
PRELIM
IN

ARY
ESP32­C3
Technical Reference Manual

Pre-release v0.2

Espressif Systems

Copyright © 2021

www.espressif.com

PRELIM
IN

ARY

About This Manual

The ESP32­C3 Technical Reference Manual is addressed to application developers. The manual provides

detailed and complete information on how to use the ESP32-C3 memory and peripherals.

For pin definition, electrical characteristics, and package information, please see ESP32-C3 Datasheet.

Document Updates

Please always refer to the latest version on https://www.espressif.com/en/support/download/documents.

Revision History

For revision history of this document, please refer to the last page.

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation.

Please subscribe at www.espressif.com/en/subscribe.

Certification

Download certificates for Espressif products from www.espressif.com/en/certificates.

https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/en/support/download/documents
http://espressif.com/en/subscribe
http://espressif.com/en/certificates

PRELIM
IN

ARY

Contents

Contents

1 ESP­RISC­V CPU 15

1.1 Overview 15

1.2 Features 15

1.3 Address Map 16

1.4 Configuration and Status Registers (CSRs) 16

1.4.1 Register Summary 16

1.4.2 Register Description 17

1.5 Interrupt Controller 25

1.5.1 Features 25

1.5.2 Functional Description 25

1.5.3 Suggested Operation 27

1.5.3.1 Latency Aspects 27

1.5.3.2 Configuration Procedure 27

1.5.4 Register Summary 28

1.5.5 Register Description 29

1.6 Debug 32

1.6.1 Overview 32

1.6.2 Features 33

1.6.3 Functional Description 33

1.6.4 Register Summary 33

1.6.5 Register Description 33

1.7 Hardware Trigger 36

1.7.1 Features 36

1.7.2 Functional Description 36

1.7.3 Trigger Execution Flow 37

1.7.4 Register Summary 37

1.7.5 Register Description 38

1.8 Memory Protection 42

1.8.1 Overview 42

1.8.2 Features 42

1.8.3 Functional Description 42

1.8.4 Register Summary 43

1.8.5 Register Description 43

2 GDMA Controller (GDMA) 44

2.1 Overview 44

2.2 Features 44

2.3 Architecture 45

2.4 Functional Description 45

2.4.1 Linked List 46

2.4.2 Peripheral-to-Memory and Memory-to-Peripheral Data Transfer 47

2.4.3 Memory-to-Memory Data Transfer 47

Espressif Systems 3
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

Contents

2.4.4 Enabling GDMA 47

2.4.5 Linked List Reading Process 48

2.4.6 EOF 49

2.4.7 Accessing Internal RAM 49

2.4.8 Arbitration 49

2.4.9 Bandwidth 50

2.5 GDMA Interrupts 50

2.6 Programming Procedures 51

2.6.1 Programming Procedures for GDMA’s Transmit Channel 51

2.6.2 Programming Procedures for GDMA’s Receive Channel 51

2.6.3 Programming Procedures for Memory-to-Memory Transfer 51

2.7 Register Summary 53

2.8 Registers 57

3 System and Memory 74

3.1 Overview 74

3.2 Features 74

3.3 Functional Description 75

3.3.1 Address Mapping 75

3.3.2 Internal Memory 76

3.3.3 External Memory 78

3.3.3.1 External Memory Address Mapping 78

3.3.3.2 Cache 78

3.3.3.3 Cache Operations 79

3.3.4 GDMA Address Space 80

3.3.5 Modules/Peripherals 80

3.3.5.1 Module/Peripheral Address Mapping 81

4 eFuse Controller (EFUSE) 83

4.1 Overview 83

4.2 Features 83

4.3 Functional Description 83

4.3.1 Structure 83

4.3.1.1 EFUSE_WR_DIS 86

4.3.1.2 EFUSE_RD_DIS 87

4.3.1.3 Data Storage 87

4.3.2 Software Programming of Parameters 87

4.3.3 Software Reading of Parameters 89

4.3.4 eFuse VDDQ Timing 90

4.3.5 The Use of Parameters by Hardware Modules 90

4.3.6 Interrupts 91

4.4 Register Summary 92

4.5 Registers 96

5 IO MUX and GPIO Matrix (GPIO, IO MUX) 138

5.1 Overview 138

Espressif Systems 4
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

Contents

5.2 Features 138

5.3 Architectural Overview 138

5.4 Peripheral Input via GPIO Matrix 140

5.4.1 Overview 140

5.4.2 Signal Synchronization 140

5.4.3 Functional Description 141

5.4.4 Simple GPIO Input 142

5.5 Peripheral Output via GPIO Matrix 142

5.5.1 Overview 142

5.5.2 Functional Description 143

5.5.3 Simple GPIO Output 143

5.5.4 Sigma Delta Modulated Output (SDM) 144

5.5.4.1 Functional Description 144

5.5.4.2 SDM Configuration 145

5.6 Direct Input and Output via IO MUX 145

5.6.1 Overview 145

5.6.2 Functional Description 145

5.7 Analog Functions of GPIO Pins 145

5.8 Pin Hold Feature 146

5.9 Power Supplies and Management of GPIO Pins 146

5.9.1 Power Supplies of GPIO Pins 146

5.9.2 Power Supply Management 146

5.10 Peripheral Signal List 146

5.11 IO MUX Functions List 153

5.12 Analog Functions List 154

5.13 Register Summary 154

5.13.1 GPIO Matrix Register Summary 155

5.13.2 IO MUX Register Summary 156

5.13.3 SDM Register Summary 157

5.14 Registers 157

5.14.1 GPIO Matrix Registers 158

5.14.2 IO MUX Registers 165

5.14.3 SDM Output Registers 167

6 Reset and Clock 169

6.1 Reset 169

6.1.1 Overview 169

6.1.2 Architectural Overview 169

6.1.3 Features 169

6.1.4 Functional Description 170

6.2 Clock 170

6.2.1 Overview 170

6.2.2 Architectural Overview 171

6.2.3 Features 171

6.2.4 Functional Description 172

6.2.4.1 CPU Clock 172

Espressif Systems 5
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

Contents

6.2.4.2 Peripheral Clock 172

6.2.4.3 Wi-Fi and Bluetooth® LE Clock 174

6.2.4.4 RTC Clock 174

7 Chip Boot Control 175

7.1 Overview 175

7.2 Boot Mode Control 175

7.3 ROM Code Printing Control 176

8 Timer Group (TIMG) 177

8.1 Overview 177

8.2 Functional Description 178

8.2.1 16-bit Prescaler and Clock Selection 178

8.2.2 54-bit Time-base Counter 178

8.2.3 Alarm Generation 179

8.2.4 Timer Reload 180

8.2.5 SLOW_CLK Frequency Calculation 180

8.2.6 Interrupts 180

8.3 Configuration and Usage 181

8.3.1 Timer as a Simple Clock 181

8.3.2 Timer as One-shot Alarm 181

8.3.3 Timer as Periodic Alarm 182

8.3.4 SLOW_CLK Frequency Calculation 182

8.4 Register Summary 183

8.5 Registers 184

9 SHA Accelerator (SHA) 194

9.1 Introduction 194

9.2 Features 194

9.3 Working Modes 194

9.4 Function Description 195

9.4.1 Preprocessing 195

9.4.1.1 Padding the Message 195

9.4.1.2 Parsing the Message 195

9.4.1.3 Initial Hash Value 196

9.4.2 Hash Task Process 196

9.4.2.1 Typical SHA Mode Process 196

9.4.2.2 DMA-SHA Mode Process 197

9.4.3 Message Digest 198

9.4.4 Interrupt 199

9.5 Register Summary 199

9.6 Registers 200

10 AES Accelerator (AES) 204

10.1 Introduction 204

10.2 Features 204

Espressif Systems 6
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

Contents

10.3 AES Working Modes 204

10.4 Typical AES Working Mode 206

10.4.1 Key, Plaintext, and Ciphertext 206

10.4.2 Endianness 206

10.4.3 Operation Process 208

10.5 DMA-AES Working Mode 208

10.5.1 Key, Plaintext, and Ciphertext 209

10.5.2 Endianness 209

10.5.3 Standard Incrementing Function 210

10.5.4 Block Number 210

10.5.5 Initialization Vector 210

10.5.6 Block Operation Process 211

10.6 Memory Summary 211

10.7 Register Summary 212

10.8 Registers 213

11 RSA Accelerator (RSA) 217

11.1 Introduction 217

11.2 Features 217

11.3 Functional Description 217

11.3.1 Large Number Modular Exponentiation 217

11.3.2 Large Number Modular Multiplication 219

11.3.3 Large Number Multiplication 219

11.3.4 Options for Acceleration 220

11.4 Memory Summary 221

11.5 Register Summary 222

11.6 Registers 223

12 Random Number Generator (RNG) 227

12.1 Introduction 227

12.2 Features 227

12.3 Functional Description 227

12.4 Programming Procedure 228

12.5 Register Summary 228

12.6 Register 228

13 UART Controller (UART) 229

13.1 Overview 229

13.2 Features 229

13.3 UART Structure 230

13.4 Functional Description 231

13.4.1 Clock and Reset 231

13.4.2 UART RAM 232

13.4.3 Baud Rate Generation and Detection 233

13.4.3.1 Baud Rate Generation 233

13.4.3.2 Baud Rate Detection 233

Espressif Systems 7
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

Contents

13.4.4 UART Data Frame 234

13.4.5 RS485 235

13.4.5.1 Driver Control 235

13.4.5.2 Turnaround Delay 236

13.4.5.3 Bus Snooping 236

13.4.6 IrDA 236

13.4.7 Wake-up 237

13.4.8 Flow Control 237

13.4.8.1 Hardware Flow Control 238

13.4.8.2 Software Flow Control 239

13.4.9 GDMA Mode 239

13.4.10 UART Interrupts 240

13.4.11 UHCI Interrupts 241

13.5 Programming Procedures 241

13.5.1 Register Type 241

13.5.1.1 Synchronous Registers 242

13.5.1.2 Static Registers 243

13.5.1.3 Immediate Registers 243

13.5.2 Detailed Steps 243

13.5.2.1 Initializing URATn 244

13.5.2.2 Configuring URATn Communication 245

13.5.2.3 Enabling UARTn Transmitter and Sending Data 245

13.5.2.4 Enabling UARTn Receiver and Retrieving Data 245

13.6 Register Summary 246

13.7 Registers 248

14 Two­wire Automotive Interface (TWAI) 284

14.1 Features 284

14.2 Functional Protocol 284

14.2.1 TWAI Properties 284

14.2.2 TWAI Messages 285

14.2.2.1 Data Frames and Remote Frames 286

14.2.2.2 Error and Overload Frames 288

14.2.2.3 Interframe Space 289

14.2.3 TWAI Errors 290

14.2.3.1 Error Types 290

14.2.3.2 Error States 290

14.2.3.3 Error Counters 291

14.2.4 TWAI Bit Timing 292

14.2.4.1 Nominal Bit 292

14.2.4.2 Hard Synchronization and Resynchronization 293

14.3 Architectural Overview 294

14.3.1 Registers Block 294

14.3.2 Bit Stream Processor 295

14.3.3 Error Management Logic 295

14.3.4 Bit Timing Logic 295

Espressif Systems 8
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

Contents

14.3.5 Acceptance Filter 295

14.3.6 Receive FIFO 296

14.4 Functional Description 296

14.4.1 Modes 296

14.4.1.1 Reset Mode 296

14.4.1.2 Operation Mode 296

14.4.2 Bit Timing 297

14.4.3 Interrupt Management 297

14.4.3.1 Receive Interrupt (RXI) 298

14.4.3.2 Transmit Interrupt (TXI) 298

14.4.3.3 Error Warning Interrupt (EWI) 298

14.4.3.4 Data Overrun Interrupt (DOI) 299

14.4.3.5 Error Passive Interrupt (TXI) 299

14.4.3.6 Arbitration Lost Interrupt (ALI) 299

14.4.3.7 Bus Error Interrupt (BEI) 299

14.4.3.8 Bus Status Interrupt (BSI) 299

14.4.4 Transmit and Receive Buffers 299

14.4.4.1 Overview of Buffers 299

14.4.4.2 Frame Information 300

14.4.4.3 Frame Identifier 301

14.4.4.4 Frame Data 302

14.4.5 Receive FIFO and Data Overruns 302

14.4.6 Acceptance Filter 303

14.4.6.1 Single Filter Mode 303

14.4.6.2 Dual Filter Mode 304

14.4.7 Error Management 304

14.4.7.1 Error Warning Limit 305

14.4.7.2 Error Passive 306

14.4.7.3 Bus-Off and Bus-Off Recovery 306

14.4.8 Error Code Capture 306

14.4.9 Arbitration Lost Capture 307

14.5 Register Summary 310

14.6 Registers 311

15 LED PWM Controller (LEDC) 324

15.1 Overview 324

15.2 Features 324

15.3 Functional Description 324

15.3.1 Architecture 324

15.3.2 Timers 325

15.3.2.1 Clock Source 325

15.3.2.2 Clock Divider Configuration 326

15.3.2.3 14-bit Counter 327

15.3.3 PWM Generators 327

15.3.4 Duty Cycle Fading 328

15.3.5 Interrupts 329

Espressif Systems 9
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

Contents

15.4 Register Summary 330

15.5 Registers 332

Glossary 339

Abbreviations for Peripherals 339

Abbreviations for Registers 339

Revision History 340

Espressif Systems 10
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

List of Tables

List of Tables

1-1 CPU Address Map 16

1-3 ID wise map of Interrupt Trap-Vector Addresses 26

1-6 NAPOT encoding for maddress 37

2-1 Selecting Peripherals via Register Configuration 47

2-2 Descriptor Field Alignment Requirements 49

2-3 Total Bandwidth Supported by GDMA 50

3-1 Address Mapping 76

3-2 Internal Memory Address Mapping 77

3-3 External Memory Address Mapping 78

3-4 Module/Peripheral Address Mapping 81

4-1 Parameters in eFuse BLOCK0 83

4-2 Secure Key Purpose Values 85

4-3 Parameters in BLOCK1 to BLOCK10 86

4-4 Registers Information 89

4-5 Configuration of Default VDDQ Timing Parameters 90

5-1 Peripheral Signals via GPIO Matrix 148

5-2 IO MUX Pin Functions 153

5-3 Power-Up Glitches on Pins 154

5-4 Analog Functions of IO MUX Pins 154

6-1 Reset Sources 170

6-2 CPU_CLK Clock Source 172

6-3 CPU Clock Frequency 172

6-4 Peripheral Clocks 173

6-5 APB_CLK Clock Frequency 174

6-6 CRYPTO_CLK Frequency 174

7-1 Default Configuration of Strapping Pins 175

7-2 Boot Mode Control 175

7-3 ROM Code Printing Control 176

8-1 Alarm Generation When Up-Down Counter Increments 179

8-2 Alarm Generation When Up-Down Counter Decrements 179

9-1 SHA Accelerator Working Mode 194

9-2 SHA Hash Algorithm Selection 195

9-3 The Storage and Length of Message Digest from Different Algorithms 199

10-1 AES Accelerator Working Mode 205

10-2 Key Length and Encryption/Decryption 205

10-3 Working Status under Typical AES Working Mode 206

10-4 Text Endianness Type for Typical AES 206

10-5 Key Endianness Type for AES-128 Encryption and Decryption 207

10-6 Key Endianness Type for AES-256 Encryption and Decryption 207

10-7 Block Cipher Mode 208

10-8 Working Status under DMA-AES Working mode 209

10-9 TEXT-PADDING 209

10-10 Text Endianness for DMA-AES 210

Espressif Systems 11
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

List of Tables

11-1 Acceleration Performance 221

11-2 RSA Accelerator Memory Blocks 221

13-1 UARTn Synchronous Registers 242

13-2 UARTn Static Registers 243

14-1 Data Frames and Remote Frames in SFF and EFF 287

14-2 Error Frame 288

14-3 Overload Frame 289

14-4 Interframe Space 289

14-5 Segments of a Nominal Bit Time 293

14-6 Bit Information of TWAI_BUS_TIMING_0_REG (0x18) 297

14-7 Bit Information of TWAI_BUS_TIMING_1_REG (0x1c) 297

14-8 Buffer Layout for Standard Frame Format and Extended Frame Format 299

14-9 TX/RX Frame Information (SFF/EFF)�TWAI Address 0x40 300

14-10 TX/RX Identifier 1 (SFF); TWAI Address 0x44 301

14-11 TX/RX Identifier 2 (SFF); TWAI Address 0x48 301

14-12 TX/RX Identifier 1 (EFF); TWAI Address 0x44 301

14-13 TX/RX Identifier 2 (EFF); TWAI Address 0x48 301

14-14 TX/RX Identifier 3 (EFF); TWAI Address 0x4c 301

14-15 TX/RX Identifier 4 (EFF); TWAI Address 0x50 302

14-16 Bit Information of TWAI_ERR_CODE_CAP_REG (0x30) 306

14-17 Bit Information of Bits SEG.4 - SEG.0 307

14-18 Bit Information of TWAI_ARB LOST CAP_REG (0x2c) 309

Espressif Systems 12
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

List of Figures

List of Figures

1-1 CPU Block Diagram 15

1-2 Debug System Overview 32

2-1 Modules with GDMA Feature and GDMA Channels 44

2-2 GDMA Engine Architecture 45

2-3 Structure of a Linked List 46

2-4 Relationship among Linked Lists 48

3-1 System Structure and Address Mapping 75

3-2 Cache Structure 79

3-3 Peripherals/modules that can work with GDMA 80

4-1 Shift Register Circuit 87

5-1 Diagram of IO MUX and GPIO Matrix 139

5-2 Architecture of IO MUX and GPIO Matirx 139

5-3 Internal Structure of a Pad 140

5-4 GPIO Input Synchronized on APB Clock Rising Edge or on Falling Edge 141

5-5 Filter Timing of GPIO Input Signals 141

6-1 Reset Types 169

6-2 System Clock 171

8-1 Timer Units within Groups 177

