bit timebase counter that uses ref_pulsex as its reference clock (see Figure 18-2). The

LEDC_TIMERx_DUTY_RES field configures the overflow value of this 14-bit counter. Hence, the maximum

resolution of the PWM signal is 14 bits. The counter counts up to 2LEDC_TIMERx_DUTY _RES − 1, overflows and

begins counting from 0 again. The counter’s value can be read, reset, and suspended by software.

The counter can trigger LEDC_TIMERx_OVF_INT interrupt (generated automatically by hardware without

configuration) every time the counter overflows. It can also be configured to trigger LEDC_OVF_CNT_CHn_INT

interrupt after the counter overflows LEDC_OV F_NUM_CHn+ 1 times. To configure

LEDC_OVF_CNT_CHn_INT interrupt, please:

1. Configure LEDC_TIMER_SEL_CHn as the counter for the PWM generator

2. Enable the counter by setting LEDC_OVF_CNT_EN_CHn

3. Set LEDC_OVF_NUM_CHn to the number of counter overflows to generate an interrupt, minus 1

4. Enable the overflow interrupt by setting LEDC_OVF_CNT_CHn_INT_ENA

5. Set LEDC_TIMERx_DUTY_RES to enable the timer and wait for a LEDC_OVF_CNT_CHn_INT interrupt

Referring to Figure 18-2, the frequency of a PWM generator output signal (sig_outn) is dependent on the

frequency of the timer’s clock source (LEDC_CLKx), the clock divider value (LEDC_CLK_DIV_TIMERx), and the

range of the counter (LEDC_TIMERx_DUTY_RES):

fPWM =
fLEDC_CLKx

LEDC_CLK_DIVx · 2LEDC_TIMERx_DUTY_RES

To change the overflow value at runtime, first set the LEDC_TIMERx_DUTY_RES field, and then set the

LEDC_TIMERx_PARA_UP field. This will cause the newly configured values to take effect upon the next overflow

of the counter. If LEDC_OVF_CNT_EN_CHn field is reconfigured, LEDC_TIMERx_PARA_UP should also be set to

apply the new configuration. In summary, these configuration values need to be updated by setting

LEDC_TIMERx_PARA_UP. LEDC_TIMERx_PARA_UP field will be automatically cleared by hardware.

18.3.3 PWM Generators

To generate a PWM signal, a PWM generator (PWMn) selects a timer (Timerx). Each PWM generator can be

configured separately by setting LEDC_TIMER_SEL_CHn to use one of four timers to generate the PWM

output.

As shown in Figure 18-2, each PWM generator has a comparator and two multiplexers. A PWM generator

compares the timer’s 14-bit counter value (Timerx_cnt) to two trigger values Hpointn and Lpointn. When the

timer’s counter value is equal to Hpointn or Lpointn, the PWM signal is high or low, respectively, as described

below:

• If Timerx_cnt == Hpointn, sig_outn is 1.

• If Timerx_cnt == Lpointn, sig_outn is 0.

Figure 18-4 illustrates how Hpointn or Lpointn are used to generate a fixed duty cycle PWM output signal.

For a particular PWM generator (PWMn), its Hpointn is sampled from the LEDC_HPOINT_CHn field each time the

selected timer’s counter overflows. Likewise, Lpointn is also sampled on every counter overflow and is calculated

from the sum of the LEDC_DUTY_CHn[18:4] and LEDC_HPOINT_CHn fields. By setting Hpointn and Lpointn via

Espressif Systems 300
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

Figure 18­4. LED_PWM Output Signal Diagram

the LEDC_HPOINT_CHn and LEDC_DUTY_CHn[18:4] fields, the relative phase and duty cycle of the PWM

output can be set.

The PWM output signal (sig_outn) is enabled by setting LEDC_SIG_OUT_EN_CHn. When

LEDC_SIG_OUT_EN_CHn is cleared, PWM signal output is disabled, and the output signal (sig_outn) will output

a constant level as specified by LEDC_IDLE_LV_CHn.

The bits LEDC_DUTY_CHn[3:0] are used to dither the duty cycles of the PWM output signal (sig_outn) by

periodically altering the duty cycle of sig_outn. When LEDC_DUTY_CHn[3:0] is set to a non-zero value, then for

every 16 cycles of sig_outn, LEDC_DUTY_CHn[3:0] of those cycles will have PWM pulses that are one timer tick

longer than the other (16- LEDC_DUTY_CHn[3:0]) cycles. For instance, if LEDC_DUTY_CHn[18:4] is set to 10

and LEDC_DUTY_CHn[3:0] is set to 5, then 5 of 16 cycles will have a PWM pulse with a duty value of 11 and the

rest of the 16 cycles will have a PWM pulse with a duty value of 10. The average duty cycle after 16 cycles is

10.3125.

If fields LEDC_TIMER_SEL_CHn, LEDC_HPOINT_CHn, LEDC_DUTY_CHn[18:4] and LEDC_SIG_OUT_EN_CHn

are reconfigured, LEDC_PARA_UP_CHn must be set to apply the new configuration. This will cause the newly

configured values to take effect upon the next overflow of the counter. LEDC_PARA_UP_CHn field will be

automatically cleared by hardware.

18.3.4 Duty Cycle Fading

The PWM generators can fade the duty cycle of a PWM output signal (i.e. gradually change the duty cycle from

one value to another). If Duty Cycle Fading is enabled, the value of Lpointn will be incremented/decremented

after a fixed number of counter overflows occurs. Figure 18-5 illustrates Duty Cycle Fading.

Figure 18­5. Output Signal Diagram of Fading Duty Cycle

Duty Cycle Fading is configured using the following register fields:

• LEDC_DUTY_CHn is used to set the initial value of Lpointn

• LEDC_DUTY_START_CHn will enable/disable duty cycle fading when set/cleared

Espressif Systems 301
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

• LEDC_DUTY_CYCLE_CHn sets the number of counter overflow cycles for every Lpointn

increment/decrement. In other words, Lpointn will be incremented/decremented after

LEDC_DUTY_CYCLE_CHn counter overflows.

• LEDC_DUTY_INC_CHn configures whether Lpointn is incremented/decremented if set/cleared

• LEDC_DUTY_SCALE_CHn sets the amount that Lpointn is incremented/decremented

• LEDC_DUTY_NUM_CHn sets the maximum number of increments/decrements before duty cycle fading

stops.

If the fields LEDC_DUTY_CHn, LEDC_DUTY_START_CHn, LEDC_DUTY_CYCLE_CHn, LEDC_DUTY_INC_CHn,

LEDC_DUTY_SCALE_CHn, and LEDC_DUTY_NUM_CHn are reconfigured, LEDC_PARA_UP_CHn must be set

to apply the new configuration. After this field is set, the values for duty cycle fading will take effect at once.

LEDC_PARA_UP_CHn field will be automatically cleared by hardware.

18.3.5 Interrupts

• LEDC_OVF_CNT_CHn_INT: Triggered when the timer counter overflows for (LEDC_OVF_NUM_CHn + 1)

times and the register LEDC_OVF_CNT_EN_CHn is set to 1.

• LEDC_DUTY_CHNG_END_CHn_INT: Triggered when a fade on an LED PWM generator has finished.

• LEDC_TIMERx_OVF_INT: Triggered when an LED PWM timer has reached its maximum counter value.

Espressif Systems 302
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

18.4 Register Summary

The addresses in this section are relative to LED PWM Controller base address provided in Table 1-4 in Chapter 1

System and Memory.