8-2 Timer Group Architecture 178

12-1 Noise Source 227

13-1 UART Structure 230

13-2 UART Controllers Sharing RAM 232

13-3 UART Controllers Division 233

13-4 The Timing Diagram of Weak UART Signals Along Falling Edges 234

13-5 Structure of UART Data Frame 234

13-6 AT_CMD Character Structure 235

13-7 Driver Control Diagram in RS485 Mode 236

13-8 The Timing Diagram of Encoding and Decoding in SIR mode 237

13-9 IrDA Encoding and Decoding Diagram 237

13-10 Hardware Flow Control Diagram 238

13-11 Connection between Hardware Flow Control Signals 238

13-12 Data Transfer in GDMA Mode 240

13-13 UART Programming Procedures 244

14-1 Bit Fields in Data Frames and Remote Frames 286

14-2 Fields of an Error Frame 288

14-3 Fields of an Overload Frame 289

14-4 The Fields within an Interframe Space 291

14-5 Layout of a Bit 292

14-6 TWAI Overview Diagram 294

14-7 Acceptance Filter 303

14-8 Single Filter Mode 304

14-9 Dual Filter Mode 305

14-10 Error State Transition 305

Espressif Systems 13
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

List of Figures

14-11 Positions of Arbitration Lost Bits 309

15-1 LED PWM Architecture 324

15-2 LED PWM Generator Diagram 325

15-3 Frequency Division When LEDC_CLK_DIV_TIMERx is a Non-Integer Value 326

15-4 LED_PWM Output Signal Diagram 328

15-5 Output Signal Diagram of Fading Duty Cycle 329

Espressif Systems 14
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

1 ESP­RISC­V CPU

1.1 Overview

ESP-RISC-V CPU is a 32-bit core based upon RISC-V ISA comprising base integer (I), multiplication/division (M)

and compressed (C) standard extensions. The core has 4-stage, in-order, scalar pipeline optimized for area,

power and performance. CPU core complex has an interrupt-controller (INTC), debug module (DM) and system

bus (SYS BUS) interfaces for memory and peripheral access.

Figure 1­1. CPU Block Diagram

1.2 Features

• Operating clock frequency up to 160 MHz

• Zero wait cycle access to on-chip SRAM and Cache for program and data access over IRAM/DRAM

interface

• Interrupt controller (INTC) with up to 31 vectored interrupts with programmable priority and threshold levels

• Debug module (DM) compliant with RISC-V debug specification v0.13 with external debugger support over

an industry-standard JTAG/USB port

• Debugger direct system bus access (SBA) to memory and peripherals

• Hardware trigger compliant to RISC-V debug specification v0.13 with up to 8 breakpoints/watchpoints

• Physical memory protection (PMP) for up to 16 configurable regions

• 32-bit AHB system bus for peripheral access

• Configurable events for core performance metrics

Espressif Systems 15
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

1.3 Address Map

Below table shows address map of various regions accessible by CPU for instruction, data, system bus

peripheral and debug.

Table 1­1. CPU Address Map

Name Description Starting Address Ending Address Access

IRAM Instruction Address Map 0x4000_0000 0x47FF_FFFF R/W

DRAM Data Address Map 0x3800_0000 0x3FFF_FFFF R/W

DM Debug Address Map 0x2000_0000 0x27FF_FFFF R/W

AHB AHB Address Map *default *default R/W

*default : Address not matching any of the specified ranges (IRAM, DRAM, DM) are accessed using AHB

bus.

1.4 Configuration and Status Registers (CSRs)

1.4.1 Register Summary

Below is a list of CSRs available to the CPU. Except for the custom performance counter CSRs, all the

implemented CSRs follow the standard mapping of bit fields as described in the RISC-V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10. It must be noted that even among the standard CSRs, not all bit

fields have been implemented, limited by the subset of features implemented in the CPU. Refer to the next

section for detailed description of the subset of fields implemented under each of these CSRs.

Name Description Address Access

Machine Information CSRs

mvendorid Machine Vendor ID 0xF11 RO

marchid Machine Architecture ID 0xF12 RO

mimpid Machine Implementation ID 0xF13 RO

mhartid Machine Hart ID 0xF14 RO

Machine Trap Setup CSRs

mstatus Machine Mode Status 0x300 R/W

misa 1 Machine ISA 0x301 R/W

mtvec 2 Machine Trap Vector 0x305 R/W

Machine Trap Handling CSRs

mscratch Machine Scratch 0x340 R/W

mepc Machine Trap Program Counter 0x341 R/W

mcause 3 Machine Trap Cause 0x342 R/W

mtval Machine Trap Value 0x343 R/W

Physical Memory Protection (PMP) CSRs

pmpcfg0 Physical memory protection configuration 0x3A0 R/W

1Although misa is specified as having both read and write access (R/W), its fields are hardwired and thus write has no effect. This is what

would be termed WARL (Write Any Read Legal) in RISC-V terminology
2mtvec only provides configuration for trap handling in vectored mode with the base address aligned to 256 bytes
3External interrupt IDs reflected in mcause include even those IDs which have been reserved by RISC-V standard for core internal sources.

Espressif Systems 16
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Name Description Address Access

pmpcfg1 Physical memory protection configuration 0x3A1 R/W

pmpcfg2 Physical memory protection configuration 0x3A2 R/W

pmpcfg3 Physical memory protection configuration 0x3A3 R/W

pmpaddr0 Physical memory protection address register 0x3B0 R/W

pmpaddr1 Physical memory protection address register 0x3B1 R/W

....

pmpaddr15 Physical memory protection address register 0x3BF R/W

Trigger Module CSRs (shared with Debug Mode)

tselect Trigger Select Register 0x7A0 R/W

tdata1 Trigger Abstract Data 1 0x7A1 R/W

tdata2 Trigger Abstract Data 2 0x7A2 R/W

tcontrol Global Trigger Control 0x7A5 R/W

Debug Mode CSRs

dcsr Debug Control and Status 0x7B0 R/W

dpc Debug PC 0x7B1 R/W

dscratch0 Debug Scratch Register 0 0x7B2 R/W

dscratch1 Debug Scratch Register 1 0x7B3 R/W

Performance Counter CSRs (Custom) 4

mpcer Machine Performance Counter Event 0x7E0 R/W

mpcmr Machine Performance Counter Mode 0x7E1 R/W

mpccr Machine Performance Counter Count 0x7E2 R/W

Note that if write/set/clear operation is attempted on any of the CSRs which are read-only (RO), as indicated in

the above table, the CPU will generate illegal instruction exception.

1.4.2 Register Description

Register 1.1. mvendorid (0xF11)

M
VENDORID

0x00000612

31 0

Reset

MVENDORID Vendor ID. (RO)

4These custom machine-mode CSRs have been implemented in the address space reserved by RISC-V standard for custom use

Espressif Systems 17
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.2. marchid (0xF12)

M
ARCHID

0x80000001

31 0

Reset

MARCHID Architecture ID. (RO)

Register 1.3. mimpid (0xF13)

M
IM

PID

0x00000001

31 0

Reset

MIMPID Implementation ID. (RO)

Register 1.4. mhartid (0xF14)

M
HARTID

0x00000000

31 0

Reset

MHARTID Hart ID. (RO)

Espressif Systems 18
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.5. mstatus (0x300)

(re
se

rve
d)

0x000

31 22

TW

0

21

(re
se

rve
d)

0x00

20 13

M
PP

0x0

12 11

(re
se

rve
d)

0x0

10 8

M
PIE

0

7

(re
se

rve
d)

0x0

6 4

M
IE

0

3

(re
se

rve
d)

0x0

2 0

Reset

MIE Global machine mode interrupt enable. (R/W)

MPIE Previous MIE. (R/W)

MPP Machine previous privilege mode. (R/W)

Possible values:

• 0x0: User mode
• 0x3: Machine mode

Note : Only lower bit is writable. Write to the higher bit is ignored as it is directly tied to the lower bit.

TW Timeout wait. (R/W)

If this bit is set, executing WFI (Wait-for-Interrupt) instruction in User mode will cause illegal instruc-

tion exception.

Espressif Systems 19
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.6. misa (0x301)

M
XL

0x1

31 30

(re
se

rve
d)

0x0

29 26

Z

0

25

Y

0

24

X

0

23

W

0

22

V

0

21

U

1

20

T

0

19

S

0

18

R

0

17

Q

0

16

P

0

15

O

0

14

N

0

13

M

1

12

L

0

11

K

0

10

J

0

9

I

1

8

H

0

7

G

0

6

F

0

5

E

0

4

D

0

3

C

1

2

B

0

1

A

0

0

Reset

MXL Machine XLEN = 1 (32-bit). (RO)

Z Reserved = 0. (RO)

Y Reserved = 0. (RO)

X Non-standard extensions present = 0. (RO)

W Reserved = 0. (RO)

V Reserved = 0. (RO)

U User mode implemented = 1. (RO)

T Reserved = 0. (RO)

S Supervisor mode implemented = 0. (RO)

R Reserved = 0. (RO)

Q Quad-precision floating-point extension = 0. (RO)

P Reserved = 0. (RO)

O Reserved = 0. (RO)

N User-level interrupts supported = 0. (RO)

M Integer Multiply/Divide extension = 1. (RO)

L Reserved = 0. (RO)

K Reserved = 0. (RO)

J Reserved = 0. (RO)

I RV32I base ISA = 1. (RO)

H Hypervisor extension = 0. (RO)

G Additional standard extensions present = 0. (RO)

F Single-precision floating-point extension = 0. (RO)

E RV32E base ISA = 0. (RO)

D Double-precision floating-point extension = 0. (RO)

C Compressed Extension = 1. (RO)

B Reserved = 0. (RO)

A Atomic Extension = 0. (RO)

Espressif Systems 20
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.7. mtvec (0x305)

BASE

0x000000

31 8

(re
se

rve
d)

0x00

7 2

M
ODE

0x1

1 0

Reset

MODE Only vectored mode 0x1 is available. (RO)

BASE Higher 24 bits of trap vector base address aligned to 256 bytes. (R/W)

Register 1.8. mscratch (0x340)

M
SCRAT

CH

0x00000000

31 0

Reset

MSCRATCH Machine scratch register for custom use. (R/W)

Register 1.9. mepc (0x341)

M
EPC

0x00000000

31 0

Reset

MEPC Machine trap/exception program counter. (R/W)

This is automatically updated with address of the instruction which was about to be executed while

CPU encountered the most recent trap.

Espressif Systems 21
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.10. mcause (0x342)

Int
er

ru
pt

Fla
g

0

31

(re
se

rve
d)

0x0000000

30 5

Exc
ep

tio
n Cod

e

0x00

4 0

Reset

Exception Code This field is automatically updated with unique ID of the most recent exception or

interrupt due to which CPU entered trap. (R/W)

Possible exception IDs are:

• 0x1: PMP Instruction access fault
• 0x2: Illegal Instruction
• 0x3: Hardware Breakpoint/Watchpoint or EBREAK
• 0x5: PMP Load access fault
• 0x7: PMP Store access fault
• 0x8: ECALL from U mode
• 0xb: ECALL from M mode

Note : Exception ID 0x0 (instruction access misaligned) is not present because CPU always masks

the lowest bit of the address during instruction fetch.

Interrupt Flag This flag is automatically updated when CPU enters trap. (R/W)

If this is found to be set, indicates that the latest trap occurred due to interrupt. For exceptions it

remains unset.

Note : The interrupt controller is using up IDs in range 1-31 for all external interrupt sources. This is

different from the RISC-V standard which has reserved IDs in range 0-15 for core internal interrupt

sources.

Register 1.11. mtval (0x343)

M
TV

AL

0x00000000

31 0

Reset

MTVAL Machine trap value. (R/W)

This is automatically updated with an exception dependent data which may be useful for handling

that exception.

Data is to be interpreted depending upon exception IDs:

• 0x1: Faulting virtual address of instruction
• 0x2: Faulting instruction opcode
• 0x5: Faulting data address of load operation
• 0x7: Faulting data address of store operation

Note : The value of this register is not valid for other exception IDs and interrupts.

Espressif Systems 22
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.12. mpcer (0x7E0)

(re
se

rve
d)

0x000

31 11

IN
ST_

COM
P

0

10

(B
RANCH_T

AKEN

0

9

BRANCH

0

8

JM
P_U

NCOND

0

7

STO
RE

0

6

LO
AD

0

5

ID
LE

0

4

JM
P_H

AZA
RD

0

3

LD
_H

AZA
RD

0

2

IN
ST

0

1

CYCLE

0

0

Reset

INST_COMP Count Compressed Instructions. (R/W)

BRANCH_TAKEN Count Branches Taken. (R/W)

BRANCH Count Branches. (R/W)

JMP_UNCOND Count Unconditional Jumps. (R/W)

STORE Count Stores. (R/W)

LOAD Count Loads. (R/W)

IDLE Count IDLE Cycles. (R/W)

JMP_HAZARD Count Jump Hazards. (R/W)

LD_HAZARD Count Load Hazards. (R/W)

INST Count Instructions. (R/W)

CYCLE Count Clock Cycles. (R/W)

Note: Each bit selects a specific event for counter to increment. If more than one event is selected

and occurs simultaneously, then counter increments by one only.

Register 1.13. mpcmr (0x7E1)

(re
se

rve
d)

0

31 2

COUNT_
SAT

1

1

COUNT_
EN

1

0

Reset

COUNT_SAT Counter Saturation Control. (R/W)

Possible values:

• 0: Overflow on maximum value
• 1: Halt on maximum value

COUNT_EN Counter Enable Control. (R/W)

Possible values:

• 0: Disabled
• 1: Enabled

Espressif Systems 23
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.14. mpccr (0x7E2)

M
PCCR

0x00000000

31 0

Reset

MPCCR Machine Performance Counter Value. (R/W)

Espressif Systems 24
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

1.5 Interrupt Controller

1.5.1 Features

The interrupt controller allows capturing, masking and dynamic prioritization of interrupt sources routed from

peripherals to the RISC-V CPU. It supports:

• Up to 31 asynchronous interrupts with unique IDs (1-31)

• Configurable via read/write to memory mapped registers

• 15 levels of priority, programmable for each interrupt

• Support for both level and edge type interrupt sources

• Programmable global threshold for masking interrupts with lower priority

• Interrupts IDs mapped to trap-vector address offsets

1.5.2 Functional Description

Each interrupt ID has 5 properties associated with it:

1. Enable State (0-1):

• Determines if an interrupt is enabled to be captured and serviced by the CPU.

• Programmed by writing the corresponding bit in INT_ENABLE_REG.

2. Type (0-1):

• Enables latching the state of an interrupt signal on its rising edge.

• Programmed by writing the corresponding bit in INT_TYPE_REG.

• An interrupt for which type is kept 0 is referred as a ’level’ type interrupt.

• An interrupt for which type is set to 1 is referred as an ’edge’ type interrupt.

3. Priority (1-15):

• Determines which interrupt, among multiple pending interrupts, the CPU will service first.

• Programmed by writing to the INT_PRIORITY_n_REG for a particular ID n in range (1-31).

• Enabled interrupts with priorities zero or less than the threshold value in INT_THRESH_REG are

masked.

• Priority levels increase from 1 (lowest) to 15 (highest).

• Interrupts with same priority are statically prioritized by their IDs, lowest ID having highest priority.

4. Pending State (0-1):

• Reflects the captured state of an enabled and unmasked interrupt signal.

• For each interrupt ID, the corresponding bit in read-only INT_EIP_REG gives its pending state.

• A pending interrupt will cause CPU to enter trap if no other pending interrupt has higher priority.

• A pending interrupt is said to be ’claimed’ if it preempts the CPU and causes it to jump to the

corresponding trap vector address.

Espressif Systems 25
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

• All pending interrupts which are yet to be serviced are termed as ’unclaimed’.

5. Clear State (0-1):

• Toggling this will clear the pending state of claimed edge-type interrupts only.

• Toggled by first setting and then clearing the corresponding bit in INT_CLEAR_REG.

• Pending state of a level type interrupt is unaffected by this and must be cleared from source.

• Pending state of an unclaimed edge type interrupt can be flushed, if required, by first clearing the

corresponding bit in INT_ENABLE_REG and then toggling same bit in INT_CLEAR_REG.

When CPU services a pending interrupt, it:

• saves the address of the current un-executed instruction in mepc for resuming execution later.

• updates the value of mcause with the ID of the interrupt being serviced.

• copies the state of MIE into MPIE, and subsequently clears MIE, thereby disabling interrupts globally.

• enters trap by jumping to a word-aligned offset of the address stored in mtvec.

Table 1-3 shows the mapping of each interrupt ID with the corresponding trap-vector address. In short, the word

aligned trap address for an interrupt with a certain ID = i can be calculated as (mtvec+ 4i).

Note : ID = 0 is unavailable and therefore cannot be used for capturing interrupts. This is because the

corresponding trap vector address (mtvec + 0x00) is reserved for exceptions.

Table 1­3. ID wise map of Interrupt Trap­Vector Addresses

ID Address ID Address ID Address ID Address

0 NA 8 mtvec + 0x20 16 mtvec + 0x40 24 mtvec + 0x60

1 mtvec + 0x04 9 mtvec + 0x24 17 mtvec + 0x44 25 mtvec + 0x64

2 mtvec + 0x08 10 mtvec + 0x28 18 mtvec + 0x48 26 mtvec + 0x68

3 mtvec + 0x0c 11 mtvec + 0x2c 19 mtvec + 0x4c 27 mtvec + 0x6c

4 mtvec + 0x10 12 mtvec + 0x30 20 mtvec + 0x50 28 mtvec + 0x70

5 mtvec + 0x14 13 mtvec + 0x34 21 mtvec + 0x54 29 mtvec + 0x74

6 mtvec + 0x18 14 mtvec + 0x38 22 mtvec + 0x58 30 mtvec + 0x78

7 mtvec + 0x1c 15 mtvec + 0x3c 23 mtvec + 0x5c 31 mtvec + 0x7c

After jumping to the trap-vector, the execution flow is dependent on software implementation, although it can be

presumed that the interrupt will get handled (and cleared) in some interrupt service routine (ISR) and later the

normal execution will resume once the CPU encounters MRET instruction.

Upon execution of MRET instruction, the CPU:

• copies the state of MPIE back into MIE, and subsequently clears MPIE. This means that if previously MPIE

was set, then, after MRET, MIE will be set, thereby enabling interrupts globally.

• jumps to the address stored in mepc and resumes execution.

It is possible to perform software assisted nesting of interrupts inside an ISR as explained in 1.5.3.

The below listed points outline the functional behavior of the controller:

• Only if an interrupt has non-zero priority, higher or equal to the value in the threshold register, will it be

Espressif Systems 26
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

reflected in INT_EIP_REG.

• If an interrupt is visible in INT_EIP_REG and has yet to be serviced, then it’s possible to mask it (and thereby

prevent the CPU from servicing it) by either lowering the value of its priority or increasing the global

threshold.

• If an interrupt, visible in INT_EIP_REG, is to be flushed (and prevented from being serviced at all), then it

must be disabled (and cleared if it is of edge type).

1.5.3 Suggested Operation

1.5.3.1 Latency Aspects

There is latency involved while configuring the Interrupt Controller.

In steady state operation, the Interrupt Controller has a fixed latency of 4 cycles. Steady state means that no

changes have been made to the Interrupt Controller registers recently. This implies that any interrupt that is

asserted to the controller will take exactly 4 cycles before the CPU starts processing the interrupt. This further

implies that CPU may execute up to 5 instructions before the preemption happens.

Whenever any of its registers are modified, the Interrupt Controller enters into transient state, which may take up

to 4 cycles for it to settle down into steady state again. During this transient state, the ordering of interrupts may

not be predictable, and therefore, a few safety measures need to be taken in software to avoid any

synchronization issues.

Also, it must be noted that the Interrupt Controller configuration registers lie in the APB address range, hence any

R/W access to these registers may take multiple cycles to complete.

In consideration of above mentioned characteristics, users are advised to follow the sequence described below,

whenever modifying any of the Interrupt Controller registers:

1. save the state of MIE and clear MIE to 0

2. read-modify-write one or more Interrupt Controller registers

3. execute FENCE instruction to wait for any pending write operations to complete

4. finally, restore the state of MIE

Due to its critical nature, it is recommended to disable interrupts globally (MIE=0) beforehand, whenever

configuring interrupt controller registers, and then restore MIE right after, as shown in the sequence above.

After execution of the sequence above, the Interrupt Controller will resume operation in steady state.

1.5.3.2 Configuration Procedure

By default, interrupts are disabled globally, since the reset value of MIE bit in mstatus is 0. Software must set

MIE=1 after initialization of the interrupt stack (including setting mtvec to the interrupt vector address) is

done.

During normal execution, if an interrupt n is to be enabled, the below sequence may be followed:

1. save the state of MIE and clear MIE to 0

2. depending upon the type of the interrupt (edge/level), set/unset the nth bit of INT_TYPE_REG

3. set the priority by writing a value to INT_PRIORITY_n_REG in range 1(lowest) to 15 (highest)

Espressif Systems 27
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

4. set the nth bit of INT_ENABLE_REG

5. execute FENCE instruction

6. restore the state of MIE

When one or more interrupts become pending, the CPU acknowledges (claims) the interrupt with the highest

priority and jumps to the trap vector address corresponding to the interrupt’s ID. Software implementation may

read mcause to infer the type of trap (mcause(31) is 1 for interrupts and 0 for exceptions) and then the ID of the

interrupt (mcause(4-0) gives ID of interrupt or exception). This inference may not be necessary if each entry in the

trap vector are jump instructions to different trap handlers. Ultimately, the trap handler(s) will redirect execution to

the appropriate ISR for this interrupt.

Upon entering into an ISR, software must toggle the nth bit of INT_CLEAR_REG if the interrupt is of edge type, or

clear the source of the interrupt if it is of level type.

Software may also update the value of INT_THRESH_REG and program MIE=1 for allowing higher priority

interrupts to preempt the current ISR (nesting), however, before doing so, all the state CSRs must be saved

(mepc, mstatus, mcause, etc.) since they will get overwritten due to occurrence of such an interrupt. Later, when

exiting the ISR, the values of these CSRs must be restored.

Finally, after the execution returns from the ISR back to the trap handler, MRET instruction is used to resume

normal execution.

Later, if the n interrupt is no longer needed and needs to be disabled, the following sequence may be

followed:

1. save the state of MIE and clear MIE to 0

2. check if the interrupt is pending in INT_EIP_REG

3. set/unset the nth bit of INT_ENABLE_REG

4. if the interrupt is of edge type and was found to be pending in step 2 above, nth bit of INT_CLEAR_REG

must be toggled, so that its pending status gets flushed

5. execute FENCE instruction

6. restore the state of MIE

Above is only a suggested scheme of operation. Actual software implementation may vary.

1.5.4 Register Summary

The addresses in this section are relative to Interrupt Controller base address provided in Table 3-4 in Chapter 3

System and Memory.

Name Description Address Access

INT_ENABLE_REG Enables assertion of interrupt to the CPU 0x0104 R/W

INT_TYPE_REG Specify interrupt type as level/edge 0x0108 R/W

INT_CLEAR_REG Write to clear “pulse” type interrupts 0x010C R/W

INT_EIP_REG External/peripheral interrupt pending status to CPU 0x0110 RO

INT_PRIORITY_1_REG Priority setting for interrupt ID=1 0x0118 R/W

INT_PRIORITY_2_REG Priority setting for interrupt ID=2 0x011C R/W

INT_PRIORITY_3_REG Priority setting for interrupt ID=3 0x0120 R/W

Espressif Systems 28
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Name Description Address Access

INT_PRIORITY_4_REG Priority setting for interrupt ID=4 0x0124 R/W

INT_PRIORITY_5_REG Priority setting for interrupt ID=5 0x0128 R/W

INT_PRIORITY_6_REG Priority setting for interrupt ID=6 0x012C R/W

INT_PRIORITY_7_REG Priority setting for interrupt ID=7 0x0130 R/W

INT_PRIORITY_8_REG Priority setting for interrupt ID=8 0x0134 R/W

INT_PRIORITY_9_REG Priority setting for interrupt ID=9 0x0138 R/W

INT_PRIORITY_10_REG Priority setting for interrupt ID=10 0x013C R/W

INT_PRIORITY_11_REG Priority setting for interrupt ID=11 0x0140 R/W

INT_PRIORITY_12_REG Priority setting for interrupt ID=12 0x0144 R/W

INT_PRIORITY_13_REG Priority setting for interrupt ID=13 0x0148 R/W

INT_PRIORITY_14_REG Priority setting for interrupt ID=14 0x014C R/W

INT_PRIORITY_15_REG Priority setting for interrupt ID=15 0x0150 R/W

INT_PRIORITY_16_REG Priority setting for interrupt ID=16 0x0154 R/W

INT_PRIORITY_17_REG Priority setting for interrupt ID=17 0x0158 R/W

INT_PRIORITY_18_REG Priority setting for interrupt ID=18 0x015C R/W

INT_PRIORITY_19_REG Priority setting for interrupt ID=19 0x0160 R/W

INT_PRIORITY_20_REG Priority setting for interrupt ID=20 0x0164 R/W

INT_PRIORITY_21_REG Priority setting for interrupt ID=21 0x0168 R/W

INT_PRIORITY_22_REG Priority setting for interrupt ID=22 0x016C R/W

INT_PRIORITY_23_REG Priority setting for interrupt ID=23 0x0170 R/W

INT_PRIORITY_24_REG Priority setting for interrupt ID=24 0x0174 R/W

INT_PRIORITY_25_REG Priority setting for interrupt ID=25 0x0178 R/W

INT_PRIORITY_26_REG Priority setting for interrupt ID=26 0x017C R/W

INT_PRIORITY_27_REG Priority setting for interrupt ID=27 0x0180 R/W

INT_PRIORITY_28_REG Priority setting for interrupt ID=28 0x0184 R/W

INT_PRIORITY_29_REG Priority setting for interrupt ID=29 0x0188 R/W

INT_PRIORITY_30_REG Priority setting for interrupt ID=30 0x018C R/W

INT_PRIORITY_31_REG Priority setting for interrupt ID=31 0x0190 R/W

INT_THRESH_REG Priority threshold setting for interrupt assertion to CPU 0x0194 R/W

1.5.5 Register Description

The addresses in this section are relative to Interrupt Controller base address provided in Table 3-4 in Chapter 3

System and Memory.

Espressif Systems 29
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.15. INT_ENABLE_REG (0x0104)

IN
T_

ENABLE

0x00000000

31 1

(re
se

rve
d)

0

0

Reset

INT_ENABLE[n] Setting nth bit enables assertion of nth interrupt to the CPU. (R/W)

• 0: Disabled;
• 1: Enabled;

Register 1.16. INT_TYPE_REG (0x0108)

IN
T_

TY
PE

0x00000000

31 1

(re
se

rve
d)

0

0

Reset

INT_TYPE[n] Setting nth bit enables capturing the rising edge of nth interrupt. (R/W)

• 0: Level type (signal level detection);
• 1: Pulse type (rising edge detection);

Register 1.17. INT_CLEAR_REG (0x010C)

IN
T_

CLE
AR

0x00000000

31 1

(re
se

rve
d)

0

0

Reset

INT_CLEAR[n] Set nth bit to clear pending status of the nth interrupt. (R/W)

This is only useful for “pulse” type interrupts, since “level” type interrupts must be cleared at source.

Note that the set bit must be manually toggled back to 0 afterwards.

• 0: Don’t care;
• 1: Clear pending status;

Espressif Systems 30
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.18. INT_EIP_REG (0x0110)

IN
T_

EIP

0x00000000

31 1

(re
se

rve
d)

0

0

Reset

INT_EIP[n] Read nth bit to get the pending status of nth interrupt to CPU. (RO)

Only enabled and above threshold interrupts are reflected here.

• 0: Not pending
• 1: Pending

Register 1.19. INT_PRIORITY_n_REG (n: 1­31) (0x0114+4*n)

(re
se

rve
d)

0x00000000

31 4

IN
T_

PRIO
RITY

_n

0x0

3 0

Reset

INT_PRIORITY_n Writing a 4-bit value to nth register configures priority of nth interrupt. (R/W)

Note : Interrupts with 0 priority are masked regardless of threshold value.

Register 1.20. INT_THRESH_REG (0x0194)

(re
se

rve
d)

0x00000000

31 4

IN
T_

TH
RESH

0x0

3 0

Reset

INT_THRESH Writing a 4-bit value configures the global priority threshold for all interrupts. (R/W)

All interrupts with priority lower than the threshold are masked.

Note : Interrupts with 0 priority are masked regardless of threshold value.

Espressif Systems 31
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

1.6 Debug

1.6.1 Overview

This section describes how to debug and test software running on CPU core. Debug support is provided through

standard JTAG pins and complies to RISC-V External Debug Support Specification version 0.13.

Figure 1-2 below shows the main components of External Debug Support.

Figure 1­2. Debug System Overview

The user interacts with the Debug Host (eg. laptop), which is running a debugger (eg. gdb). The debugger

communicates with a Debug Translator (eg. OpenOCD, which may include a hardware driver) to communicate

with Debug Transport Hardware (eg. Olimex USB-JTAG adapter). The Debug Transport Hardware connects the

Debug Host to the ESP-RV Core’s Debug Transport Module (DTM) through standard JTAG interface. The DTM

provides access to the Debug Module (DM) using the Debug Module Interface (DMI).

The DM allows the debugger to halt the core. Abstract commands provide access to its GPRs (general purpose

registers). The Program Buffer allows the debugger to execute arbitrary code on the core, which allows access to

additional CPU core state. Alternatively, additional abstract commands can provide access to additional CPU

core state. ESP-RV core contains Trigger Module supporting 8 triggers. When trigger conditions are met, cores

will halt spontaneously and inform the debug module that they have halted.

System bus access block allows memory and peripheral register access without using RISC-V core.

Espressif Systems 32
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

1.6.2 Features

Basic debug functionality supports below features.

• Provides necessary information about the implementation to the debugger.

• Allows the CPU core to be halted and resumed.

• CPU core registers (including CSR’s) can be read/written by debugger.

• CPU can be debugged from the first instruction executed after reset.

• CPU core can be reset through debugger.

• CPU can be halted on software breakpoint (planted breakpoint instruction).

• Hardware single-stepping.

• Execute arbitrary instructions in the halted CPU by means of the program buffer. 16-word program buffer is

supported.

• System bus access is supported through word aligned address access.

• Supports eight Hardware Triggers (can be used as breakpoints/watchpoints) as described in Section 1.7.

1.6.3 Functional Description

As mentioned earlier, Debug Scheme conforms to RISC-V External Debug Support Specification version 0.13.

Please refer the specs for functional operation details.

1.6.4 Register Summary

Below is the list of Debug CSR’s supported by ESP-RV core.

Name Description Address Access

dcsr Debug Control and Status 0x7B0 R/W

dpc Debug PC 0x7B1 R/W

dscratch0 Debug Scratch Register 0 0x7B2 R/W

dscratch1 Debug Scratch Register 1 0x7B3 R/W

.

All the debug module registers are implemented in conformance to RISC-V External Debug Support Specification

version 0.13. Please refer it for more details.

1.6.5 Register Description

Below are the details of Debug CSR’s supported by ESP-RV core

Espressif Systems 33
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.21. dcsr (0x7B0)

xd
eb

ug
ve

r

4

31 28

res
er

ve
d

0

27 16

eb
rea

km

0

15

res
er

ve
d

0

14 13

eb
rea

ku

0

12

res
er

ve
d

0

11

sto
pc

ou
nt

0

10

sto
pt

im
e

0

9

ca
us

e

0

8 6

res
er

ve
d

0

5 3

ste
p

0

2

pr
v

0

1 0

Reset

xdebugver Debug version. (RO)

• 4: External debug support exists

ebreakm When 1, ebreak instructions in Machine Mode enter Debug Mode. (R/W)

ebreaku When 1, ebreak instructions in User/Application Mode enter Debug Mode. (R/W)

stopcount This bit is not implemented. Debugger will always read this bit as 0. (RO)

stoptime This feature is not implemented. Debugger will always read this bit as 0. (RO)

cause Explains why Debug Mode was entered. When there are multiple reasons to enter Debug

Mode in a single cycle, the cause with the highest priority number is the one written.