Name Description Address Access

Configuration Register

LEDC_CH0_CONF0_REG Configuration register 0 for channel 0 0x0000 varies

LEDC_CH0_CONF1_REG Configuration register 1 for channel 0 0x000C R/W

LEDC_CH1_CONF0_REG Configuration register 0 for channel 1 0x0014 varies

LEDC_CH1_CONF1_REG Configuration register 1 for channel 1 0x0020 R/W

LEDC_CH2_CONF0_REG Configuration register 0 for channel 2 0x0028 varies

LEDC_CH2_CONF1_REG Configuration register 1 for channel 2 0x0034 R/W

LEDC_CH3_CONF0_REG Configuration register 0 for channel 3 0x003C varies

LEDC_CH3_CONF1_REG Configuration register 1 for channel 3 0x0048 R/W

LEDC_CH4_CONF0_REG Configuration register 0 for channel 4 0x0050 varies

LEDC_CH4_CONF1_REG Configuration register 1 for channel 4 0x005C R/W

LEDC_CH5_CONF0_REG Configuration register 0 for channel 5 0x0064 varies

LEDC_CH5_CONF1_REG Configuration register 1 for channel 5 0x0070 R/W

LEDC_CH6_CONF0_REG Configuration register 0 for channel 6 0x0078 varies

LEDC_CH6_CONF1_REG Configuration register 1 for channel 6 0x0084 R/W

LEDC_CH7_CONF0_REG Configuration register 0 for channel 7 0x008C varies

LEDC_CH7_CONF1_REG Configuration register 1 for channel 7 0x0098 R/W

LEDC_CONF_REG Global ledc configuration register 0x00D0 R/W

Hpoint Register

LEDC_CH0_HPOINT_REG High point register for channel 0 0x0004 R/W

LEDC_CH1_HPOINT_REG High point register for channel 1 0x0018 R/W

LEDC_CH2_HPOINT_REG High point register for channel 2 0x002C R/W

LEDC_CH3_HPOINT_REG High point register for channel 3 0x0040 R/W

LEDC_CH4_HPOINT_REG High point register for channel 4 0x0054 R/W

LEDC_CH5_HPOINT_REG High point register for channel 5 0x0068 R/W

LEDC_CH6_HPOINT_REG High point register for channel 6 0x007C R/W

LEDC_CH7_HPOINT_REG High point register for channel 7 0x0090 R/W

Duty Cycle Register

LEDC_CH0_DUTY_REG Initial duty cycle for channel 0 0x0008 R/W

LEDC_CH0_DUTY_R_REG Current duty cycle for channel 0 0x0010 RO

LEDC_CH1_DUTY_REG Initial duty cycle for channel 1 0x001C R/W

LEDC_CH1_DUTY_R_REG Current duty cycle for channel 1 0x0024 RO

LEDC_CH2_DUTY_REG Initial duty cycle for channel 2 0x0030 R/W

LEDC_CH2_DUTY_R_REG Current duty cycle for channel 2 0x0038 RO

LEDC_CH3_DUTY_REG Initial duty cycle for channel 3 0x0044 R/W

LEDC_CH3_DUTY_R_REG Current duty cycle for channel 3 0x004C RO

LEDC_CH4_DUTY_REG Initial duty cycle for channel 4 0x0058 R/W

LEDC_CH4_DUTY_R_REG Current duty cycle for channel 4 0x0060 RO

LEDC_CH5_DUTY_REG Initial duty cycle for channel 5 0x006C R/W

Espressif Systems 303
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

Name Description Address Access

LEDC_CH5_DUTY_R_REG Current duty cycle for channel 5 0x0074 RO

LEDC_CH6_DUTY_REG Initial duty cycle for channel 6 0x0080 R/W

LEDC_CH6_DUTY_R_REG Current duty cycle for channel 6 0x0088 RO

LEDC_CH7_DUTY_REG Initial duty cycle for channel 7 0x0094 R/W

LEDC_CH7_DUTY_R_REG Current duty cycle for channel 7 0x009C RO

Timer Register

LEDC_TIMER0_CONF_REG Timer 0 configuration 0x00A0 varies

LEDC_TIMER0_VALUE_REG Timer 0 current counter value 0x00A4 RO

LEDC_TIMER1_CONF_REG Timer 1 configuration 0x00A8 varies

LEDC_TIMER1_VALUE_REG Timer 1 current counter value 0x00AC RO

LEDC_TIMER2_CONF_REG Timer 2 configuration 0x00B0 varies

LEDC_TIMER2_VALUE_REG Timer 2 current counter value 0x00B4 RO

LEDC_TIMER3_CONF_REG Timer 3 configuration 0x00B8 varies

LEDC_TIMER3_VALUE_REG Timer 3 current counter value 0x00BC RO

Interrupt Register

LEDC_INT_RAW_REG Raw interrupt status 0x00C0 RO

LEDC_INT_ST_REG Masked interrupt status 0x00C4 RO

LEDC_INT_ENA_REG Interrupt enable bits 0x00C8 R/W

LEDC_INT_CLR_REG Interrupt clear bits 0x00CC WO

Version Register

LEDC_DATE_REG Version control register 0x00FC R/W

Espressif Systems 304
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

18.5 Registers

The addresses in this section are relative to LED PWM Controller base address provided in Table 1-4 in Chapter 1

System and Memory.

Register 18.1. LEDC_CHn_CONF0_REG (n: 0­7) (0x0000+0x14*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

LE
DC_O

VF_
CNT_

RESET_
ST_

CHn

0

17

LE
DC_O

VF_
CNT_

RESET_
CHn

0

16

LE
DC_O

VF_
CNT_

EN_C
Hn

0

15

LE
DC_O

VF_
NUM

_C
Hn

0x0

14 5

LE
DC_P

ARA_U
P_C

Hn

0

4

LE
DC_ID

LE
_L

V_C
Hn

0

3

LE
DC_S

IG
_O

UT_
EN_C

Hn

0

2

LE
DC_T

IM
ER_S

EL_
CHn

0x0

1 0

Reset

LEDC_TIMER_SEL_CHn This field is used to select one of timers for channel n.

0: select timer0

1: select timer1

2: select timer2

3: select timer3 (R/W)

LEDC_SIG_OUT_EN_CHn Set this bit to enable signal output on channel n. (R/W)

LEDC_IDLE_LV_CHn This bit is used to control the output value when channel n is inactive (when

LEDC_SIG_OUT_EN_CHn is 0). (R/W)

LEDC_PARA_UP_CHn This bit is used to update the listed fields below for channel n, and will be

automatically cleared by hardware. (WO)

• LEDC_HPOINT_CHn

• LEDC_DUTY_START_CHn

• LEDC_SIG_OUT_EN_CHn

• LEDC_TIMER_SEL_CHn

• LEDC_DUTY_NUM_CHn

• LEDC_DUTY_CYCLE_CHn

• LEDC_DUTY_SCALE_CHn

• LEDC_DUTY_INC_CHn

• LEDC_OVF_CNT_EN_CHn

Continued on the next page...

Espressif Systems 305
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

Register 18.1. LEDC_CHn_CONF0_REG (n: 0­7) (0x0000+0x14*n)

Continued from the previous page...

LEDC_OVF_NUM_CHn This register is used to configure the maximum times of overflow minus

1. The LEDC_OVF_CNT_CHn_INT interrupt will be triggered when channel n overflows for

(LEDC_OVF_NUM_CHn + 1) times. (R/W)

LEDC_OVF_CNT_EN_CHn This bit is used to count the number of times when the timer selected by

channel n overflows.(R/W)

LEDC_OVF_CNT_RESET_CHn Set this bit to reset the timer-overflow counter of channel n. (WO)

LEDC_OVF_CNT_RESET_ST_CHn This is the status bit of LEDC_OVF_CNT_RESET_CHn. (RO)

Register 18.2. LEDC_CHn_CONF1_REG (n: 0­7) (0x000C+0x14*n)

LE
DC_D

UTY
_S

TA
RT_

CHn

0

31

LE
DC_D

UTY
_IN

C_C
Hn

1

30

LE
DC_D

UTY
_N

UM
_C

Hn

0x0

29 20

LE
DC_D

UTY
_C

YCLE
_C

Hn

0x0

19 10

LE
DC_D

UTY
_S

CALE
_C

Hn

0x0

9 0

Reset

LEDC_DUTY_SCALE_CHn This register is used to configure the changing step scale of duty on chan-

nel n. (R/W)

LEDC_DUTY_CYCLE_CHn The duty will change every LEDC_DUTY_CYCLE_CHn on channel n.

(R/W)

LEDC_DUTY_NUM_CHn This register is used to control the number of times the duty cycle will be

changed. (R/W)

LEDC_DUTY_INC_CHn This register is used to increase or decrease the duty of output signal on

channel n. 1: Increase; 0: Decrease. (R/W)

LEDC_DUTY_START_CHn Other configured fields in LEDC_CHn_CONF1_REG will start to take ef-

fect upon the next timer overflow when this bit is set to 1. (R/W)

Espressif Systems 306
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

Register 18.3. LEDC_CONF_REG (0x00D0)

LE
DC_C

LK
_E

N

0

31

(re
se

rve
d)

0 0

30 2

LE
DC_A

PB_C
LK

_S
EL

0x0

1 0

Reset

LEDC_APB_CLK_SEL This field is used to select the common clock source for all the 4 timers.