1. An ebreak instruction was executed. (priority 3)
2. The Trigger Module caused a halt. (priority 4)
3. haltreq was set. (priority 2)
4. The CPU core single stepped because step was set. (priority 1)

Other values are reserved for future use. (RO)

step When set and not in Debug Mode, the core will only execute a single instruction and then enter

Debug Mode. Interrupts are enabled* when this bit is set. If the instruction does not complete due

to an exception, the core will immediately enter Debug Mode before executing the trap handler,

with appropriate exception registers set. (R/W)

prv Contains the privilege level the core was operating in when Debug Mode was entered. A debugger

can change this value to change the core’s privilege level when exiting Debug Mode. Only 0x3

(machine mode) and 0x0(user mode) are supported.

*Note: Different from RISC-V Debug specification 0.13

Register 1.22. dpc (0x7B1)

dp
c

0

31 0

Reset

dpc Upon entry to debug mode, dpc is written with the virtual address of the instruction that encoun-

tered the exception. When resuming, the CPU core’s PC is updated to the virtual address stored

in dpc. A debugger may write dpc to change where the CPU resumes. (R/W)

Espressif Systems 34
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.23. dscratch0 (0x7B2)

ds
cr

atc
h0

0

31 0

Reset

dscratch0 Used by Debug Module internally. (R/W)

Register 1.24. dscratch1 (0x7B3)

ds
cr

atc
h1

0

31 0

Reset

dscratch1 Used by Debug Module internally. (R/W)

Espressif Systems 35
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

1.7 Hardware Trigger

1.7.1 Features

Hardware Trigger module provides breakpoint and watchpoint capability for debugging. It includes the following

features:

• 8 independent trigger units

• each unit can be configured for matching the address of program counter or load-store accesses

• can preempt execution by causing breakpoint exception

• can halt execution and transfer control to debugger

• support NAPOT (naturally aligned power of two) address encoding

1.7.2 Functional Description

The Hardware Trigger module provides four CSRs, which are listed under register summary section. Among

these, tdata1 and tdata2 are abstract CSRs, which means they are shadow registers for accessing internal

registers for each of the eight trigger units, one at a time.

To choose a particular trigger unit write the index (0-7) of that unit into tselect CSR. When tselect is written with a

valid index, the abstract CSRs tdata1 and tdata2 are automatically mapped to reflect internal registers of that

trigger unit. Each trigger unit has two internal registers, namely mcontrol and maddress, which are mapped to

tdata1 and tdata2, respectively.

Writing larger than allowed indexes to tselect will clip the written value to the largest valid index, which can be

read back. This property may be used for enumerating the number of available triggers during initialization or

when using a debugger.

Since software or debugger may need to know the type of the selected trigger to correctly interpret tdata1 and

tdata2, the 4 bits (31-28) of tdata1 encodes the type of the selected trigger. This type field is read-only and always

provides a value of 0x2 for every trigger, which stands for match type trigger, hence, it is inferred that tdata1 and

tdata2 are to be interpreted as mcontrol and maddress. The information regarding other possible values can be

found in the RISC-V Debug Specification v0.13, but this trigger module only supports type 0x2.

Once a trigger unit has been chosen by writing its index to tselect, it will become possible to configure it by setting

the appropriate bits in mcontrol CSR (tdata1) and writing the target address to maddress CSR (tdata2).

Each trigger unit can be configured to either cause breakpoint exception or enter debug mode, by writing to the

action bit of mcontrol. This bit can only be written from debugger, thus by default a trigger, if enabled, will cause

breakpoint exception.

mcontrol for each trigger unit has a hit bit which may be read, after CPU halts or enters exception, to find out if

this was the trigger unit that fired. This bit is set as soon as the corresponding trigger fires, but it has to be

manually cleared before resuming operation. Although, failing to clear it doesn’t affect normal execution in any

way.

Each trigger unit only supports match on address, although this address could either be that of a load/store

access or the virtual address of an instruction. The address and size of a region are specified by writing to

maddress (tdata2) CSR for the selected trigger unit. Larger than 1 byte region sizes are specified through NAPOT

(naturally aligned power of two) encoding (see Table 1-6) and enabled by setting match bit in mcontrol. Note that

Espressif Systems 36
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

for NAPOT encoded addresses, by definition, the start address is constrained to be aligned to (i.e. an integer

multiple of) the region size.

Table 1­6. NAPOT encoding for maddress

maddress(31-0) Start Address Size (bytes)

aaa...aaaaaaaaa0 aaa...aaaaaaaaa0 2

aaa...aaaaaaaa01 aaa...aaaaaaaa00 4

aaa...aaaaaaa011 aaa...aaaaaaa000 8

aaa...aaaaaa0111 aaa...aaaaaa0000 16

....

a01...1111111111 a00...0000000000 231

tcontrol CSR is common to all trigger units. It is used for preventing triggers from causing repeated exceptions in

machine-mode while execution is happening inside a trap handler. This also disables breakpoint exceptions

inside ISRs by default, although, it is possible to manually enable this right before entering an ISR, for debugging

purposes. This CSR is not relevant if a trigger is configured to enter debug mode.

1.7.3 Trigger Execution Flow

When hart is halted and enters debug mode due to the firing of a trigger (action = 1):

• dpc is set to current PC (in decode stage)

• cause field in dcsr is set to 2, which means halt due to trigger

• hit bit is set to 1, corresponding to the trigger(s) which fired

When hart goes into trap due to the firing of a trigger (action = 0) :

• mepc is set to current PC (in decode stage)

• mcause is set to 3, which means breakpoint exception

• mpte is set to the value in mte right before trap

• mte is set to 0

• hit bit is set to 1, corresponding to the trigger(s) which fired

Note : If two different triggers fire at the same time, one with action = 0 and another with action = 1, then hart is

halted and enters debug mode.

1.7.4 Register Summary

Below is a list of Trigger Module CSRs supported by the CPU. These are only accessible from

machine-mode.

Name Description Address Access

tselect Trigger Select Register 0x7A0 R/W

tdata1 Trigger Abstract Data 1 0x7A1 R/W

tdata2 Trigger Abstract Data 2 0x7A2 R/W

tcontrol Global Trigger Control 0x7A5 R/W

Espressif Systems 37
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

1.7.5 Register Description

Register 1.25. tselect (0x7A0)

(re
se

rve
d)

0x00000000

31 3

tse
lec

t

0x0

2 0

Reset

tselect Index (0-7) of the selected trigger unit. (R/W)

Register 1.26. tdata1 (0x7A1)

typ
e

0x2

31 28

dm
od

e

0

27

da
ta

0x3e00000

26 0

Reset

type Type of trigger. (RO)

This field is reserved since only match type (0x2) triggers are supported.

dmode This is set to 1 if a trigger is being used by the debugger. (R/W *)

• 0: Both Debug and M-mode can write the tdata1 and tdata2 registers at the selected tselect.
• 1: Only Debug Mode can write the tdata1 and tdata2 registers at the selected tselect. Writes

from other modes are ignored.

* Note : Only writable from debug mode.

data Abstract tdata1 content. (R/W)

This will always be interpreted as fields of mcontrol since only match type (0x2) triggers are sup-

ported.

Register 1.27. tdata2 (0x7A2)

td
ata

2

0x00000000

31 0

Reset

tdata2 Abstract tdata2 content. (R/W)

This will always be interpreted as maddress since only match type (0x2) triggers are supported.

Espressif Systems 38
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.28. tcontrol (0x7A5)

(re
se

rve
d)

0x000000

31 8

m
pt

e

0

7

(re
se

rve
d)

0x00

6 1

m
te

0

0

Reset

mpte Machine mode previous trigger enable bit. (R/W)

• When CPU is taking a machine mode trap, the value of mte is automatically pushed into this.
• When CPU is executing MRET, its value is popped back into mte, so this becomes 0.

mte Machine mode trigger enable bit. (R/W)

• When CPU is taking a machine mode trap, its value is automatically pushed into mpte, so this

becomes 0 and triggers with action=0 are disabled globally.
• When CPU is executing MRET, the value of mpte is automatically popped back into this.

Espressif Systems 39
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.29. mcontrol (0x7A1)

(re
se

rve
d)

0x2

31 28

dm
od

e

0

27

(re
se

rve
d)

0x1f

26 21

hit

0

20

(re
se

rve
d)

0

19 16

ac
tio

n

0

15 12

(re
se

rve
d)

0

11

m
atc

h

0

10 7

m

0

6

(re
se

rve
d)

0

5 4

u

0

3

ex
ec

ut
e

0

2

sto
re

0

1

loa
d

0

0

Reset

dmode Same as dmode in tdata1.

hit This is found to be 1 if the selected trigger had fired previously. (R/W)

This bit is to be cleared manually.

action Write this for configuring the selected trigger to perform one of the available actions when firing.

(R/W)

Valid options are:

• 0x0: cause breakpoint exception.
• 0x1: enter debug mode (only valid when dmode = 1)

Note : Writing an invalid value will set this to the default value 0x0.

match Write this for configuring the selected trigger to perform one of the available matching opera-

tions on a data/instruction address. (R/W) Valid options are:

• 0x0: exact byte match, i.e. address corresponding to one of the bytes in an access must

match the value of maddress exactly.
• 0x1: NAPOT match, i.e. at least one of the bytes of an access must lie in the NAPOT region

specified in maddress.

Note : Writing a larger value will clip it to the largest possible value 0x1.

m Set this for enabling selected trigger to operate in machine mode. (R/W)

u Set this for enabling selected trigger to operate in user mode. (R/W)

execute Set this for configuring the selected trigger to fire right before an instruction with matching

virtual address is executed by the CPU. (R/W)

store Set this for configuring the selected trigger to fire right before a store operation with matching

data address is executed by the CPU. (R/W)

load Set this for configuring the selected trigger to fire right before a load operation with matching

data address is executed by the CPU. (R/W)

Espressif Systems 40
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

Register 1.30. maddress (0x7A2)

m
ad

dr
es

s

0x00000000

31 0

Reset

maddress Address used by the selected trigger when performing match operation. (R/W)

This is decoded as NAPOT when match=1 in mcontrol.

Espressif Systems 41
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

1.8 Memory Protection

1.8.1 Overview

The CPU core includes a physical memory protection unit, which can be used by software to set memory access

privileges (read, write and execute permissions) for required memory regions. However it is not fully compliant to

the Physical Memory Protection (PMP) description specified in RISC­V Instruction Set Manual, Volume II:

Privileged Architecture, Version 1.10. Details of existing non-conformance are provided in next section.

For detailed understanding of the RISC-V PMP concept, please refer to RISC-V Instruction Set Manual, Volume II:

Privileged Architecture, Version 1.10.

1.8.2 Features

The PMP unit can be used to restrict access to physical memory. It supports 16 regions and a minimum

granularity of 4 bytes. Below are the current non-conformance with PMP description from RISC-V Privilege

specifications:

• Static priority i.e. overlapping regions are not supported

• Maximum supported NAPOT range is 1 GB

As per RISC-V Privilege specifications, PMP entries should be statically prioritized and the lowest-numbered PMP

entry that matches any address byte of an access will determine whether that access succeeds or fails. This

means, when any address matches more than one PMP entry i.e. overlapping regions among different PMP

entries, lowest number PMP entry will decide whether such address access will succeed or fail.

However, RISC-V CPU PMP unit in ESP32-C3 does not implement static priority. So, software should make sure

that all enabled PMP entries are programmed with unique regions i.e. without any region overlap among them. If

software still tries to program multiple PMP entries with overlapping region having contradicting permissions, then

access will succeed if it matches at least one of enabled PMP entries. An exception will be generated, if access

matches none of the enabled PMP entries.

1.8.3 Functional Description

Software can program the PMP unit’s configuration and address registers in order to contain faults and support

secure execution. PMP CSR’s can only be programmed in machine-mode. Once enabled, write, read and

execute permission checks are applied to all the accesses in user-mode as per programmed values of enabled

16 pmpcfgX and pmpaddrX registers (refer Register Summary).

By default, PMP grants permission to all accesses in machine-mode and revokes permission of all access in

user-mode. This implies that it is mandatory to program address range and valid permissions in pmpcfg and

pmpaddr registers (refer Register Summary) for any valid access to pass through in user-mode. However, it is not

required for machine-mode as PMP permits all accesses to go through by deafult. In cases where PMP checks

are also required in machine-mode, software can set the lock bit of required PMP entry to enable permission

checks on it. Once lock bit is set, it can only be cleared through CPU reset.

When any instruction is being fetched from memory region without execute permissions, exception is generated

at processor level and exception cause is set as instruction access fault in mcause CSR. Similarly, any load/store

access without valid read/write permissions, will result in exception generation with mcause updated as load

access and store access fault respectively. In case of load/store access faults, violating address is captured in

mtval CSR.

Espressif Systems 42
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

1 ESP-RISC-V CPU

1.8.4 Register Summary

Below is a list of PMP CSRs supported by the CPU. These are only accessible from machine-mode.

Name Description Address Access

pmpcfg0 Physical memory protection configuration. 0x3A0 R/W

pmpcfg1 Physical memory protection configuration. 0x3A1 R/W

pmpcfg2 Physical memory protection configuration. 0x3A2 R/W

pmpcfg3 Physical memory protection configuration. 0x3A3 R/W

pmpaddr0 Physical memory protection address register. 0x3B0 R/W

pmpaddr1 Physical memory protection address register. 0x3B1 R/W

pmpaddr2 Physical memory protection address register. 0x3B2 R/W

pmpaddr3 Physical memory protection address register. 0x3B3 R/W

pmpaddr4 Physical memory protection address register. 0x3B4 R/W

pmpaddr5 Physical memory protection address register. 0x3B5 R/W

pmpaddr6 Physical memory protection address register. 0x3B6 R/W

pmpaddr7 Physical memory protection address register. 0x3B7 R/W

pmpaddr8 Physical memory protection address register. 0x3B8 R/W

pmpaddr9 Physical memory protection address register. 0x3B9 R/W

pmpaddr10 Physical memory protection address register. 0x3BA R/W

pmpaddr11 Physical memory protection address register. 0x3BB R/W

pmpaddr12 Physical memory protection address register. 0x3BC R/W

pmpaddr13 Physical memory protection address register. 0x3BD R/W

pmpaddr14 Physical memory protection address register. 0x3BE R/W

pmpaddr15 Physical memory protection address register. 0x3BF R/W

1.8.5 Register Description

PMP unit implements all pmpcfg0-3 and pmpaddr0-15 CSRs as defined in RISC­V Instruction Set Manual

Volume II: Privileged Architecture, Version 1.10.

Espressif Systems 43
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

2 GDMA Controller (GDMA)

2.1 Overview

General Direct Memory Access (GDMA) is a feature that allows peripheral-to-memory, memory-to-peripheral, and

memory-to-memory data transfer at a high speed. The CPU is not involved in the GDMA transfer, and therefore it

becomes more efficient with less workload.

The GDMA controller in ESP32-C3 has six independent channels, i.e. three transmit channels and three receive

channels. These six channels are shared by peripherals with GDMA feature, namely SPI2, UHCI0

(UART0/UART1), I2S, AES, SHA, and ADC. Users can assign the six channels to any of these peripherals.

UART0 and UART1 use UHCI0 together.

The GDMA controller uses fixed-priority and round-robin channel arbitration schemes to manage peripherals’

needs for bandwidth.

Figure 2­1. Modules with GDMA Feature and GDMA Channels

2.2 Features

The GDMA controller has the following features:

• AHB bus architecture

• Programmable length of data to be transferred in bytes

• Linked list of descriptors

• INCR burst transfer when accessing internal RAM

• Access to an address space of 384 KB at most in internal RAM

• Three transmit channels and three receive channels

• Software-configurable selection of peripheral requesting its service

• Fixed channel priority and round-robin channel arbitration

Espressif Systems 44
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

2.3 Architecture

In ESP32-C3, all modules that need high-speed data transfer support GDMA. The GDMA controller and CPU

data bus have access to the same address space in internal RAM. Figure 2-2 shows the basic architecture of the

GDMA engine.

Figure 2­2. GDMA Engine Architecture

The GDMA has six independent channels, i.e. three transmit channels and three receive channels. Every channel

can be connected to different peripherals. In other words, channels are general-purpose, shared by peripherals.

The GDMA engine reads data from or writes data to internal RAM via the AHB_BUS. For available address range

of Internal RAM, please see Chapter 3 System and Memory. Software can use the GDMA engine through linked

lists. These linked lists, stored in internal RAM, consist of outlinkn and inlinkn, where n indicates the channel

number (ranging from 0 to 2). The GDMA controller reads an outlink (i.e. a linked list of transmit descriptors) from

internal RAM and transmits data in corresponding RAM according to the outlink, or reads an inlink (i.e. a linked list

of receive descriptors) and stores received data into specific address space in RAM according to the inlink.

2.4 Functional Description

Espressif Systems 45
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

2.4.1 Linked List

Linked List

DWO

DWl

DW2

DWO

DWl

DW2

DWO

DWl

DW2

31 30 29 28 27 23 11 0

DWO

DW1

DW2

I owner suc_eof reserved! err_eof reserved length size I

buffer address pointer

next descriptor address

Figure 2­3. Structure of a Linked List

Figure 2-3 shows the structure of a linked list. An outlink and an inlink have the same structure. A linked list is

formed by one or more descriptors, and each descriptor consists of three words. Linked lists should be in

internal RAM for the GDMA engine to be able to use them. The meaning of each field is as follows:

• Owner (DW0) [31]: Specifies who is allowed to access the buffer that this descriptor points to.

1’b0: CPU can access the buffer;

1’b1: The GDMA controller can access the buffer.

When the GDMA controller stops using the buffer, this bit in a transmit descriptor is automatically cleared by

hardware, and this bit in a receive descriptor is automatically cleared by hardware only if

GDMA_OUT_AUTO_WRBACK_CHn is set to 1. Software can disable automatic clearing by hardware by

setting GDMA_OUT_LOOP_TEST_CHn or GDMA_IN_LOOP_TEST_CHn bit. When software loads a linked

list, this bit should be set to 1.

Note: GDMA_OUT is the prefix of transmit channel registers, and GDMA_IN is the prefix of receive channel

registers.

• suc_eof (DW0) [30]: Specifies whether this descriptor is the last descriptor in the list.

1’b0: This descriptor is not the last one;

1’b1: This descriptor is the last one.

Software clears suc_eof bit in receive descriptors. When a packet has been received, this bit in the last

receive descriptor is set by hardware, and this bit in the last transmit descriptor is set by software.

• Reserved (DW0) [29]: Reserved. Value of this bit does not matter.

• err_eof (DW0) [28]: Specifies whether the received data has errors.

This bit is used only when UHCI0 uses GDMA to receive data. When an error is detected in the received

packet, this bit in the receive descriptor is set to 1 by hardware.

• Reserved (DW0) [27:24]: Reserved.

• Length (DW0) [23:12]: Specifies the number of valid bytes in the buffer that this descriptor points to. This

field in a transmit descriptor is written by software and indicates how many bytes can be read from the

buffer; this field in a receive descriptor is written by hardware automatically and indicates how many valid

bytes have been stored into the buffer.

Espressif Systems 46
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

• Size (DW0) [11:0]: Specifies the size of the buffer that this descriptor points to.

• Buffer address pointer (DW1): Address of the buffer. This field can only point to internal RAM.

• Next descriptor address (DW2): Address of the next descriptor. If the current descriptor is the last one

(suc_eof = 1), this value is 0. This field can only point to internal RAM.

If the length of data received is smaller than the size of the buffer, the GDMA controller will not use available

space of the buffer in the next transaction.

2.4.2 Peripheral­to­Memory and Memory­to­Peripheral Data Transfer

The GDMA controller can transfer data from memory to peripheral (transmit) and from peripheral to memory

(receive). A transmit channel transfers data in the specified memory location to a peripheral’s transmitter via an

outlinkn, whereas a receive channel transfers data received by a peripheral to the specified memory location via

an inlinkn.

Every transmit and receive channel can be connected to any peripheral with GDMA feature. Table 2-1 illustrates

how to select the peripheral to be connected via registers. When a channel is connected to a peripheral, the rest

channels can not be connected to that peripheral.

Table 2­1. Selecting Peripherals via Register Configuration

GDMA_IN_PERI_SEL_CHn

GDMA_OUT_PERI_SEL_CHn
Peripheral

0 SPI2

1 Reserved

2 UHCI0

3 I2S

4 Reserved

5 Reserved

6 AES

7 SHA

8 ADC

2.4.3 Memory­to­Memory Data Transfer

The GDMA controller also allows memory-to-memory data transfer. Such data transfer can be enabled by setting

GDMA_MEM_TRANS_EN_CHn, which connects the output of transmit channel n to the input of receive channel

n. Note that a transmit channel is only connected to the receive channel with the same number (n).

2.4.4 Enabling GDMA

Software uses the GDMA controller through linked lists. When the GDMA controller receives data, software loads

an inlink, configures GDMA_INLINK_ADDR_CHn field with address of the first receive descriptor, and sets

GDMA_INLINK_START_CHn bit to enable GDMA. When the GDMA controller transmits data, software loads an

outlink, prepares data to be transmitted, configures GDMA_OUTLINK_ADDR_CHn field with address of the first

transmit descriptor, and sets GDMA_OUTLINK_START_CHn bit to enable GDMA. GDMA_INLINK_START_CHn

bit and GDMA_OUTLINK_START_CHn bit are cleared automatically by hardware.

In some cases, you may want to append more descriptors to a DMA transfer that is already started. Naively, it

Espressif Systems 47
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

would seem to be possible to do this by clearing the EOF bit of the final descriptor in the existing list and setting

its next descriptor address pointer field (DW2) to the first descriptor of the to-be-added list. However, this

strategy fails if the existing DMA transfer is almost or entirely finished. Instead, the GDMA engine has specialized

logic to make sure a DMA transfer can be continued or restarted: if it is still ongoing, it will make sure to take the

appended descriptors into account; if the transfer has already finished, it will restart with the new descriptors.

This is implemented in the Restart function.

When using the Restart function, software needs to rewrite address of the first descriptor in the new list to DW2

of the last descriptor in the loaded list, and set GDMA_INLINK_RESTART_CHn bit or

GDMA_OUTLINK_RESTART_CHn bit (these two bits are cleared automatically by hardware). As shown in Figure

2-4, by doing so hardware can obtain the address of the first descriptor in the new list when reading the last

descriptor in the loaded list, and then read the new list.

Figure 2­4. Relationship among Linked Lists

2.4.5 Linked List Reading Process

Once configured and enabled by software, the GDMA controller starts to read the linked list from internal RAM.

The GDMA performs checks on descriptors in the linked list. Only if descriptors pass the checks, will the

corresponding GDMA channel transfer data. If the descriptors fail any of the checks, hardware will trigger

descriptor error interrupt (either GDMA_IN_DSCR_ERR_CHn_INT or GDMA_OUT_DSCR_ERR_CHn_INT), and

the channel will get stuck and stop working.

The checks performed on descriptors are:

• Owner bit check when GDMA_IN_CHECK_OWNER_CHn or GDMA_OUT_CHECK_OWNER_CHn is set to

1. If the owner bit is 0, the buffer is accessed by the CPU. In this case, the owner bit fails the check. The

owner bit will not be checked if GDMA_IN_CHECK_OWNER_CHn or GDMA_OUT_CHECK_OWNER_CHn

is 0;

• Buffer address pointer (DW1) check. If the buffer address pointer points to 0x3FC80000 ~ 0x3FCDFFFF

(please refer to Section 2.4.7), it passes the check.

After software detects a descriptor error interrupt, it must reset the corresponding channel, and enable GDMA by

setting GDMA_OUTLINK_START_CHn or GDMA_INLINK_START_CHn bit.

Note: The third word (DW2) in a descriptor can only point to a location in internal RAM, given that the third word

points to the next descriptor to use and that all descriptors must be in internal memory.

Espressif Systems 48
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

2.4.6 EOF

The GDMA controller uses EOF (end of file) flags to indicate the completion of data transfer.

Before the GDMA controller transmits data, GDMA_OUT_TOTAL_EOF_CHn_INT_ENA bit should be set to enable

GDMA_OUT_TOTAL_EOF_CHn_INT interrupt. If data in the buffer pointed by the last descriptor (with EOF) has

been transmitted, a GDMA_OUT_TOTAL_EOF_CHn_INT interrupt is generated.

Before the GDMA controller receives data, GDMA_IN_SUC_EOF_CHn_INT_ENA bit should be set to enable

GDMA_IN_SUC_EOF_CHn_INT interrupt. If data has been received successfully, a

GDMA_IN_SUC_EOF_CHn_INT interrupt is generated. In addition, when GDMA channel is connected to UHCI0,

the GDMA controller also supports GDMA_IN_ERR_CHn_EOF_INT interrupt. This interrupt is enabled by setting

GDMA_IN_ERR_EOF_CHn_INT_ENA bit, and it indicates that a data packet has been received with errors.

When detecting a GDMA_OUT_TOTAL_EOF_CHn_INT or a GDMA_IN_SUC_EOF_CHn_INT interrupt, software

can record the value of GDMA_OUT_EOF_DES_ADDR_CHn or GDMA_IN_SUC_EOF_DES_ADDR_CHn field, i.e.

address of the last descriptor. Therefore, software can tell which descriptors have been used and reclaim

them.

Note: In this chapter, EOF of transmit descriptors refers to suc_eof, while EOF of receive descriptors refers to

both suc_eof and err_eof.

2.4.7 Accessing Internal RAM

Any transmit and receive channels of GDMA can access 0x3FC80000 ~ 0x3FCDFFFF in internal RAM. To

improve data transfer efficiency, GDMA can send data in burst mode, which is disabled by default. This mode is

enabled for receive channels by setting GDMA_IN_DATA_BURST_EN_CHn, and enabled for transmit channels

by setting GDMA_OUT_DATA_BURST_EN_CHn.

Table 2­2. Descriptor Field Alignment Requirements

Inlink/Outlink Burst Mode Size Length Buffer Address Pointer

Inlink
0 — — —

1 Word-aligned — Word-aligned

Outlink
0 — — —

1 — — —

Table 2-2 lists the requirements for descriptor field alignment when accessing internal RAM.

When burst mode is disabled, size, length, and buffer address pointer in both transmit and receive descriptors do

not need to be word-aligned. That is to say, GDMA can read data of specified length (1 ~ 4095 bytes) from any

start addresses in the accessible address range, or write received data of the specified length (1 ~ 4095 bytes) to

any contiguous addresses in the accessible address range.

When burst mode is enabled, size, length, and buffer address pointer in transmit descriptors are also not

necessarily word-aligned. However, size and buffer address pointer in receive descriptors except length should

be word-aligned.

2.4.8 Arbitration

To ensure timely response to peripherals running at a high speed with low latency (such as SPI), the GDMA

controller implements a fixed-priority channel arbitration scheme. That is to say, each channel can be assigned a

Espressif Systems 49
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

priority from 0 ~ 9. The larger the number, the higher the priority, and the more timely the response. When several

channels are assigned the same priority, the GDMA controller adopts a round-robin arbitration scheme.

Please note that the overall throughput of peripherals with GDMA feature cannot exceed the maximum

bandwidth of the GDMA, so that requests from low-priority peripherals can be responded to.

2.4.9 Bandwidth

As an AHB master, the GDMA controller accesses memory via the AHB bus. Without regard to other AHB

masters such as Wi-Fi, the total bandwidth supported by GDMA is calculated as:

All channels in burst mode: 8/5*fhclk MB/s;

All channels not in burst mode: 4/3*fhclk MB/s;

where fhclk is the frequency of AHB clock fixed at 80 MHz. The total bandwidth according to formulas above is

listed in Table 2-3:

Table 2­3. Total Bandwidth Supported by GDMA

fpclk All Channels NOT in Burst Mode All Channels in Burst Mode

80 MHz 106.6 MB/s 128 MB/s

Please note that since the GDMA controller transfers data via linked list descriptors, the data transfer volume

includes the number of bytes these descriptors have. The transfer efficiency corresponding to one descriptor is

length/(length + 12), where length is the field in the descriptor, and 12 is the number of bytes a descriptor has.

Therefore, applications with multiple linked list descriptors should increase length of each descriptor for higher

transfer efficiency, which can be 99.7% at most.

When allocating bandwidth to a peripheral, software can estimate the bandwidth occupied by this peripheral

according to:

T*(length + 12)/length

where T stands for the throughput of this peripheral.

2.5 GDMA Interrupts

• GDMA_OUT_TOTAL_EOF_CHn_INT: Triggered when all data corresponding to a linked list (including

multiple descriptors) has been sent via transmit channel n.

• GDMA_IN_DSCR_EMPTY_CHn_INT: Triggered when the size of the buffer pointed by receive descriptors is

smaller than the length of data to be received via receive channel n.

• GDMA_OUT_DSCR_ERR_CHn_INT: Triggered when an error is detected in a transmit descriptor on

transmit channel n.

• GDMA_IN_DSCR_ERR_CHn_INT: Triggered when an error is detected in a receive descriptor on receive

channel n.

• GDMA_OUT_EOF_CHn_INT: Triggered when EOF in a transmit descriptor is 1 and data corresponding to

this descriptor has been sent via transmit channel n. If GDMA_OUT_EOF_MODE_CHn is 0, this interrupt

will be triggered when the last byte of data corresponding to this descriptor enters GDMA’s transmit

channel; if GDMA_OUT_EOF_MODE_CHn is 1, this interrupt is triggered when the last byte of data is taken

from GDMA’s transmit channel.

Espressif Systems 50
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

• GDMA_OUT_DONE_CHn_INT: Triggered when all data corresponding to a transmit descriptor has been

sent via transmit channel n.

• GDMA_IN_ERR_EOF_CHn_INT: Triggered when an error is detected in the data packet received via receive

channel n. This interrupt is used only for UHCI0 peripheral (UART0 or UART1).

• GDMA_IN_SUC_EOF_CHn_INT: Triggered when a data packet has been received via receive channel n.

• GDMA_IN_DONE_CHn_INT: Triggered when all data corresponding to a receive descriptor has been

received via receive channel n.

2.6 Programming Procedures

2.6.1 Programming Procedures for GDMA’s Transmit Channel

To transmit data, GDMA’s transmit channel should be configured by software as follows:

1. Set GDMA_OUT_RST_CHn first to 1 and then to 0, to reset the state machine of GDMA’s transmit channel

and FIFO pointer;

2. Load an outlink, and configure GDMA_OUTLINK_ADDR_CHn with address of the first transmit descriptor;

3. Configure GDMA_PERI_OUT_SEL_CHn with the value corresponding to the peripheral to be connected, as

shown in Table 2-1;

4. Set GDMA_OUTLINK_START_CHn to enable GDMA’s transmit channel for data transfer;

5. Configure and enable the corresponding peripheral (SPI2, UHCI0 (UART 0 or UART 1), I2S, AES, SHA, and

ADC). See details in individual chapters of these peripherals;

6. Wait for GDMA_OUT_EOF_CHn_INT interrupt, which indicates the completion of data transfer.

2.6.2 Programming Procedures for GDMA’s Receive Channel

To receive data, GDMA’s receive channel should be configured by software as follows:

1. Set GDMA_IN_RST_CHn first to 1 and then to 0, to reset the state machine of GDMA’s receive channel and

FIFO pointer;

2. Load an inlink, and configure GDMA_INLINK_ADDR_CHn with address of the first receive descriptor;

3. Configure GDMA_PERI_IN_SEL_CHn with the value corresponding to the peripheral to be connected, as

shown in Table 2-1;

4. Set GDMA_INLINK_START_CHn to enable GDMA receive channel for data transfer;

5. Configure and enable the corresponding peripheral (SPI2, UHCI0 (UART 0 or UART 1), I2S, AES, SHA, and

ADC). See details in individual chapters of these peripherals;

6. Wait for GDMA_IN_SUC_EOF_CHn_INT interrupt, which indicates that a data packet has been received.

2.6.3 Programming Procedures for Memory­to­Memory Transfer

To transfer data from one memory location to another, GDMA should be configured by software as follows:

1. Set GDMA_OUT_RST_CHn first to 1 and then to 0, to reset the state machine of GDMA’s transmit channel

and FIFO pointer;

Espressif Systems 51
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

2. Set GDMA_IN_RST_CHn first to 1 and then to 0, to reset the state machine of GDMA’s receive channel and

FIFO pointer;

3. Load an outlink, and configure GDMA_OUTLINK_ADDR_CHn with address of the first transmit descriptor;

4. Load an inlink, and configure GDMA_INLINK_ADDR_CHn with address of the first receive descriptor;

5. Set GDMA_MEM_TRANS_EN_CHn to enable memory-to-memory transfer;

6. Set GDMA_OUTLINK_START_CHn to enable GDMA’s transmit channel for data transfer;

7. Set GDMA_INLINK_START_CHn to enable GDMA receive channel for data transfer;

8. Wait for GDMA_IN_SUC_EOF_CHn_INT interrupt, which indicates that which indicates that a data

transaction has been completed.

Espressif Systems 52
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

2.7 Register Summary

The addresses in this section are relative to GDMA base address provided in Table 3-4 in Chapter 3 System and

Memory.