1: APB_CLK; 2: FOSC_CLK; 3: XTAL_CLK. (R/W)

LEDC_CLK_EN This bit is used to control clock.

1: Force clock on for register. 0: Support clock only when application writes registers. (R/W)

Register 18.4. LEDC_CHn_HPOINT_REG (n: 0­7) (0x0004+0x14*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

LE
DC_H

POIN
T_

CHn

0x00

13 0

Reset

LEDC_HPOINT_CHn The output value changes to high when the selected timers has reached the

value specified by this register. (R/W)

Register 18.5. LEDC_CHn_DUTY_REG (n: 0­7) (0x0008+0x14*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

LE
DC_D

UTY
_C

Hn

0x000

18 0

Reset

LEDC_DUTY_CHn This register is used to change the output duty by controlling the Lpoint. The

output value turns to low when the selected timers has reached the Lpoint. (R/W)

Espressif Systems 307
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

Register 18.6. LEDC_CHn_DUTY_R_REG (n: 0­7) (0x0010+0x14*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

LE
DC_D

UTY
_R

_C
Hn

0x000

18 0

Reset

LEDC_DUTY_R_CHn This register stores the current duty of output signal on channel n. (RO)

Register 18.7. LEDC_TIMERx_CONF_REG (x: 0­3) (0x00A0+0x8*x)

(re
se

rve
d)

0 0 0 0 0 0

31 26

LE
DC_T

IM
ERx

_P
ARA_U

P

0

25

(re
se

rve
d)

0

24

LE
DC_T

IM
ERx

_R
ST

1

23

LE
DC_T

IM
ERx

_P
AUSE

0

22

LE
DC_C

LK
_D

IV_T
IM

ERx

0x000

21 4

LE
DC_T

IM
ERx

_D
UTY

_R
ES

0x0

3 0

Reset

LEDC_TIMERx_DUTY_RES This register is used to control the range of the counter in timer x. (R/W)

LEDC_CLK_DIV_TIMERx This register is used to configure the divisor for the divider in timer x. The

least significant eight bits represent the fractional part. (R/W)

LEDC_TIMERx_PAUSE This bit is used to suspend the counter in timer x. (R/W)

LEDC_TIMERx_RST This bit is used to reset timer x. The counter will show 0 after reset. (R/W)

LEDC_TIMERx_PARA_UP Set this bit to update LEDC_CLK_DIV_TIMERx and

LEDC_TIMERx_DUTY_RES. (WO)

Register 18.8. LEDC_TIMERx_VALUE_REG (x: 0­3) (0x00A4+0x8*x)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

LE
DC_T

IM
ERx

_C
NT

0x00

13 0

Reset

LEDC_TIMERx_CNT This register stores the current counter value of timer x. (RO)

Espressif Systems 308
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

Register 18.9. LEDC_INT_RAW_REG (0x00C0)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

LE
DC_O

VF_
CNT_

CH7_
IN

T_
RAW

0

19

LE
DC_O

VF_
CNT_

CH6_
IN

T_
RAW

0

18

LE
DC_O

VF_
CNT_

CH5_
IN

T_
RAW

0

17

LE
DC_O

VF_
CNT_

CH4_
IN

T_
RAW

0

16

LE
DC_O

VF_
CNT_

CH3_
IN

T_
RAW

0

15

LE
DC_O

VF_
CNT_

CH2_
IN

T_
RAW

0

14

LE
DC_O

VF_
CNT_

CH1_
IN

T_
RAW

0

13

LE
DC_O

VF_
CNT_

CH0_
IN

T_
RAW

0

12

LE
DC_D

UTY
_C

HNG_E
ND_C

H7_
IN

T_
RAW

0

11

LE
DC_D

UTY
_C

HNG_E
ND_C

H6_
IN

T_
RAW

0

10

LE
DC_D

UTY
_C

HNG_E
ND_C

H5_
IN

T_
RAW

0

9

LE
DC_D

UTY
_C

HNG_E
ND_C

H4_
IN

T_
RAW

0

8

LE
DC_D

UTY
_C

HNG_E
ND_C

H3_
IN

T_
RAW

0

7

LE
DC_D

UTY
_C

HNG_E
ND_C

H2_
IN

T_
RAW

0

6

LE
DC_D

UTY
_C

HNG_E
ND_C

H1_
IN

T_
RAW

0

5

LE
DC_D

UTY
_C

HNG_E
ND_C

H0_
IN

T_
RAW

0

4

LE
DC_T

IM
ER3_

OVF_
IN

T_
RAW

0

3

LE
DC_T

IM
ER2_

OVF_
IN

T_
RAW

0

2

LE
DC_T

IM
ER1_

OVF_
IN

T_
RAW

0

1

LE
DC_T

IM
ER0_

OVF_
IN

T_
RAW

0

0

Reset

LEDC_TIMERx_OVF_INT_RAW Triggered when the timerx has reached its maximum counter value.

(RO)

LEDC_DUTY_CHNG_END_CHn_INT_RAW Interrupt raw bit for channel n. Triggered when the grad-

ual change of duty has finished. (RO)

LEDC_OVF_CNT_CHn_INT_RAW Interrupt raw bit for channel n. Triggered when the ovf_cnt has

reached the value specified by LEDC_OVF_NUM_CHn. (RO)

Register 18.10. LEDC_INT_ST_REG (0x00C4)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

LE
DC_O

VF_
CNT_

CH7_
IN

T_
ST

0

19

LE
DC_O

VF_
CNT_

CH6_
IN

T_
ST

0

18

LE
DC_O

VF_
CNT_

CH5_
IN

T_
ST

0

17

LE
DC_O

VF_
CNT_

CH4_
IN

T_
ST

0

16

LE
DC_O

VF_
CNT_

CH3_
IN

T_
ST

0

15

LE
DC_O

VF_
CNT_

CH2_
IN

T_
ST

0

14

LE
DC_O

VF_
CNT_

CH1_
IN

T_
ST

0

13

LE
DC_O

VF_
CNT_

CH0_
IN

T_
ST

0

12

LE
DC_D

UTY
_C

HNG_E
ND_C

H7_
IN

T_
ST

0

11

LE
DC_D

UTY
_C

HNG_E
ND_C

H6_
IN

T_
ST

0

10

LE
DC_D

UTY
_C

HNG_E
ND_C

H5_
IN

T_
ST

0

9

LE
DC_D

UTY
_C

HNG_E
ND_C

H4_
IN

T_
ST

0

8

LE
DC_D

UTY
_C

HNG_E
ND_C

H3_
IN

T_
ST

0

7

LE
DC_D

UTY
_C

HNG_E
ND_C

H2_
IN

T_
ST

0

6

LE
DC_D

UTY
_C

HNG_E
ND_C

H1_
IN

T_
ST

0

5

LE
DC_D

UTY
_C

HNG_E
ND_C

H0_
IN

T_
ST

0

4

LE
DC_T

IM
ER3_

OVF_
IN

T_
ST

0

3

LE
DC_T

IM
ER2_

OVF_
IN

T_
ST

0

2

LE
DC_T

IM
ER1_

OVF_
IN

T_
ST

0

1

LE
DC_T

IM
ER0_

OVF_
IN

T_
ST

0

0

Reset

LEDC_TIMERx_OVF_INT_ST This is the masked interrupt status bit for the LEDC_TIMERx_OVF_INT

interrupt when LEDC_TIMERx_OVF_INT_ENA is set to 1. (RO)

LEDC_DUTY_CHNG_END_CHn_INT_ST This is the masked interrupt status bit for the

LEDC_DUTY_CHNG_END_CHn_INT interrupt when LEDC_DUTY_CHNG_END_CHn_INT_ENAIS

set to 1. (RO)

LEDC_OVF_CNT_CHn_INT_ST This is the masked interrupt status bit for the

LEDC_OVF_CNT_CHn_INT interrupt when LEDC_OVF_CNT_CHn_INT_ENA is set to 1. (RO)

Espressif Systems 309
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

Register 18.11. LEDC_INT_ENA_REG (0x00C8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

LE
DC_O

VF_
CNT_

CH7_
IN

T_
ENA

0

19

LE
DC_O

VF_
CNT_

CH6_
IN

T_
ENA

0

18

LE
DC_O

VF_
CNT_

CH5_
IN

T_
ENA

0

17

LE
DC_O

VF_
CNT_

CH4_
IN

T_
ENA

0

16

LE
DC_O

VF_
CNT_

CH3_
IN

T_
ENA

0

15

LE
DC_O

VF_
CNT_

CH2_
IN

T_
ENA

0

14

LE
DC_O

VF_
CNT_

CH1_
IN

T_
ENA

0

13

LE
DC_O

VF_
CNT_

CH0_
IN

T_
ENA

0

12

LE
DC_D

UTY
_C

HNG_E
ND_C

H7_
IN

T_
ENA

0

11

LE
DC_D

UTY
_C

HNG_E
ND_C

H6_
IN

T_
ENA

0

10

LE
DC_D

UTY
_C

HNG_E
ND_C

H5_
IN

T_
ENA

0

9

LE
DC_D

UTY
_C

HNG_E
ND_C

H4_
IN

T_
ENA

0

8

LE
DC_D

UTY
_C

HNG_E
ND_C

H3_
IN

T_
ENA

0

7

LE
DC_D

UTY
_C

HNG_E
ND_C

H2_
IN

T_
ENA

0

6

LE
DC_D

UTY
_C

HNG_E
ND_C

H1_
IN

T_
ENA

0

5

LE
DC_D

UTY
_C

HNG_E
ND_C

H0_
IN

T_
ENA

0

4

LE
DC_T

IM
ER3_

OVF_
IN

T_
ENA

0

3

LE
DC_T

IM
ER2_

OVF_
IN

T_
ENA

0

2

LE
DC_T

IM
ER1_

OVF_
IN

T_
ENA

0

1

LE
DC_T

IM
ER0_

OVF_
IN

T_
ENA

0

0

Reset

LEDC_TIMERx_OVF_INT_ENA The interrupt enable bit for the LEDC_TIMERx_OVF_INT interrupt.

(R/W)

LEDC_DUTY_CHNG_END_CHn_INT_ENA The interrupt enable bit for the

LEDC_DUTY_CHNG_END_CHn_INT interrupt. (R/W)

LEDC_OVF_CNT_CHn_INT_ENA The interrupt enable bit for the LEDC_OVF_CNT_CHn_INT inter-

rupt. (R/W)

Register 18.12. LEDC_INT_CLR_REG (0x00CC)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

LE
DC_O

VF_
CNT_

CH7_
IN

T_
CLR

0

19

LE
DC_O

VF_
CNT_

CH6_
IN

T_
CLR

0

18

LE
DC_O

VF_
CNT_

CH5_
IN

T_
CLR

0

17

LE
DC_O

VF_
CNT_

CH4_
IN

T_
CLR

0

16

LE
DC_O

VF_
CNT_

CH3_
IN

T_
CLR

0

15

LE
DC_O

VF_
CNT_

CH2_
IN

T_
CLR

0

14

LE
DC_O

VF_
CNT_

CH1_
IN

T_
CLR

0

13

LE
DC_O

VF_
CNT_

CH0_
IN

T_
CLR

0

12

LE
DC_D

UTY
_C

HNG_E
ND_C

H7_
IN

T_
CLR

0

11

LE
DC_D

UTY
_C

HNG_E
ND_C

H6_
IN

T_
CLR

0

10

LE
DC_D

UTY
_C

HNG_E
ND_C

H5_
IN

T_
CLR

0

9

LE
DC_D

UTY
_C

HNG_E
ND_C

H4_
IN

T_
CLR

0

8

LE
DC_D

UTY
_C

HNG_E
ND_C

H3_
IN

T_
CLR

0

7

LE
DC_D

UTY
_C

HNG_E
ND_C

H2_
IN

T_
CLR

0

6

LE
DC_D

UTY
_C

HNG_E
ND_C

H1_
IN

T_
CLR

0

5

LE
DC_D

UTY
_C

HNG_E
ND_C

H0_
IN

T_
CLR

0

4

LE
DC_T

IM
ER3_

OVF_
IN

T_
CLR

0

3

LE
DC_T

IM
ER2_

OVF_
IN

T_
CLR

0

2

LE
DC_T

IM
ER1_

OVF_
IN

T_
CLR

0

1

LE
DC_T

IM
ER0_

OVF_
IN

T_
CLR

0

0

Reset

LEDC_TIMERx_OVF_INT_CLR Set this bit to clear the LEDC_TIMERx_OVF_INT interrupt. (WO)

LEDC_DUTY_CHNG_END_CHn_INT_CLR Set this bit to clear the

LEDC_DUTY_CHNG_END_CHn_INT interrupt. (WO)

LEDC_OVF_CNT_CHn_INT_CLR Set this bit to clear the LEDC_OVF_CNT_CHn_INT interrupt. (WO)

Espressif Systems 310
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

18 LED PWM Controller (LEDC)

Register 18.13. LEDC_DATE_REG (0x00FC)

LE
DC_D

AT
E

0x19072601

31 0

Reset

LEDC_DATE This is the version control register. (R/W)

Espressif Systems 311
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

19 Pulse Count Controller (PCNT)

The pulse count controller (PCNT) is designed to count input pulses. It can increment or decrement a pulse

counter value by keeping track of rising (positive) or falling (negative) edges of the input pulse signal. The PCNT

has four independent pulse counters called units, which have their groups of registers. There is only one clock in

PCNT, which is APB_CLK. In this chapter, n denotes the number of a unit from 0 ~ 3.

Each unit includes two channels (ch0 and ch1) which can independently increment or decrement its pulse

counter value. The remainder of the chapter will mostly focus on channel 0 (ch0) as the functionality of the two

channels is identical.

As shown in Figure 19-1, each channel has two input signals:

1. One input pulse signal (e.g. sig_ch0_un, the input pulse signal for ch0 of unit n ch0)

2. One control signal (e.g. ctrl_ch0_un, the control signal for ch0 of unit n ch0)

Figure 19­1. PCNT Block Diagram

19.1 Features

A PCNT has the following features:

• Four independent pulse counters (units) that count from 1 to 65535

• Each unit consists of two independent channels sharing one pulse counter

• All channels have input pulse signals (e.g. sig_ch0_un) with their corresponding control signals (e.g.

ctrl_ch0_un)

• Independently filter glitches of input pulse signals (sig_ch0_un and sig_ch1_un) and control signals

(ctrl_ch0_un and ctrl_ch1_un) on each unit

• Each channel has the following parameters:

1. Selection between counting on positive or negative edges of the input pulse signal

Espressif Systems 312
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

2. Configuration to Increment, Decrement, or Disable counter mode for control signal’s high and low

states

19.2 Functional Description

Figure 19­2. PCNT Unit Architecture

Figure 19-2 shows PCNT’s architecture. As stated above, ctrl_ch0_un is the control signal for ch0 of unit n. Its

high and low states can be assigned different counter modes and used for pulse counting of the channel’s input

pulse signal sig_ch0_un on negative or positive edges. The available counter modes are as follows:

• Increment mode: When a channel detects an active edge of sig_ch0_un (can be configured by software),

the counter value pulse_cnt increases by 1. Upon reaching PCNT_CNT_H_LIM_Un, pulse_cnt is cleared. If

the channel’s counter mode is changed or if PCNT_CNT_PAUSE_Un is set before pulse_cnt reaches

PCNT_CNT_H_LIM_Un, then pulse_cnt freezes and its counter mode changes.

• Decrement mode: When a channel detects an active edge of sig_ch0_un (can be configured by software),

the counter value pulse_cnt decreases by 1. Upon reaching PCNT_CNT_L_LIM_Un, pulse_cnt is cleared. If

the channel’s counter mode is changed or if PCNT_CNT_PAUSE_Un is set before pulse_cnt reaches

PCNT_CNT_H_LIM_Un, then pulse_cnt freezes and its counter mode changes.

• Disable mode: Counting is disabled, and the counter value pulse_cnt freezes.

Table 19-1 to Table 19-4 provide information on how to configure the counter mode for channel 0.

Each unit has one filter for all its control and input pulse signals. A filter can be enabled with the bit

PCNT_FILTER_EN_Un. The filter monitors the signals and ignores all the noise, i.e. the glitches with pulse widths

shorter than PCNT_FILTER_THRES_Un APB clock cycles in length.