Name Description Address Access

Interrupt Registers

GDMA_INT_RAW_CH0_REG Raw status interrupt of Rx channel 0 0x0000 R/WTC/SS

GDMA_INT_ST_CH0_REG Masked interrupt of Rx channel 0 0x0004 RO

GDMA_INT_ENA_CH0_REG Interrupt enable bits of Rx channel 0 0x0008 R/W

GDMA_INT_CLR_CH0_REG Interrupt clear bits of Rx channel 0 0x000C WT

GDMA_INT_RAW_CH1_REG Raw status interrupt of Rx channel 1 0x0010 R/WTC/SS

GDMA_INT_ST_CH1_REG Masked interrupt of Rx channel 1 0x0014 RO

GDMA_INT_ENA_CH1_REG Interrupt enable bits of Rx channel 1 0x0018 R/W

GDMA_INT_CLR_CH1_REG Interrupt clear bits of Rx channel 1 0x001C WT

GDMA_INT_RAW_CH2_REG Raw status interrupt of Rx channel 2 0x0020 R/WTC/SS

GDMA_INT_ST_CH2_REG Masked interrupt of Rx channel 2 0x0024 RO

GDMA_INT_ENA_CH2_REG Interrupt enable bits of Rx channel 2 0x0028 R/W

GDMA_INT_CLR_CH2_REG Interrupt clear bits of Rx channel 2 0x002C WT

Configuration Register

GDMA_MISC_CONF_REG MISC register 0x0044 R/W

Version Registers

GDMA_DATE_REG Version control register 0x0048 R/W

Configuration Registers

GDMA_IN_CONF0_CH0_REG Configuration register 0 of Rx channel 0 0x0070 R/W

GDMA_IN_CONF1_CH0_REG Configuration register 1 of Rx channel 0 0x0074 R/W

GDMA_IN_POP_CH0_REG Pop control register of Rx channel 0 0x007C varies

GDMA_IN_LINK_CH0_REG Link descriptor configuration and control

register of Rx channel 0

0x0080 varies

GDMA_OUT_CONF0_CH0_REG Configuration register 0 of Tx channel 0 0x00D0 R/W

GDMA_OUT_CONF1_CH0_REG Configuration register 1 of Tx channel 0 0x00D4 R/W

GDMA_OUT_PUSH_CH0_REG Push control register of Tx channel 0 0x00DC varies

GDMA_OUT_LINK_CH0_REG Link descriptor configuration and control

register of Tx channel 0

0x00E0 varies

GDMA_IN_CONF0_CH1_REG Configuration register 0 of Rx channel 1 0x0130 R/W

GDMA_IN_CONF1_CH1_REG Configuration register 1 of Rx channel 1 0x0134 R/W

GDMA_IN_POP_CH1_REG Pop control register of Rx channel 1 0x013C varies

GDMA_IN_LINK_CH1_REG Link descriptor configuration and control

register of Rx channel 1

0x0140 varies

GDMA_OUT_CONF0_CH1_REG Configuration register 0 of Tx channel 1 0x0190 R/W

GDMA_OUT_CONF1_CH1_REG Configuration register 1 of Tx channel 1 0x0194 R/W

GDMA_OUT_PUSH_CH1_REG Push control register of Tx channel 1 0x019C varies

GDMA_OUT_LINK_CH1_REG Link descriptor configuration and control

register of Tx channel 1

0x01A0 varies

GDMA_IN_CONF0_CH2_REG Configuration register 0 of Rx channel 2 0x01F0 R/W

Espressif Systems 53
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Name Description Address Access

GDMA_IN_CONF1_CH2_REG Configuration register 1 of Rx channel 2 0x01F4 R/W

GDMA_IN_POP_CH2_REG Pop control register of Rx channel 2 0x01FC varies

GDMA_IN_LINK_CH2_REG Link descriptor configuration and control

register of Rx channel 2

0x0200 varies

GDMA_OUT_CONF0_CH2_REG Configuration register 0 of Tx channel 2 0x0250 R/W

GDMA_OUT_CONF1_CH2_REG Configuration register 1 of Tx channel 2 0x0254 R/W

GDMA_OUT_PUSH_CH2_REG Push control register of Tx channel 2 0x025C varies

GDMA_OUT_LINK_CH2_REG Link descriptor configuration and control

register of Tx channel 2

0x0260 varies

Status Registers

GDMA_INFIFO_STATUS_CH0_REG Receive FIFO status of Rx channel 0 0x0078 RO

GDMA_IN_STATE_CH0_REG Receive status of Rx channel 0 0x0084 RO

GDMA_IN_SUC_EOF_DES_ADDR_CH0_REG Inlink descriptor address when EOF occurs

of Rx channel 0

0x0088 RO

GDMA_IN_ERR_EOF_DES_ADDR_CH0_REG Inlink descriptor address when errors occur

of Rx channel 0

0x008C RO

GDMA_IN_DSCR_CH0_REG Current inlink descriptor address of Rx

channel 0

0x0090 RO

GDMA_IN_DSCR_BF0_CH0_REG The last inlink descriptor address of Rx

channel 0

0x0094 RO

GDMA_IN_DSCR_BF1_CH0_REG The second-to-last inlink descriptor ad-

dress of Rx channel 0

0x0098 RO

GDMA_OUTFIFO_STATUS_CH0_REG Transmit FIFO status of Tx channel 0 0x00D8 RO

GDMA_OUT_STATE_CH0_REG Transmit status of Tx channel 0 0x00E4 RO

GDMA_OUT_EOF_DES_ADDR_CH0_REG Outlink descriptor address when EOF oc-

curs of Tx channel 0

0x00E8 RO

GDMA_OUT_EOF_BFR_DES_ADDR_CH0_REG The last outlink descriptor address when

EOF occurs of Tx channel 0

0x00EC RO

GDMA_OUT_DSCR_CH0_REG Current inlink descriptor address of Tx

channel 0

0x00F0 RO

GDMA_OUT_DSCR_BF0_CH0_REG The last inlink descriptor address of Tx

channel 0

0x00F4 RO

GDMA_OUT_DSCR_BF1_CH0_REG The second-to-last inlink descriptor ad-

dress of Tx channel 0

0x00F8 RO

GDMA_INFIFO_STATUS_CH1_REG Receive FIFO status of Rx channel 1 0x0138 RO

GDMA_IN_STATE_CH1_REG Receive status of Rx channel 1 0x0144 RO

GDMA_IN_SUC_EOF_DES_ADDR_CH1_REG Inlink descriptor address when EOF occurs

of Rx channel 1

0x0148 RO

GDMA_IN_ERR_EOF_DES_ADDR_CH1_REG Inlink descriptor address when errors occur

of Rx channel 1

0x014C RO

GDMA_IN_DSCR_CH1_REG Current inlink descriptor address of Rx

channel 1

0x0150 RO

GDMA_IN_DSCR_BF0_CH1_REG The last inlink descriptor address of Rx

channel 1

0x0154 RO

Espressif Systems 54
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Name Description Address Access

GDMA_IN_DSCR_BF1_CH1_REG The second-to-last inlink descriptor ad-

dress of Rx channel 1

0x0158 RO

GDMA_OUTFIFO_STATUS_CH1_REG Transmit FIFO status of Tx channel 1 0x0198 RO

GDMA_OUT_STATE_CH1_REG Transmit status of Tx channel 1 0x01A4 RO

GDMA_OUT_EOF_DES_ADDR_CH1_REG Outlink descriptor address when EOF oc-

curs of Tx channel 1

0x01A8 RO

GDMA_OUT_EOF_BFR_DES_ADDR_CH1_REG The last outlink descriptor address when

EOF occurs of Tx channel 1

0x01AC RO

GDMA_OUT_DSCR_CH1_REG Current inlink descriptor address of Tx

channel 1

0x01B0 RO

GDMA_OUT_DSCR_BF0_CH1_REG The last inlink descriptor address of Tx

channel 1

0x01B4 RO

GDMA_OUT_DSCR_BF1_CH1_REG The second-to-last inlink descriptor ad-

dress of Tx channel 1

0x01B8 RO

GDMA_INFIFO_STATUS_CH2_REG Receive FIFO status of Rx channel 2 0x01F8 RO

GDMA_IN_STATE_CH2_REG Receive status of Rx channel 2 0x0204 RO

GDMA_IN_SUC_EOF_DES_ADDR_CH2_REG Inlink descriptor address when EOF occurs

of Rx channel 2

0x0208 RO

GDMA_IN_ERR_EOF_DES_ADDR_CH2_REG Inlink descriptor address when errors occur

of Rx channel 2

0x020C RO

GDMA_IN_DSCR_CH2_REG Current inlink descriptor address of Rx

channel 2

0x0210 RO

GDMA_IN_DSCR_BF0_CH2_REG The last inlink descriptor address of Rx

channel 2

0x0214 RO

GDMA_IN_DSCR_BF1_CH2_REG The second-to-last inlink descriptor ad-

dress of Rx channel 2

0x0218 RO

GDMA_OUTFIFO_STATUS_CH2_REG Transmit FIFO status of Tx channel 2 0x0258 RO

GDMA_OUT_STATE_CH2_REG Transmit status of Tx channel 2 0x0264 RO

GDMA_OUT_EOF_DES_ADDR_CH2_REG Outlink descriptor address when EOF oc-

curs of Tx channel 2

0x0268 RO

GDMA_OUT_EOF_BFR_DES_ADDR_CH2_REG The last outlink descriptor address when

EOF occurs of Tx channel 2

0x026C RO

GDMA_OUT_DSCR_CH2_REG Current inlink descriptor address of Tx

channel 2

0x0270 RO

GDMA_OUT_DSCR_BF0_CH2_REG The last inlink descriptor address of Tx

channel 2

0x0274 RO

GDMA_OUT_DSCR_BF1_CH2_REG The second-to-last inlink descriptor ad-

dress of Tx channel 2

0x0278 RO

Priority Registers

GDMA_IN_PRI_CH0_REG Priority register of Rx channel 0 0x009C R/W

GDMA_OUT_PRI_CH0_REG Priority register of Tx channel 0 0x00FC R/W

GDMA_IN_PRI_CH1_REG Priority register of Rx channel 1 0x015C R/W

GDMA_OUT_PRI_CH1_REG Priority register of Tx channel 1 0x01BC R/W

GDMA_IN_PRI_CH2_REG Priority register of Rx channel 2 0x021C R/W

Espressif Systems 55
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Name Description Address Access

GDMA_OUT_PRI_CH2_REG Priority register of Tx channel 2 0x027C R/W

Peripheral Select Registers

GDMA_IN_PERI_SEL_CH0_REG Peripheral selection of Rx channel 0 0x00A0 R/W

GDMA_OUT_PERI_SEL_CH0_REG Peripheral selection of Tx channel 0 0x0100 R/W

GDMA_IN_PERI_SEL_CH1_REG Peripheral selection of Rx channel 1 0x0160 R/W

GDMA_OUT_PERI_SEL_CH1_REG Peripheral selection of Tx channel 1 0x01C0 R/W

GDMA_IN_PERI_SEL_CH2_REG Peripheral selection of Rx channel 2 0x0220 R/W

GDMA_OUT_PERI_SEL_CH2_REG Peripheral selection of Tx channel 2 0x0280 R/W

Espressif Systems 56
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

2.8 Registers

The addresses in this section are relative to GDMA base address provided in Table 3-4 in Chapter 3 System and

Memory.

Register 2.1. GDMA_INT_RAW_CHn_REG (n: 0­2) (0x0000+16*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GDM
A_O

UTF
IFO

_U
DF_

CH0_
IN

T_
RAW

0

12

GDM
A_O

UTF
IFO

_O
VF_

CH0_
IN

T_
RAW

0

11

GDM
A_IN

FIF
O_U

DF_
CH0_

IN
T_

RAW

0

10

GDM
A_IN

FIF
O_O

VF_
CH0_

IN
T_

RAW

0

9

GDM
A_O

UT_
TO

TA
L_

EOF_
CH0_

IN
T_

RAW

0

8

GDM
A_IN

_D
SCR_E

M
PTY

_C
H0_

IN
T_

RAW

0

7

GDM
A_O

UT_
DSCR_E

RR_C
H0_

IN
T_

RAW

0

6

GDM
A_IN

_D
SCR_E

RR_C
H0_

IN
T_

RAW

0

5

GDM
A_O

UT_
EOF_

CH0_
IN

T_
RAW

0

4

GDM
A_O

UT_
DONE_C

H0_
IN

T_
RAW

0

3

GDM
A_IN

_E
RR_E

OF_
CH0_

IN
T_

RAW

0

2

GDM
A_IN

_S
UC_E

OF_
CH0_

IN
T_

RAW

0

1

GDM
A_IN

_D
ONE_C

H0_
IN

T_
RAW

0

0

Reset

GDMA_IN_DONE_CHn_INT_RAW The raw interrupt bit turns to high level when the last data pointed

by one inlink descriptor has been received for Rx channel 0. (R/WTC/SS)

GDMA_IN_SUC_EOF_CHn_INT_RAW The raw interrupt bit turns to high level when the last data

pointed by one inlink descriptor has been received for Rx channel 0. For UHCI0, the raw interrupt

bit turns to high level when the last data pointed by one inlink descriptor has been received and no

data error is detected for Rx channel 0. (R/WTC/SS)

GDMA_IN_ERR_EOF_CHn_INT_RAW The raw interrupt bit turns to high level when data error is

detected only in the case that the peripheral is UHCI0 for Rx channel 0. For other peripherals, this

raw interrupt is reserved. (R/WTC/SS)

GDMA_OUT_DONE_CHn_INT_RAW The raw interrupt bit turns to high level when the last data

pointed by one outlink descriptor has been transmitted to peripherals for Tx channel 0. (R/WTC/SS)

GDMA_OUT_EOF_CHn_INT_RAW The raw interrupt bit turns to high level when the last data pointed

by one outlink descriptor has been read from memory for Tx channel 0. (R/WTC/SS)

GDMA_IN_DSCR_ERR_CHn_INT_RAW The raw interrupt bit turns to high level when detecting inlink

descriptor error, including owner error, the second and third word error of inlink descriptor for Rx

channel 0. (R/WTC/SS)

GDMA_OUT_DSCR_ERR_CHn_INT_RAW The raw interrupt bit turns to high level when detecting

outlink descriptor error, including owner error, the second and third word error of outlink descriptor

for Tx channel 0. (R/WTC/SS)

Continued on the next page...

Espressif Systems 57
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.1. GDMA_INT_RAW_CHn_REG (n: 0­2) (0x0000+16*n)

Continued from the previous page...

GDMA_IN_DSCR_EMPTY_CHn_INT_RAW The raw interrupt bit turns to high level when Rx buffer

pointed by inlink is full and receiving data is not completed, but there is no more inlink for Rx channel

0. (R/WTC/SS)

GDMA_OUT_TOTAL_EOF_CHn_INT_RAW The raw interrupt bit turns to high level when data cor-

responding a outlink (includes one link descriptor or few link descriptors) is transmitted out for Tx

channel 0. (R/WTC/SS)

GDMA_INFIFO_OVF_CHn_INT_RAW This raw interrupt bit turns to high level when level 1 fifo of Rx

channel 0 is overflow. (R/WTC/SS)

GDMA_INFIFO_UDF_CHn_INT_RAW This raw interrupt bit turns to high level when level 1 fifo of Rx

channel 0 is underflow. (R/WTC/SS)

GDMA_OUTFIFO_OVF_CHn_INT_RAW This raw interrupt bit turns to high level when level 1 fifo of

Tx channel 0 is overflow. (R/WTC/SS)

GDMA_OUTFIFO_UDF_CHn_INT_RAW This raw interrupt bit turns to high level when level 1 fifo of

Tx channel 0 is underflow. (R/WTC/SS)

Espressif Systems 58
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.2. GDMA_INT_ST_CHn_REG (n: 0­2) (0x0004+16*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GDM
A_O

UTF
IFO

_U
DF_

CH0_
IN

T_
ST

0

12

GDM
A_O

UTF
IFO

_O
VF_

CH0_
IN

T_
ST

0

11

GDM
A_IN

FIF
O_U

DF_
CH0_

IN
T_

ST

0

10

GDM
A_IN

FIF
O_O

VF_
CH0_

IN
T_

ST

0

9

GDM
A_O

UT_
TO

TA
L_

EOF_
CH0_

IN
T_

ST

0

8

GDM
A_IN

_D
SCR_E

M
PTY

_C
H0_

IN
T_

ST

0

7

GDM
A_O

UT_
DSCR_E

RR_C
H0_

IN
T_

ST

0

6

GDM
A_IN

_D
SCR_E

RR_C
H0_

IN
T_

ST

0

5

GDM
A_O

UT_
EOF_

CH0_
IN

T_
ST

0

4

GDM
A_O

UT_
DONE_C

H0_
IN

T_
ST

0

3

GDM
A_IN

_E
RR_E

OF_
CH0_

IN
T_

ST

0

2

GDM
A_IN

_S
UC_E

OF_
CH0_

IN
T_

ST

0

1

GDM
A_IN

_D
ONE_C

H0_
IN

T_
ST

0

0

Reset

GDMA_IN_DONE_CHn_INT_ST The raw interrupt status bit for the IN_DONE_CH_INT interrupt. (RO)

GDMA_IN_SUC_EOF_CHn_INT_ST The raw interrupt status bit for the IN_SUC_EOF_CH_INT inter-

rupt. (RO)

GDMA_IN_ERR_EOF_CHn_INT_ST The raw interrupt status bit for the IN_ERR_EOF_CH_INT inter-

rupt. (RO)

GDMA_OUT_DONE_CHn_INT_ST The raw interrupt status bit for the OUT_DONE_CH_INT interrupt.

(RO)

GDMA_OUT_EOF_CHn_INT_ST The raw interrupt status bit for the OUT_EOF_CH_INT interrupt.

(RO)

GDMA_IN_DSCR_ERR_CHn_INT_ST The raw interrupt status bit for the IN_DSCR_ERR_CH_INT

interrupt. (RO)

GDMA_OUT_DSCR_ERR_CHn_INT_ST The raw interrupt status bit for the

OUT_DSCR_ERR_CH_INT interrupt. (RO)

GDMA_IN_DSCR_EMPTY_CHn_INT_ST The raw interrupt status bit for the

IN_DSCR_EMPTY_CH_INT interrupt. (RO)

GDMA_OUT_TOTAL_EOF_CHn_INT_ST The raw interrupt status bit for the

OUT_TOTAL_EOF_CH_INT interrupt. (RO)

GDMA_INFIFO_OVF_CHn_INT_ST The raw interrupt status bit for the INFIFO_OVF_L1_CH_INT in-

terrupt. (RO)

GDMA_INFIFO_UDF_CHn_INT_ST The raw interrupt status bit for the INFIFO_UDF_L1_CH_INT in-

terrupt. (RO)

GDMA_OUTFIFO_OVF_CHn_INT_ST The raw interrupt status bit for the OUTFIFO_OVF_L1_CH_INT

interrupt. (RO)

GDMA_OUTFIFO_UDF_CHn_INT_ST The raw interrupt status bit for the OUT-

FIFO_UDF_L1_CH_INT interrupt. (RO)

Espressif Systems 59
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.3. GDMA_INT_ENA_CHn_REG (n: 0­2) (0x0008+16*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GDM
A_O

UTF
IFO

_U
DF_

CH0_
IN

T_
ENA

0

12

GDM
A_O

UTF
IFO

_O
VF_

CH0_
IN

T_
ENA

0

11

GDM
A_IN

FIF
O_U

DF_
CH0_

IN
T_

ENA

0

10

GDM
A_IN

FIF
O_O

VF_
CH0_

IN
T_

ENA

0

9

GDM
A_O

UT_
TO

TA
L_

EOF_
CH0_

IN
T_

ENA

0

8

GDM
A_IN

_D
SCR_E

M
PTY

_C
H0_

IN
T_

ENA

0

7

GDM
A_O

UT_
DSCR_E

RR_C
H0_

IN
T_

ENA

0

6

GDM
A_IN

_D
SCR_E

RR_C
H0_

IN
T_

ENA

0

5

GDM
A_O

UT_
EOF_

CH0_
IN

T_
ENA

0

4

GDM
A_O

UT_
DONE_C

H0_
IN

T_
ENA

0

3

GDM
A_IN

_E
RR_E

OF_
CH0_

IN
T_

ENA

0

2

GDM
A_IN

_S
UC_E

OF_
CH0_

IN
T_

ENA

0

1

GDM
A_IN

_D
ONE_C

H0_
IN

T_
ENA

0

0

Reset

GDMA_IN_DONE_CHn_INT_ENA The interrupt enable bit for the IN_DONE_CH_INT interrupt. (R/W)

GDMA_IN_SUC_EOF_CHn_INT_ENA The interrupt enable bit for the IN_SUC_EOF_CH_INT inter-

rupt. (R/W)

GDMA_IN_ERR_EOF_CHn_INT_ENA The interrupt enable bit for the IN_ERR_EOF_CH_INT inter-

rupt. (R/W)

GDMA_OUT_DONE_CHn_INT_ENA The interrupt enable bit for the OUT_DONE_CH_INT interrupt.

(R/W)

GDMA_OUT_EOF_CHn_INT_ENA The interrupt enable bit for the OUT_EOF_CH_INT interrupt.

(R/W)

GDMA_IN_DSCR_ERR_CHn_INT_ENA The interrupt enable bit for the IN_DSCR_ERR_CH_INT in-

terrupt. (R/W)

GDMA_OUT_DSCR_ERR_CHn_INT_ENA The interrupt enable bit for the OUT_DSCR_ERR_CH_INT

interrupt. (R/W)

GDMA_IN_DSCR_EMPTY_CHn_INT_ENA The interrupt enable bit for the

IN_DSCR_EMPTY_CH_INT interrupt. (R/W)

GDMA_OUT_TOTAL_EOF_CHn_INT_ENA The interrupt enable bit for the

OUT_TOTAL_EOF_CH_INT interrupt. (R/W)

GDMA_INFIFO_OVF_CHn_INT_ENA The interrupt enable bit for the INFIFO_OVF_L1_CH_INT inter-

rupt. (R/W)

GDMA_INFIFO_UDF_CHn_INT_ENA The interrupt enable bit for the INFIFO_UDF_L1_CH_INT inter-

rupt. (R/W)

GDMA_OUTFIFO_OVF_CHn_INT_ENA The interrupt enable bit for the OUTFIFO_OVF_L1_CH_INT

interrupt. (R/W)

GDMA_OUTFIFO_UDF_CHn_INT_ENA The interrupt enable bit for the OUTFIFO_UDF_L1_CH_INT

interrupt. (R/W)

Espressif Systems 60
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.4. GDMA_INT_CLR_CHn_REG (n: 0­2) (0x000C+16*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GDM
A_O

UTF
IFO

_U
DF_

CH0_
IN

T_
CLR

0

12

GDM
A_O

UTF
IFO

_O
VF_

CH0_
IN

T_
CLR

0

11

GDM
A_IN

FIF
O_U

DF_
CH0_

IN
T_

CLR

0

10

GDM
A_IN

FIF
O_O

VF_
CH0_

IN
T_

CLR

0

9

GDM
A_O

UT_
TO

TA
L_

EOF_
CH0_

IN
T_

CLR

0

8

GDM
A_IN

_D
SCR_E

M
PTY

_C
H0_

IN
T_

CLR

0

7

GDM
A_O

UT_
DSCR_E

RR_C
H0_

IN
T_

CLR

0

6

GDM
A_IN

_D
SCR_E

RR_C
H0_

IN
T_

CLR

0

5

GDM
A_O

UT_
EOF_

CH0_
IN

T_
CLR

0

4

GDM
A_O

UT_
DONE_C

H0_
IN

T_
CLR

0

3

GDM
A_IN

_E
RR_E

OF_
CH0_

IN
T_

CLR

0

2

GDM
A_IN

_S
UC_E

OF_
CH0_

IN
T_

CLR

0

1

GDM
A_IN

_D
ONE_C

H0_
IN

T_
CLR

0

0

Reset

GDMA_IN_DONE_CHn_INT_CLR Set this bit to clear the IN_DONE_CH_INT interrupt. (WT)

GDMA_IN_SUC_EOF_CHn_INT_CLR Set this bit to clear the IN_SUC_EOF_CH_INT interrupt. (WT)

GDMA_IN_ERR_EOF_CHn_INT_CLR Set this bit to clear the IN_ERR_EOF_CH_INT interrupt. (WT)

GDMA_OUT_DONE_CHn_INT_CLR Set this bit to clear the OUT_DONE_CH_INT interrupt. (WT)

GDMA_OUT_EOF_CHn_INT_CLR Set this bit to clear the OUT_EOF_CH_INT interrupt. (WT)

GDMA_IN_DSCR_ERR_CHn_INT_CLR Set this bit to clear the IN_DSCR_ERR_CH_INT interrupt.

(WT)

GDMA_OUT_DSCR_ERR_CHn_INT_CLR Set this bit to clear the OUT_DSCR_ERR_CH_INT inter-

rupt. (WT)

GDMA_IN_DSCR_EMPTY_CHn_INT_CLR Set this bit to clear the IN_DSCR_EMPTY_CH_INT inter-

rupt. (WT)

GDMA_OUT_TOTAL_EOF_CHn_INT_CLR Set this bit to clear the OUT_TOTAL_EOF_CH_INT inter-

rupt. (WT)

GDMA_INFIFO_OVF_CHn_INT_CLR Set this bit to clear the INFIFO_OVF_L1_CH_INT interrupt.

(WT)

GDMA_INFIFO_UDF_CHn_INT_CLR Set this bit to clear the INFIFO_UDF_L1_CH_INT interrupt.

(WT)

GDMA_OUTFIFO_OVF_CHn_INT_CLR Set this bit to clear the OUTFIFO_OVF_L1_CH_INT interrupt.

(WT)

GDMA_OUTFIFO_UDF_CHn_INT_CLR Set this bit to clear the OUTFIFO_UDF_L1_CH_INT interrupt.

(WT)

Espressif Systems 61
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.5. GDMA_MISC_CONF_REG (0x0044)

(re
se

rve
d)

0 0

31 4

GDM
A_C

LK
_E

N

0

3

GDM
A_A

RB_P
RI_D

IS

0

2

(re
se

rve
d)

0

1

GDM
A_A

HBM
_R

ST_
IN

TE
R

0

0

Reset

GDMA_AHBM_RST_INTER Set this bit, then clear this bit to reset the internal ahb FSM. (R/W)

GDMA_ARB_PRI_DIS Set this bit to disable priority arbitration function. (R/W)

GDMA_CLK_EN reg_clk_en (R/W)

Register 2.6. GDMA_DATE_REG (0x0048)

GDM
A_D

AT
E

0x2008250

31 0

Reset

GDMA_DATE register version. (R/W)

Espressif Systems 62
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.7. GDMA_IN_CONF0_CHn_REG (n: 0­2) (0x0070+192*n)

(re
se

rve
d)

0 0

31 5

GDM
A_M

EM
_T

RANS_E
N_C

H0

0

4

GDM
A_IN

_D
AT

A_B
URST_

EN_C
H0

0

3

GDM
A_IN

DSCR_B
URST_

EN_C
H0

0

2

GDM
A_IN

_L
OOP_T

EST_
CH0

0

1

GDM
A_IN

_R
ST_

CH0

0

0

Reset

GDMA_IN_RST_CHn This bit is used to reset DMA channel 0 Rx FSM and Rx FIFO pointer. (R/W)

GDMA_IN_LOOP_TEST_CHn This bit is used to fill the owner bit of inlink descriptor by hardware of

inlink descriptor. (R/W)

GDMA_INDSCR_BURST_EN_CHn Set this bit to 1 to enable INCR burst transfer for Rx channel 0

reading link descriptor when accessing internal SRAM. (R/W)

GDMA_IN_DATA_BURST_EN_CHn Set this bit to 1 to enable INCR burst transfer for Rx channel 0

receiving data when accessing internal SRAM. (R/W)

GDMA_MEM_TRANS_EN_CHn Set this bit 1 to enable automatic transmitting data from memory to

memory via DMA. (R/W)

Register 2.8. GDMA_IN_CONF1_CHn_REG (n: 0­2) (0x0074+192*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GDM
A_IN

_C
HECK_O

W
NER_C

H0

0

12

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

GDMA_IN_CHECK_OWNER_CHn Set this bit to enable checking the owner attribute of the link de-

scriptor. (R/W)

Espressif Systems 63
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.9. GDMA_IN_POP_CHn_REG (n: 0­2) (0x007C+192*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GDM
A_IN

FIF
O_P

OP_C
H0

0

12

GDM
A_IN

FIF
O_R

DAT
A_C

H0

0x800

11 0

Reset

GDMA_INFIFO_RDATA_CHn This register stores the data popping from DMA FIFO. (RO)

GDMA_INFIFO_POP_CHn Set this bit to pop data from DMA FIFO. (R/W/SC)

Register 2.10. GDMA_IN_LINK_CHn_REG (n: 0­2) (0x0080+192*n)

(re
se

rve
d)

0 0 0 0 0 0 0

31 25

GDM
A_IN

LIN
K_P

ARK_C
H0

1

24

GDM
A_IN

LIN
K_R

ESTA
RT_

CH0

0

23

GDM
A_IN

LIN
K_S

TA
RT_

CH0

0

22

GDM
A_IN

LIN
K_S

TO
P_C

H0

0

21

GDM
A_IN

LIN
K_A

UTO
_R

ET_
CH0

1

20

GDM
A_IN

LIN
K_A

DDR_C
H0

0x000

19 0

Reset

GDMA_INLINK_ADDR_CHn This register stores the 20 least significant bits of the first inlink descrip-

tor’s address. (R/W)

GDMA_INLINK_AUTO_RET_CHn Set this bit to return to current inlink descriptor’s address, when

there are some errors in current receiving data. (R/W)

GDMA_INLINK_STOP_CHn Set this bit to stop dealing with the inlink descriptors. (R/W/SC)

GDMA_INLINK_START_CHn Set this bit to start dealing with the inlink descriptors. (R/W/SC)

GDMA_INLINK_RESTART_CHn Set this bit to mount a new inlink descriptor. (R/W/SC)

GDMA_INLINK_PARK_CHn 1: the inlink descriptor’s FSM is in idle state. 0: the inlink descriptor’s

FSM is working. (RO)

Espressif Systems 64
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.11. GDMA_OUT_CONF0_CHn_REG (n: 0­2) (0x00D0+192*n)

(re
se

rve
d)

0 0

31 6

GDM
A_O

UT_
DAT

A_B
URST_

EN_C
H0

0

5

GDM
A_O

UTD
SCR_B

URST_
EN_C

H0

0

4

GDM
A_O

UT_
EOF_

M
ODE_C

H0

1

3

GDM
A_O

UT_
AUTO

_W
RBACK_C

H0

0

2

GDM
A_O

UT_
LO

OP_T
EST_

CH0

0

1

GDM
A_O

UT_
RST_

CH0

0

0

Reset

GDMA_OUT_RST_CHn This bit is used to reset DMA channel 0 Tx FSM and Tx FIFO pointer. (R/W)

GDMA_OUT_LOOP_TEST_CHn reserved (R/W)

GDMA_OUT_AUTO_WRBACK_CHn Set this bit to enable automatic outlink-writeback when all the

data in tx buffer has been transmitted. (R/W)

GDMA_OUT_EOF_MODE_CHn EOF flag generation mode when transmitting data. 1: EOF flag for

Tx channel 0 is generated when data need to transmit has been popped from FIFO in DMA (R/W)

GDMA_OUTDSCR_BURST_EN_CHn Set this bit to 1 to enable INCR burst transfer for Tx channel

0 reading link descriptor when accessing internal SRAM. (R/W)

GDMA_OUT_DATA_BURST_EN_CHn Set this bit to 1 to enable INCR burst transfer for Tx channel

0 transmitting data when accessing internal SRAM. (R/W)

Register 2.12. GDMA_OUT_CONF1_CHn_REG (n: 0­2) (0x00D4+192*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GDM
A_O

UT_
CHECK_O

W
NER_C

H0

0

12

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

GDMA_OUT_CHECK_OWNER_CHn Set this bit to enable checking the owner attribute of the link

descriptor. (R/W)

Espressif Systems 65
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.13. GDMA_OUT_PUSH_CHn_REG (n: 0­2) (0x00DC+192*n)

(re
se

rve
d)

0 0

31 10

GDM
A_O

UTF
IFO

_P
USH_C

H0

0

9

GDM
A_O

UTF
IFO

_W
DAT

A_C
H0

0x0

8 0

Reset

GDMA_OUTFIFO_WDATA_CHn This register stores the data that need to be pushed into DMA FIFO.

(R/W)

GDMA_OUTFIFO_PUSH_CHn Set this bit to push data into DMA FIFO. (R/W/SC)

Register 2.14. GDMA_OUT_LINK_CHn_REG (n: 0­2) (0x00E0+192*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

GDM
A_O

UTL
IN

K_P
ARK_C

H0

1

23

GDM
A_O

UTL
IN

K_R
ESTA

RT_
CH0

0

22

GDM
A_O

UTL
IN

K_S
TA

RT_
CH0

0

21

GDM
A_O

UTL
IN

K_S
TO

P_C
H0

0

20

GDM
A_O

UTL
IN

K_A
DDR_C

H0

0x000

19 0

Reset

GDMA_OUTLINK_ADDR_CHn This register stores the 20 least significant bits of the first outlink de-

scriptor’s address. (R/W)

GDMA_OUTLINK_STOP_CHn Set this bit to stop dealing with the outlink descriptors. (R/W/SC)

GDMA_OUTLINK_START_CHn Set this bit to start dealing with the outlink descriptors. (R/W/SC)

GDMA_OUTLINK_RESTART_CHn Set this bit to restart a new outlink from the last address.