As previously mentioned, each unit has two channels which process different input pulse signals and increase or

decrease values via their respective inc_dec modules, then the two channels send these values to the adder

Espressif Systems 313
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

Table 19­1. Counter Mode. Positive Edge of Input Pulse Signal. Control Signal in Low State

PCNT_CH0_POS_MODE_Un PCNT_CH0_LCTRL_MODE_Un Counter Mode

1

0 Increment

1 Decrement

Others Disable

2

0 Decrement

1 Increment

Others Disable

Others N/A Disable

Table 19­2. Counter Mode. Positive Edge of Input Pulse Signal. Control Signal in High State

PCNT_CH0_POS_MODE_Un PCNT_CH0_HCTRL_MODE_Un Counter Mode

1

0 Increment

1 Decrement

Others Disable

2

0 Decrement

1 Increment

Others Disable

Others N/A Disable

Table 19­3. Counter Mode. Negative Edge of Input Pulse Signal. Control Signal in Low State

PCNT_CH0_NEG_MODE_Un PCNT_CH0_LCTRL_MODE_Un Counter Mode

1

0 Increment

1 Decrement

Others Disable

2

0 Decrement

1 Increment

Others Disable

Others N/A Disable

Table 19­4. Counter Mode. Negative Edge of Input Pulse Signal. Control Signal in High State

PCNT_CH0_NEG_MODE_Un PCNT_CH0_HCTRL_MODE_Un Counter Mode

1

0 Increment

1 Decrement

Others Disable

2

0 Decrement

1 Increment

Others Disable

Others N/A Disable

Espressif Systems 314
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

module which has a 16-bit wide signed register. This adder can be suspended by setting

PCNT_CNT_PAUSE_Un, and cleared by setting PCNT_PULSE_CNT_RST_Un.

The PCNT has five watchpoints that share one interrupt. The interrupt can be enabled or disabled by interrupt

enable signals of each individual watchpoint.

• Maximum count value: When pulse_cnt reaches PCNT_CNT_H_LIM_Un, a high limit interrupt is triggered

and PCNT_CNT_THR_H_LIM_LAT_Un is high.

• Minimum count value: When pulse_cnt reaches PCNT_CNT_L_LIM_Un, a low limit interrupt is triggered and

PCNT_CNT_THR_L_LIM_LAT_Un is high.

• Two threshold values: When pulse_cnt equals either PCNT_CNT_THRES0_Un or

PCNT_CNT_THRES1_Un, an interrupt is triggered and either PCNT_CNT_THR_THRES0_LAT_Un or

PCNT_CNT_THR_THRES1_LAT_Un is high respectively.

• Zero: When pulse_cnt is 0, an interrupt is triggered and PCNT_CNT_THR_ZERO_LAT_Un is valid.

19.3 Applications

In each unit, channel 0 and channel 1 can be configured to work independently or together. The three

subsections below provide details of channel 0 incrementing independently, channel 0 decrementing

independently, and channel 0 and channel 1 incrementing together. For other working modes not elaborated in

this section (e.g. channel 1 incrementing/decremeting independently, or one channel incrementing while the

other decrementing), reference can be made to these three subsections.

19.3.1 Channel 0 Incrementing Independently

Figure 19­3. Channel 0 Up Counting Diagram

Figure 19-3 illustrates how channel 0 is configured to increment independently on the positive edge of

sig_ch0_un while channel 1 is disabled (see subsection 19.2 for how to disable channel 1). The configuration of

channel 0 is shown below.

• PCNT_CH0_LCTRL_MODE_Un=0: When ctrl_ch0_un is low, the counter mode specified for the low state

turns on, in this case it is Increment mode.

• PCNT_CH0_HCTRL_MODE_Un=2: When ctrl_ch0_un is high, the counter mode specified for the low state

turns on, in this case it is Disable mode.

• PCNT_CH0_POS_MODE_Un=1: The counter increments on the positive edge of sig_ch0_un.

• PCNT_CH0_NEG_MODE_Un=0: The counter idles on the negative edge of sig_ch0_un.

Espressif Systems 315
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

• PCNT_CNT_H_LIM_Un=5: When pulse_cnt counts up to PCNT_CNT_H_LIM_Un, it is cleared.

19.3.2 Channel 0 Decrementing Independently

Figure 19­4. Channel 0 Down Counting Diagram

Figure 19-4 illustrates how channel 0 is configured to decrement independently on the positive edge of

sig_ch0_un while channel 1 is disabled. The configuration of channel 0 in this case differs from that in Figure 19-3

in the following aspects:

• PCNT_CH0_POS_MODE_Un=2: the counter decrements on the positive edge of sig_ch0_un.

• PCNT_CNT_L_LIM_Un=-5: when pulse_cnt counts down to PCNT_CNT_L_LIM_Un, it is cleared.

19.3.3 Channel 0 and Channel 1 Incrementing Together

Figure 19­5. Two Channels Up Counting Diagram

Figure 19-5 illustrates how channel 0 and channel 1 are configured to increment on the positive edge of

sig_ch0_un and sig_ch1_un respectively at the same time. It can be seen in Figure 19-5 that control signal

ctrl_ch0_un and ctrl_ch1_un have the same waveform, so as input pulse signal sig_ch0_un and sig_ch1_un. The

configuration procedure is shown below.

• For channel 0:

– PCNT_CH0_LCTRL_MODE_Un=0: When ctrl_ch0_un is low, the counter mode specified for the low

state turns on, in this case it is Increment mode.

– PCNT_CH0_HCTRL_MODE_Un=2: When ctrl_ch0_un is high, the counter mode specified for the low

state turns on, in this case it is Disable mode.

– PCNT_CH0_POS_MODE_Un=1: The counter increments on the positive edge of sig_ch0_un.

Espressif Systems 316
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

– PCNT_CH0_NEG_MODE_Un=0: The counter idles on the negative edge of sig_ch0_un.

• For channel 1:

– PCNT_CH1_LCTRL_MODE_Un=0: When ctrl_ch1_un is low, the counter mode specified for the low

state turns on, in this case it is Increment mode.

– PCNT_CH1_HCTRL_MODE_Un=2: When ctrl_ch1_un is high, the counter mode specified for the low

state turns on, in this case it is Disable mode.

– PCNT_CH1_POS_MODE_Un=1: The counter increments on the positive edge of sig_ch1_un.

– PCNT_CH1_NEG_MODE_Un=0: The counter idles on the negative edge of sig_ch1_un.

• PCNT_CNT_H_LIM_Un=10: When pulse_cnt counts up to PCNT_CNT_H_LIM_Un, it is cleared.

Espressif Systems 317
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

19.4 Register Summary

The addresses in this section are relative to Pulse Count Controller base address provided in Table 1-4 in Chapter

1 System and Memory.

Name Description Address Access

Configuration Register

PCNT_U0_CONF0_REG Configuration register 0 for unit 0 0x0000 R/W

PCNT_U0_CONF1_REG Configuration register 1 for unit 0 0x0004 R/W

PCNT_U0_CONF2_REG Configuration register 2 for unit 0 0x0008 R/W

PCNT_U1_CONF0_REG Configuration register 0 for unit 1 0x000C R/W

PCNT_U1_CONF1_REG Configuration register 1 for unit 1 0x0010 R/W

PCNT_U1_CONF2_REG Configuration register 2 for unit 1 0x0014 R/W

PCNT_U2_CONF0_REG Configuration register 0 for unit 2 0x0018 R/W

PCNT_U2_CONF1_REG Configuration register 1 for unit 2 0x001C R/W

PCNT_U2_CONF2_REG Configuration register 2 for unit 2 0x0020 R/W

PCNT_U3_CONF0_REG Configuration register 0 for unit 3 0x0024 R/W

PCNT_U3_CONF1_REG Configuration register 1 for unit 3 0x0028 R/W

PCNT_U3_CONF2_REG Configuration register 2 for unit 3 0x002C R/W

PCNT_CTRL_REG Control register for all counters 0x0060 R/W

Status Register

PCNT_U0_CNT_REG Counter value for unit 0 0x0030 RO

PCNT_U1_CNT_REG Counter value for unit 1 0x0034 RO

PCNT_U2_CNT_REG Counter value for unit 2 0x0038 RO

PCNT_U3_CNT_REG Counter value for unit 3 0x003C RO

PCNT_U0_STATUS_REG PNCT UNIT0 status register 0x0050 RO

PCNT_U1_STATUS_REG PNCT UNIT1 status register 0x0054 RO

PCNT_U2_STATUS_REG PNCT UNIT2 status register 0x0058 RO

PCNT_U3_STATUS_REG PNCT UNIT3 status register 0x005C RO

Interrupt Register

PCNT_INT_RAW_REG Interrupt raw status register 0x0040 RO

PCNT_INT_ST_REG Interrupt status register 0x0044 RO

PCNT_INT_ENA_REG Interrupt enable register 0x0048 R/W

PCNT_INT_CLR_REG Interrupt clear register 0x004C WO

Version Register

PCNT_DATE_REG PCNT version control register 0x00FC R/W

Espressif Systems 318
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

19.5 Registers

The addresses in this section are relative to Pulse Count Controller base address provided in Table 1-4 in Chapter

1 System and Memory.

Register 19.1. PCNT_Un_CONF0_REG (n: 0­3) (0x0000+0xC*n)

PCNT_
CH1_

LC
TR

L_
M

ODE_U
0

0x0

31 30

PCNT_
CH1_

HCTR
L_

M
ODE_U

0

0x0

29 28

PCNT_
CH1_

POS_M
ODE_U

0

0x0

27 26

PCNT_
CH1_

NEG_M
ODE_U

0

0x0

25 24

PCNT_
CH0_

LC
TR

L_
M

ODE_U
0

0x0

23 22

PCNT_
CH0_

HCTR
L_

M
ODE_U

0

0x0

21 20

PCNT_
CH0_

POS_M
ODE_U

0

0x0

19 18

PCNT_
CH0_

NEG_M
ODE_U

0

0x0

17 16

PCNT_
TH

R_T
HRES1_

EN_U
0

0

15

PCNT_
TH

R_T
HRES0_

EN_U
0

0

14

PCNT_
TH

R_L
_L

IM
_E

N_U
0

1

13

PCNT_
TH

R_H
_L

IM
_E

N_U
0

1

12

PCNT_
TH

R_Z
ERO_E

N_U
0

1

11

PCNT_
FIL

TE
R_E

N_U
0

1

10

PCNT_
FIL

TE
R_T

HRES_U
0

0x10

9 0

Reset

PCNT_FILTER_THRES_Un This sets the maximum threshold, in APB_CLK cycles, for the filter.

Any pulses with width less than this will be ignored when the filter is enabled. (R/W)

PCNT_FILTER_EN_Un This is the enable bit for unit n’s input filter. (R/W)

PCNT_THR_ZERO_EN_Un This is the enable bit for unit n’s zero comparator. (R/W)

PCNT_THR_H_LIM_EN_Un This is the enable bit for unit n’s thr_h_lim comparator. (R/W)

PCNT_THR_L_LIM_EN_Un This is the enable bit for unit n’s thr_l_lim comparator. (R/W)

PCNT_THR_THRES0_EN_Un This is the enable bit for unit n’s thres0 comparator. (R/W)

PCNT_THR_THRES1_EN_Un This is the enable bit for unit n’s thres1 comparator. (R/W)

PCNT_CH0_NEG_MODE_Un This register sets the behavior when the signal input of channel 0 de-

tects a negative edge.

1: Increase the counter; 2: Decrease the counter; 0, 3: No effect on counter (R/W)

PCNT_CH0_POS_MODE_Un This register sets the behavior when the signal input of channel 0 de-

tects a positive edge.

1: Increase the counter; 2: Decrease the counter; 0, 3: No effect on counter (R/W)

PCNT_CH0_HCTRL_MODE_Un This register configures how the

CHn_POS_MODE/CHn_NEG_MODE settings will be modified when the control signal is

high.

0: No modification; 1: Invert behavior (increase -> decrease, decrease -> increase); 2, 3: Inhibit

counter modification (R/W)

Continued on the next page...

Espressif Systems 319
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

Register 19.1. PCNT_Un_CONF0_REG (n: 0­3) (0x0000+0xC*n)

Continued from the previous page...

PCNT_CH0_LCTRL_MODE_Un This register configures how the

CHn_POS_MODE/CHn_NEG_MODE settings will be modified when the control signal is

low.

0: No modification; 1: Invert behavior (increase -> decrease, decrease -> increase); 2, 3: Inhibit

counter modification (R/W)

PCNT_CH1_NEG_MODE_Un This register sets the behavior when the signal input of channel 1 de-

tects a negative edge.

1: Increment the counter; 2: Decrement the counter; 0, 3: No effect on counter (R/W)

PCNT_CH1_POS_MODE_Un This register sets the behavior when the signal input of channel 1 de-

tects a positive edge.

1: Increment the counter; 2: Decrement the counter; 0, 3: No effect on counter (R/W)

PCNT_CH1_HCTRL_MODE_Un This register configures how the

CHn_POS_MODE/CHn_NEG_MODE settings will be modified when the control signal is

high.

0: No modification; 1: Invert behavior (increase -> decrease, decrease -> increase); 2, 3: Inhibit

counter modification (R/W)

PCNT_CH1_LCTRL_MODE_Un This register configures how the

CHn_POS_MODE/CHn_NEG_MODE settings will be modified when the control signal is

low.

0: No modification; 1: Invert behavior (increase -> decrease, decrease -> increase); 2, 3: Inhibit

counter modification (R/W)

Register 19.2. PCNT_Un_CONF1_REG (n: 0­3) (0x0004+0xC*n)

PCNT_
CNT_

TH
RES1_

U0

0x00

31 16

PCNT_
CNT_

TH
RES0_

U0

0x00

15 0

Reset

PCNT_CNT_THRES0_Un This register is used to configure the thres0 value for unit n. (R/W)

PCNT_CNT_THRES1_Un This register is used to configure the thres1 value for unit n. (R/W)

Espressif Systems 320
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

Register 19.3. PCNT_Un_CONF2_REG (n: 0­3) (0x0008+0xC*n)

PCNT_
CNT_

L_
LIM

_U
0

0x00

31 16

PCNT_
CNT_

H_L
IM

_U
0

0x00

15 0

Reset

PCNT_CNT_H_LIM_Un This register is used to configure the thr_h_lim value for unit n. (R/W)

PCNT_CNT_L_LIM_Un This register is used to configure the thr_l_lim value for unit n. (R/W)

Register 19.4. PCNT_CTRL_REG (0x0060)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

PCNT_
CLK

_E
N

0

16

(re
se

rve
d)

0 0 0 0 0 0 0 0

15 8

PCNT_
CNT_

PA
USE_U

3

0

7

PCNT_
PULS

E_C
NT_

RST_
U3

1

6

PCNT_
CNT_

PA
USE_U

2

0

5

PCNT_
PULS

E_C
NT_

RST_
U2

1

4

PCNT_
CNT_

PA
USE_U

1

0

3

PCNT_
PULS

E_C
NT_

RST_
U1

1

2

PCNT_
CNT_

PA
USE_U

0

0

1

PCNT_
PULS

E_C
NT_

RST_
U0

1

0

Reset

PCNT_PULSE_CNT_RST_Un Set this bit to clear unit n’s counter. (R/W)

PCNT_CNT_PAUSE_Un Set this bit to freeze unit n’s counter. (R/W)

PCNT_CLK_EN The registers clock gate enable signal of PCNT module. 1: the registers can be read

and written by application. 0: the registers can not be read or written by application (R/W)

Register 19.5. PCNT_Un_CNT_REG (n: 0­3) (0x0030+0x4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PCNT_
PULS

E_C
NT_

U0

0x00

15 0

Reset

PCNT_PULSE_CNT_Un This register stores the current pulse count value for unit n. (RO)

Espressif Systems 321
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

Register 19.6. PCNT_Un_STATUS_REG (n: 0­3) (0x0050+0x4*n)

(re
se

rve
d)

0 0

31 7

PCNT_
CNT_

TH
R_Z

ERO_L
AT

_U
0

0

6

PCNT_
CNT_

TH
R_H

_L
IM

_L
AT

_U
0

0

5

PCNT_
CNT_

TH
R_L

_L
IM

_L
AT

_U
0

0

4

PCNT_
CNT_

TH
R_T

HRES0_
LA

T_
U0

0

3

PCNT_
CNT_

TH
R_T

HRES1_
LA

T_
U0

0

2

PCNT_
CNT_

TH
R_Z

ERO_M
ODE_U

0

0x0

1 0

Reset

PCNT_CNT_THR_ZERO_MODE_Un The pulse counter status of PCNT_Un corresponding to 0. 0:

pulse counter decreases from positive to 0. 1: pulse counter increases from negative to 0. 2:

pulse counter is negative. 3: pulse counter is positive. (RO)

PCNT_CNT_THR_THRES1_LAT_Un The latched value of thres1 event of PCNT_Un when threshold

event interrupt is valid. 1: the current pulse counter equals to thres1 and thres1 event is valid. 0:

others (RO)

PCNT_CNT_THR_THRES0_LAT_Un The latched value of thres0 event of PCNT_Un when threshold

event interrupt is valid. 1: the current pulse counter equals to thres0 and thres0 event is valid. 0:

others (RO)

PCNT_CNT_THR_L_LIM_LAT_Un The latched value of low limit event of PCNT_Un when threshold

event interrupt is valid. 1: the current pulse counter equals to thr_l_lim and low limit event is valid.

0: others (RO)

PCNT_CNT_THR_H_LIM_LAT_Un The latched value of high limit event of PCNT_Un when threshold

event interrupt is valid. 1: the current pulse counter equals to thr_h_lim and high limit event is valid.

0: others (RO)

PCNT_CNT_THR_ZERO_LAT_Un The latched value of zero threshold event of PCNT_Un when

threshold event interrupt is valid. 1: the current pulse counter equals to 0 and zero threshold

event is valid. 0: others (RO)

Espressif Systems 322
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

Register 19.7. PCNT_INT_RAW_REG (0x0040)

(re
se

rve
d)

0 0

31 4

PCNT_
CNT_

TH
R_E

VENT_
U3_

IN
T_

RAW

0

3

PCNT_
CNT_

TH
R_E

VENT_
U2_

IN
T_

RAW

0

2

PCNT_
CNT_

TH
R_E

VENT_
U1_

IN
T_

RAW

0

1

PCNT_
CNT_

TH
R_E

VENT_
U0_

IN
T_

RAW

0

0

Reset

PCNT_CNT_THR_EVENT_Un_INT_RAW The raw interrupt status bit for the

PCNT_CNT_THR_EVENT_Un_INT interrupt. (RO)

Register 19.8. PCNT_INT_ST_REG (0x0044)

(re
se

rve
d)

0 0

31 4

PCNT_
CNT_

TH
R_E

VENT_
U3_

IN
T_

ST

0

3

PCNT_
CNT_

TH
R_E

VENT_
U2_

IN
T_

ST

0

2

PCNT_
CNT_

TH
R_E

VENT_
U1_

IN
T_

ST

0

1

PCNT_
CNT_

TH
R_E

VENT_
U0_

IN
T_

ST

0

0

Reset

PCNT_CNT_THR_EVENT_Un_INT_ST The masked interrupt status bit for the

PCNT_CNT_THR_EVENT_Un_INT interrupt. (RO)

Register 19.9. PCNT_INT_ENA_REG (0x0048)

(re
se

rve
d)

0 0

31 4

PCNT_
CNT_

TH
R_E

VENT_
U3_

IN
T_

ENA

0

3

PCNT_
CNT_

TH
R_E

VENT_
U2_

IN
T_

ENA

0

2

PCNT_
CNT_

TH
R_E

VENT_
U1_

IN
T_

ENA

0

1

PCNT_
CNT_

TH
R_E

VENT_
U0_

IN
T_

ENA

0

0

Reset

PCNT_CNT_THR_EVENT_Un_INT_ENA The interrupt enable bit for the

PCNT_CNT_THR_EVENT_Un_INT interrupt. (R/W)

Espressif Systems 323
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

19 Pulse Count Controller (PCNT)

Register 19.10. PCNT_INT_CLR_REG (0x004C)

(re
se

rve
d)

0 0

31 4

PCNT_
CNT_

TH
R_E

VENT_
U3_

IN
T_

CLR

0

3

PCNT_
CNT_

TH
R_E

VENT_
U2_

IN
T_

CLR

0

2

PCNT_
CNT_

TH
R_E

VENT_
U1_

IN
T_

CLR

0

1

PCNT_
CNT_

TH
R_E

VENT_
U0_

IN
T_

CLR

0

0

Reset

PCNT_CNT_THR_EVENT_Un_INT_CLR Set this bit to clear the PCNT_CNT_THR_EVENT_Un_INT

interrupt. (WO)

Register 19.11. PCNT_DATE_REG (0x00FC)

PCNT_
DAT

E

0x19072601

31 0

Reset

PCNT_DATE This is the PCNT version control register. (R/W)

Espressif Systems 324
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

Glossary

Glossary

Abbreviations for Peripherals

AES AES (Advanced Encryption Standard) Accelerator

BOOTCTRL Chip Boot Control

DS Digital Signature

DMA DMA (Direct Memory Access) Controller

eFuse eFuse Controller

HMAC HMAC (Hash-based Message Authentication Code) Accelerator

I2C I2C (Inter-Integrated Circuit) Controller

I2S I2S (Inter-IC Sound) Controller

LEDC LED Control PWM (Pulse Width Modulation)

MCPWM Motor Control PWM (Pulse Width Modulation)

PCNT Pulse Count Controller

RMT Remote Control Peripheral

RNG Random Number Generator

RSA RSA (Rivest Shamir Adleman) Accelerator

SDHOST SD/MMC Host Controller

SHA SHA (Secure Hash Algorithm) Accelerator

SPI SPI (Serial Peripheral Interface) Controller

SYSTIMER System Timer

TIMG Timer Group

TWAI Two-wire Automotive Interface

UART UART (Universal Asynchronous Receiver-Transmitter) Controller

ULP Coprocessor Ultra-low-power Coprocessor

USB OTG USB On-The-Go

WDT Watchdog Timers

Abbreviations for Registers

ISO Isolation. When a module is power down, its output pins will be stuck in unknown

state (some middle voltage). ”ISO” registers will control to isolate its output pins

to be a determined value, so it will not affect the status of other working modules

which are not power down.

NMI Non-maskable interrupt.

REG Register.

R/W Read/write. Software can read and write to these bits.

RO Read-only. Software can only read these bits.

SYSREG System Registers

WO Write-only. Software can only write to these bits.

Espressif Systems 325
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

Revision History

Revision History

Date Version Release notes

2021-07-09 V0.1 Preliminary release

Espressif Systems 326
Submit Documentation Feedback

ESP32-S3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5240§ions=&version=0.1

PRELIM
IN

ARY

www.espressif.com

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY’S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO
WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-
INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information
in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any
intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a
registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property
of their respective owners, and are hereby acknowledged.

Copyright © 2021 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.

https://www.espressif.com/

	1 System and Memory
	1.1 Overview
	1.2 Features
	1.3 Functional Description
	1.3.1 Address Mapping
	1.3.2 Internal Memory
	1.3.3 External Memory
	1.3.4 GDMA Address Space
	1.3.5 Modules/Peripherals

	2 IO MUX and GPIO Matrix (GPIO, IO MUX)
	2.1 Overview
	2.2 Features
	2.3 Architectural Overview
	2.4 Peripheral Input via GPIO Matrix
	2.4.1 Overview
	2.4.2 Signal Synchronization
	2.4.3 Functional Description
	2.4.4 Simple GPIO Input

	2.5 Peripheral Output via GPIO Matrix
	2.5.1 Overview
	2.5.2 Functional Description
	2.5.3 Simple GPIO Output
	2.5.4 Sigma Delta Modulated Output

	2.6 Dedicated GPIO
	2.7 Direct Input and Output via IO MUX
	2.7.1 Overview
	2.7.2 Functional Description

	2.8 RTC IO MUX for Low Power and Analog Input/Output
	2.8.1 Overview
	2.8.2 Low Power Capabilities
	2.8.3 Analog Functions

	2.9 Pin Functions in Light-sleep
	2.10 Pin Hold Feature
	2.11 Power Supply and Management of GPIO Pins
	2.11.1 Power Supply of GPIO Pins
	2.11.2 Power Supply Management

	2.12 Peripheral Signals via GPIO Matrix
	2.13 IO MUX Function List
	2.14 RTC IO MUX Pin List
	2.15 Register Summary
	2.15.1 GPIO Matrix Register Summary
	2.15.2 IO MUX Register Summary
	2.15.3 SDM Output Register Summary
	2.15.4 RTC IO MUX Register Summary

	2.16 Registers
	2.16.1 GPIO Matrix Registers
	2.16.2 IO MUX Registers
	2.16.3 SDM Output Registers
	2.16.4 RTC IO MUX Registers

	3 Reset and Clock
	3.1 Reset
	3.1.1 Overview
	3.1.2 Architectural Overview
	3.1.3 Features
	3.1.4 Functional Description

	3.2 Clock
	3.2.1 Overview
	3.2.2 Architectural Overview
	3.2.3 Features
	3.2.4 Functional Description

	4 Chip Boot Control
	4.1 Overview
	4.2 Boot Mode Control
	4.3 ROM Code Printing Control
	4.4 VDD_SPI Voltage Control
	4.5 JTAG Signal Source Control

	5 Interrupt Matrix (INTERRUPT)
	5.1 Overview
	5.2 Features
	5.3 Functional Description
	5.3.1 Peripheral Interrupt Sources
	5.3.2 CPU Interrupts
	5.3.3 Allocate Peripheral Interrupt Source to CPUx Interrupt
	5.3.4 Disable CPUx NMI Interrupt
	5.3.5 Query Current Interrupt Status of Peripheral Interrupt Source

	5.4 Register Summary
	5.4.1 CPU0 Interrupt Register Summary
	5.4.2 CPU1 Interrupt Register Summary

	5.5 Registers
	5.5.1 CPU0 Interrupt Registers
	5.5.2 CPU1 Interrupt Registers

	6 Timer Group (TIMG)
	6.1 Overview
	6.2 Functional Description
	6.2.1 16-bit Prescaler and Clock Selection
	6.2.2 54-bit Time-base Counter
	6.2.3 Alarm Generation
	6.2.4 Timer Reload
	6.2.5 SLOW_CLK Frequency Calculation
	6.2.6 Interrupts

	6.3 Configuration and Usage
	6.3.1 Timer as a Simple Clock
	6.3.2 Timer as One-shot Alarm
	6.3.3 Timer as Periodic Alarm
	6.3.4 SLOW_CLK Frequency Calculation

	6.4 Register Summary
	6.5 Registers

	7 Watchdog Timers
	7.1 Overview
	7.2 Digital Watchdog Timers
	7.2.1 Features
	7.2.2 Functional Description

	7.3 Super Watchdog
	7.3.1 Features
	7.3.2 Super Watchdog Controller

	7.4 Interrupts
	7.5 Registers

	8 XTAL32K Watchdog Timers (XTWDT)
	8.1 Overview
	8.2 Features
	8.2.1 Interrupt and Wake-Up
	8.2.2 BACKUP32K_CLK

	8.3 Functional Description
	8.3.1 Workflow
	8.3.2 BACKUP32K_CLK Working Principle
	8.3.3 Configuring the Divisor Component of BACKUP32K_CLK

	9 SHA Accelerator (SHA)
	9.1 Introduction
	9.2 Features
	9.3 Working Modes
	9.4 Function Description
	9.4.1 Preprocessing
	9.4.2 Hash task Process
	9.4.3 Message Digest
	9.4.4 Interrupt

	9.5 Register Summary
	9.6 Registers

	10 AES Accelerator (AES)
	10.1 Introduction
	10.2 Features
	10.3 AES Working Modes
	10.4 Typical AES Working Mode
	10.4.1 Key, Plaintext, and Ciphertext
	10.4.2 Endianness
	10.4.3 Operation Process

	10.5 DMA-AES Working Mode
	10.5.1 Key, Plaintext, and Ciphertext
	10.5.2 Endianness
	10.5.3 Standard Incrementing Function
	10.5.4 Block Number
	10.5.5 Initialization Vector
	10.5.6 Block Operation Process

	10.6 Memory Summary
	10.7 Register Summary
	10.8 Registers

	11 RSA Accelerator (RSA)
	11.1 Introduction
	11.2 Features
	11.3 Functional Description
	11.3.1 Large Number Modular Exponentiation
	11.3.2 Large Number Modular Multiplication
	11.3.3 Large Number Multiplication
	11.3.4 Options for Acceleration

	11.4 Memory Summary
	11.5 Register Summary
	11.6 Registers

	12 Digital Signature (DS)
	12.1 Overview
	12.2 Features
	12.3 Functional Description
	12.3.1 Overview
	12.3.2 Private Key Operands
	12.3.3 Software Prerequisites
	12.3.4 DS Operation at the Hardware Level
	12.3.5 DS Operation at the Software Level

	12.4 Memory Summary
	12.5 Register Summary
	12.6 Registers

	13 External Memory Encryption and Decryption (XTS_AES)
	13.1 Overview
	13.2 Features
	13.3 Module Structure
	13.4 Functional Description
	13.4.1 XTS Algorithm
	13.4.2 Key
	13.4.3 Target Memory Space
	13.4.4 Data Padding
	13.4.5 Manual Encryption Block
	13.4.6 Auto Encryption Block
	13.4.7 Auto Decryption Block

	13.5 Software Process
	13.6 Register Summary
	13.7 Registers

	14 Random Number Generator (RNG)
	14.1 Introduction
	14.2 Features
	14.3 Functional Description
	14.4 Programming Procedure
	14.5 Register Summary
	14.6 Register

	15 Two-wire Automotive Interface® (TWAI)
	15.1 Overview
	15.2 Features
	15.3 Functional Protocol
	15.3.1 TWAI Properties
	15.3.2 TWAI Messages
	15.3.3 TWAI Errors
	15.3.4 TWAI Bit Timing

	15.4 Architectural Overview
	15.4.1 Registers Block
	15.4.2 Bit Stream Processor
	15.4.3 Error Management Logic
	15.4.4 Bit Timing Logic
	15.4.5 Acceptance Filter
	15.4.6 Receive FIFO

	15.5 Functional Description
	15.5.1 Modes
	15.5.2 Bit Timing
	15.5.3 Interrupt Management
	15.5.4 Transmit and Receive Buffers
	15.5.5 Receive FIFO and Data Overruns
	15.5.6 Error Management
	15.5.7 Error Code Capture
	15.5.8 Arbitration Lost Capture

	15.6 Register Summary
	15.7 Registers

	16 USB On-The-Go (USB)
	16.1 Overview
	16.2 Features
	16.2.1 General Features
	16.2.2 Device Mode Features
	16.2.3 Host Mode Features

	16.3 Functional Description
	16.3.1 Controller Core and Interfaces
	16.3.2 Memory Layout
	16.3.3 FIFO and Queue Organization
	16.3.4 Interrupt Hierarchy
	16.3.5 DMA Modes and Slave Mode
	16.3.6 Transaction and Transfer Level Operation

	16.4 OTG
	16.4.1 OTG Interface
	16.4.2 ID Pin Detection
	16.4.3 Session Request Protocol (SRP)
	16.4.4 Host Negotiation Protocol (HNP)

	17 SD/MMC Host Controller (SDHOST)
	17.1 Overview
	17.2 Features
	17.3 SD/MMC External Interface Signals
	17.4 Functional Description
	17.4.1 SD/MMC Host Controller Architecture
	17.4.2 Command Path
	17.4.3 Data Path

	17.5 Software Restrictions for Proper CIU Operation
	17.6 RAM for Receiving and Sending Data
	17.6.1 TX RAM Module
	17.6.2 RX RAM Module

	17.7 DMA Descriptor Chain
	17.8 The Structure of DMA descriptor chain
	17.9 Initialization
	17.9.1 DMA Initialization
	17.9.2 DMA Transmission Initialization
	17.9.3 DMA Reception Initialization

	17.10 Clock Phase Selection
	17.11 Interrupt
	17.12 Register Summary
	17.13 Registers

	18 LED PWM Controller (LEDC)
	18.1 Overview
	18.2 Features
	18.3 Functional Description
	18.3.1 Architecture
	18.3.2 Timers
	18.3.3 PWM Generators
	18.3.4 Duty Cycle Fading
	18.3.5 Interrupts

	18.4 Register Summary
	18.5 Registers

	19 Pulse Count Controller (PCNT)
	19.1 Features
	19.2 Functional Description
	19.3 Applications
	19.3.1 Channel 0 Incrementing Independently
	19.3.2 Channel 0 Decrementing Independently
	19.3.3 Channel 0 and Channel 1 Incrementing Together

	19.4 Register Summary
	19.5 Registers

	Glossary
	Abbreviations for Peripherals
	Abbreviations for Registers

	Revision History