(R/W/SC)

GDMA_OUTLINK_PARK_CHn 1: the outlink descriptor’s FSM is in idle state. 0: the outlink descrip-

tor’s FSM is working. (RO)

Espressif Systems 66
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.15. GDMA_INFIFO_STATUS_CHn_REG (n: 0­2) (0x0078+192*n)

(re
se

rve
d)

0 0 0 0

31 28

GDM
A_IN

_B
UF_

HUNGRY_C
H0

0

27

GDM
A_IN

_R
EM

AIN
_U

NDER_4
B_C

H0

1

26

GDM
A_IN

_R
EM

AIN
_U

NDER_3
B_C

H0

1

25

GDM
A_IN

_R
EM

AIN
_U

NDER_2
B_C

H0

1

24

GDM
A_IN

_R
EM

AIN
_U

NDER_1
B_C

H0

1

23

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 8

GDM
A_IN

FIF
O_C

NT_
CH0

0

7 2

GDM
A_IN

FIF
O_E

M
PTY

_C
H0

1

1

GDM
A_IN

FIF
O_F

ULL
_C

H0

1

0

Reset

GDMA_INFIFO_FULL_CHn L1 Rx FIFO full signal for Rx channel 0. (RO)

GDMA_INFIFO_EMPTY_CHn L1 Rx FIFO empty signal for Rx channel 0. (RO)

GDMA_INFIFO_CNT_CHn The register stores the byte number of the data in L1 Rx FIFO for Rx

channel 0. (RO)

GDMA_IN_REMAIN_UNDER_1B_CHn reserved (RO)

GDMA_IN_REMAIN_UNDER_2B_CHn reserved (RO)

GDMA_IN_REMAIN_UNDER_3B_CHn reserved (RO)

GDMA_IN_REMAIN_UNDER_4B_CHn reserved (RO)

GDMA_IN_BUF_HUNGRY_CHn reserved (RO)

Register 2.16. GDMA_IN_STATE_CHn_REG (n: 0­2) (0x0084+192*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

31 23

GDM
A_IN

_S
TA

TE
_C

H0

0

22 20

GDM
A_IN

_D
SCR_S

TA
TE

_C
H0

0

19 18

GDM
A_IN

LIN
K_D

SCR_A
DDR_C

H0

0

17 0

Reset

GDMA_INLINK_DSCR_ADDR_CHn This register stores the current inlink descriptor’s address. (RO)

GDMA_IN_DSCR_STATE_CHn reserved (RO)

GDMA_IN_STATE_CHn reserved (RO)

Espressif Systems 67
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.17. GDMA_IN_SUC_EOF_DES_ADDR_CHn_REG (n: 0­2) (0x0088+192*n)

GDM
A_IN

_S
UC_E

OF_
DES_A

DDR_C
H0

0x000000

31 0

Reset

GDMA_IN_SUC_EOF_DES_ADDR_CHn This register stores the address of the inlink descriptor

when the EOF bit in this descriptor is 1. (RO)

Register 2.18. GDMA_IN_ERR_EOF_DES_ADDR_CHn_REG (n: 0­2) (0x008C+192*n)

GDM
A_IN

_E
RR_E

OF_
DES_A

DDR_C
H0

0x000000

31 0

Reset

GDMA_IN_ERR_EOF_DES_ADDR_CHn This register stores the address of the inlink descriptor

when there are some errors in current receiving data. Only used when peripheral is UHCI0. (RO)

Register 2.19. GDMA_IN_DSCR_CHn_REG (n: 0­2) (0x0090+192*n)

GDM
A_IN

LIN
K_D

SCR_C
H0

0

31 0

Reset

GDMA_INLINK_DSCR_CHn The address of the current inlink descriptor x. (RO)

Espressif Systems 68
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.20. GDMA_IN_DSCR_BF0_CHn_REG (n: 0­2) (0x0094+192*n)

GDM
A_IN

LIN
K_D

SCR_B
F0

_C
H0

0

31 0

Reset

GDMA_INLINK_DSCR_BF0_CHn The address of the last inlink descriptor x-1. (RO)

Register 2.21. GDMA_IN_DSCR_BF1_CHn_REG (n: 0­2) (0x0098+192*n)

GDM
A_IN

LIN
K_D

SCR_B
F1

_C
H0

0

31 0

Reset

GDMA_INLINK_DSCR_BF1_CHn The address of the second-to-last inlink descriptor x-2. (RO)

Espressif Systems 69
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.22. GDMA_OUTFIFO_STATUS_CHn_REG (n: 0­2) (0x00D8+192*n)

(re
se

rve
d)

0 0 0 0 0

31 27

GDM
A_O

UT_
REM

AIN
_U

NDER_4
B_C

H0

1

26

GDM
A_O

UT_
REM

AIN
_U

NDER_3
B_C

H0

1

25

GDM
A_O

UT_
REM

AIN
_U

NDER_2
B_C

H0

1

24

GDM
A_O

UT_
REM

AIN
_U

NDER_1
B_C

H0

1

23

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 8

GDM
A_O

UTF
IFO

_C
NT_

CH0

0

7 2

GDM
A_O

UTF
IFO

_E
M

PTY
_C

H0

1

1

GDM
A_O

UTF
IFO

_F
ULL

_C
H0

0

0

Reset

GDMA_OUTFIFO_FULL_CHn L1 Tx FIFO full signal for Tx channel 0. (RO)

GDMA_OUTFIFO_EMPTY_CHn L1 Tx FIFO empty signal for Tx channel 0. (RO)

GDMA_OUTFIFO_CNT_CHn The register stores the byte number of the data in L1 Tx FIFO for Tx

channel 0. (RO)

GDMA_OUT_REMAIN_UNDER_1B_CHn reserved (RO)

GDMA_OUT_REMAIN_UNDER_2B_CHn reserved (RO)

GDMA_OUT_REMAIN_UNDER_3B_CHn reserved (RO)

GDMA_OUT_REMAIN_UNDER_4B_CHn reserved (RO)

Register 2.23. GDMA_OUT_STATE_CHn_REG (n: 0­2) (0x00E4+192*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

31 23

GDM
A_O

UT_
STA

TE
_C

H0

0

22 20

GDM
A_O

UT_
DSCR_S

TA
TE

_C
H0

0

19 18

GDM
A_O

UTL
IN

K_D
SCR_A

DDR_C
H0

0

17 0

Reset

GDMA_OUTLINK_DSCR_ADDR_CHn This register stores the current outlink descriptor’s address.

(RO)

GDMA_OUT_DSCR_STATE_CHn reserved (RO)

GDMA_OUT_STATE_CHn reserved (RO)

Espressif Systems 70
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.24. GDMA_OUT_EOF_DES_ADDR_CHn_REG (n: 0­2) (0x00E8+192*n)

GDM
A_O

UT_
EOF_

DES_A
DDR_C

H0

0x000000

31 0

Reset

GDMA_OUT_EOF_DES_ADDR_CHn This register stores the address of the outlink descriptor when

the EOF bit in this descriptor is 1. (RO)

Register 2.25. GDMA_OUT_EOF_BFR_DES_ADDR_CHn_REG (n: 0­2) (0x00EC+192*n)

GDM
A_O

UT_
EOF_

BFR
_D

ES_A
DDR_C

H0

0x000000

31 0

Reset

GDMA_OUT_EOF_BFR_DES_ADDR_CHn This register stores the address of the outlink descriptor

before the last outlink descriptor. (RO)

Register 2.26. GDMA_OUT_DSCR_CHn_REG (n: 0­2) (0x00F0+192*n)

GDM
A_O

UTL
IN

K_D
SCR_C

H0

0

31 0

Reset

GDMA_OUTLINK_DSCR_CHn The address of the current outlink descriptor y. (RO)

Espressif Systems 71
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.27. GDMA_OUT_DSCR_BF0_CHn_REG (n: 0­2) (0x00F4+192*n)

GDM
A_O

UTL
IN

K_D
SCR_B

F0
_C

H0

0

31 0

Reset

GDMA_OUTLINK_DSCR_BF0_CHn The address of the last outlink descriptor y-1. (RO)

Register 2.28. GDMA_OUT_DSCR_BF1_CHn_REG (n: 0­2) (0x00F8+192*n)

GDM
A_O

UTL
IN

K_D
SCR_B

F1
_C

H0

0

31 0

Reset

GDMA_OUTLINK_DSCR_BF1_CHn The address of the second-to-last inlink descriptor x-2. (RO)

Register 2.29. GDMA_IN_PRI_CHn_REG (n: 0­2) (0x009C+192*n)

(re
se

rve
d)

0 0

31 4

GDM
A_R

X_
PRI_C

H0

0

3 0

Reset

GDMA_RX_PRI_CHn The priority of Rx channel 0. The larger of the value, the higher of the priority.

(R/W)

Espressif Systems 72
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

2 GDMA Controller (GDMA)

Register 2.30. GDMA_OUT_PRI_CHn_REG (n: 0­2) (0x00FC+192*n)

(re
se

rve
d)

0 0

31 4

GDM
A_T

X_
PRI_C

H0

0

3 0

Reset

GDMA_TX_PRI_CHn The priority of Tx channel 0. The larger of the value, the higher of the priority.

(R/W)

Register 2.31. GDMA_IN_PERI_SEL_CHn_REG (n: 0­2) (0x00A0+192*n)

(re
se

rve
d)

0 0

31 6

GDM
A_P

ERI_I
N_S

EL_
CH0

0x3f

5 0

Reset

GDMA_PERI_IN_SEL_CHn This register is used to select peripheral for Rx channel 0. 0:SPI2. 1:

reserved. 2: UHCI0. 3: I2S. 4: reserved. 5: reserved. 6: AES. 7: SHA. 8: ADC. (R/W)

Register 2.32. GDMA_OUT_PERI_SEL_CHn_REG (n: 0­2) (0x0100+192*n)

(re
se

rve
d)

0 0

31 6

GDM
A_P

ERI_O
UT_

SEL_
CH0

0x3f

5 0

Reset

GDMA_PERI_OUT_SEL_CHn This register is used to select peripheral for Tx channel 0. 0:SPI2. 1:

reserved. 2: UHCI0. 3: I2S. 4: reserved. 5: reserved. 6: AES. 7: SHA. 8: ADC. (R/W)

Espressif Systems 73
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

3 System and Memory

3 System and Memory

3.1 Overview

The ESP32-C3 is an ultra-low-power and highly-integrated system with a 32-bit RISC-V single-core processor

with a four-stage pipeline that operates at up to 160 MHz. All internal memory, external memory, and peripherals

are located on the CPU buses.

3.2 Features

• Address Space

– 792 KB of internal memory address space accessed from the instruction bus

– 552 KB of internal memory address space accessed from the data bus

– 836 KB of peripheral address space

– 8 MB of external memory virtual address space accessed from the instruction bus

– 8 MB of external memory virtual address space accessed from the data bus

– 384 KB of internal DMA address space

• Internal Memory

– 384 KB of Internal ROM

– 400 KB of Internal SRAM

– 8 KB of RTC Memory

• External Memory

– Supports up to 16 MB external flash

• Peripheral Space

– 35 modules/peripherals in total

• GDMA

– 7 GDMA-supported modules/peripherals

Figure 3-1 illustrates the system structure and address mapping.

Espressif Systems 74
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

3 System and Memory

Figure 3­1. System Structure and Address Mapping

Note:

• The address space with gray background is not available to users.

• The range of addresses available in the address space may be larger than the actual available memory of a particular

type.

3.3 Functional Description

3.3.1 Address Mapping

Addresses below 0x4000_0000 are accessed using the data bus. Addresses in the range of 0x4000_0000 ~
0x4FFF_FFFF are accessed using the instruction bus. Addresses over and including 0x5000_0000 are shared by

the data bus and the instruction bus.

Both data bus and instruction bus are little-endian. The CPU can access data via the data bus using single-byte,

double-byte, 4-byte alignment. The CPU can also access data via the instruction bus, but only in 4-byte aligned

Espressif Systems 75
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

3 System and Memory

manner.

The CPU can:

• directly access the internal memory via both data bus and instruction bus;

• access the external memory which is mapped into the virtual address space via cache;

• directly access modules/peripherals via data bus.

Table 3-1 lists the address ranges on the data bus and instruction bus and their corresponding target

memory.

Some internal and external memory can be accessed via both data bus and instruction bus. In such cases, the

CPU can access the same memory using multiple addresses.

Table 3­1. Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target

0x0000_0000 0x3BFF_FFFF Reserved

Data bus 0x3C00_0000 0x3C7F_FFFF 8 MB External memory

0x3C80_0000 0x3FC7_FFFF Reserved

Data bus 0x3FC8_0000 0x3FCD_FFFF 384 KB Internal memory

0x3FCE_0000 0x3FEF_FFFF Reserved

Data bus 0x3FF0_0000 0x3FF1_FFFF 128 KB Internal memory

0x3FF2_0000 0x3FFF_FFFF Reserved

Instruction bus 0x4000_0000 0x4005_FFFF 384 KB Internal memory

0x4006_0000 0x4037_BFFF Reserved

Instruction bus 0x4037_C000 0x403D_FFFF 400 KB Internal memory

0x403E_0000 0x41FF_FFFF Reserved

Instruction bus 0x4200_0000 0x427F_FFFF 8 MB External memory

0x4280_0000 0x4FFF_FFFF Reserved

Data/Instruction bus 0x5000_0000 0x5000_1FFF 8 KB Internal memory

0x5000_2000 0x5FFF_FFFF Reserved

Data/Instruction bus 0x6000_0000 0x600D_0FFF 836 KB Peripherals

0x600D_1000 0xFFFF_FFFF Reserved

3.3.2 Internal Memory

The ESP32-C3 consists of the following three types of internal memory:

• Internal ROM (384 KB): The Internal ROM of the ESP32-C3 is a Mask ROM, meaning it is strictly read-only

and cannot be reprogrammed. Internal ROM contains the ROM code (software instructions and some

software read-only data) of some low level system software.

• Internal SRAM (400 KB): The Internal Static RAM (SRAM) is a volatile memory that can be quickly accessed

by the CPU (generally within a single CPU clock cycle).

– A part of the SRAM can be configured to operate as a cache for external memory access.

– Some parts of the SRAM can only be accessed via the CPU’s instruction bus.

Espressif Systems 76
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

3 System and Memory

– Some parts of the SRAM can be accessed via both the CPU’s instruction bus and the CPU’s data bus.

• RTC Memory (8 KB): The RTC (Real Time Clock) memory implemented as Static RAM (SRAM) thus is

volatile. However, RTC memory has the added feature of being persistent in deep sleep (i.e., the RTC

memory retains its values throughout deep sleep).

– RTC FAST Memory (8 KB): RTC FAST memory can only be accessed by the CPU and can be

generally used to store instructions and data that needs to persist across a deep sleep.

Based on the three different types of internal memory described above, the internal memory of the ESP32-C3 is

split into three segments: Internal ROM (384 KB), Internal SRAM (400 KB), RTC FAST Memory (8 KB).

However, within each segment, there may be different bus access restrictions (e.g., some parts of the segment

may only be accessible by the CPU’s Data bus). Therefore, each some segments are also further divided into

parts. Table 3-2 describes each part of internal memory and their address ranges on the data bus and/or

instruction bus.

Table 3­2. Internal Memory Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target

Data bus
0x3FF0_0000 0x3FF1_FFFF 128 KB Internal ROM 1

0x3FC8_0000 0x3FCD_FFFF 384 KB Internal SRAM 1

Instruction bus

0x4000_0000 0x4003_FFFF 256 KB Internal ROM 0

0x4004_0000 0x4005_FFFF 128 KB Internal ROM 1

0x4037_C000 0x4037_FFFF 16 KB Internal SRAM 0

0x4038_0000 0x403D_FFFF 384 KB Internal SRAM 1

Data/Instruction bus 0x5000_0000 0x5000_1FFF 8 KB RTC FAST Memory

Note:
All of the internal memories are managed by Permission Control module. An internal memory can only be accessed

when it is allowed by Permission Control, then the internal memory can be available to the CPU.

1. Internal ROM 0

Internal ROM 0 is a 256 KB, read-only memory space, addressed by the CPU only through the instruction bus via

0x4000_0000 ~ 0x4003_FFFF, as shown in Table 3-2.

2. Internal ROM 1

Internal ROM 1 is a 128 KB, read-only memory space, addressed by the CPU through the instruction bus via

0x4004_0000 ~ 0x4005_FFFF or through the data bus via 0x3FF0_0000 ~ 0x3FF1_FFFF in the same order, as

shown in Table 3-2.

This means, for example, address 04004_0000 and 0x3FF0_0000 correspond to the same word, 0x4004_0004

and 0x3FF0_0004 correspond to the same word, 0x4004_0008 and 0x3FF0_0008 correspond to the same

word, etc (the same ordering applies for Internal SRAM 1).

3. Internal SRAM 0

Internal SRAM 0 is a 16 KB, read-and-write memory space, addressed by the CPU through the instruction bus

via the range described in Table 3-2.

Espressif Systems 77
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

3 System and Memory

This memory managed by Permission Control, can be configured as instruction cache to store cache instructions

or read-only data of the external memory. In this case, the memory cannot be accessed by the CPU.

4. Internal SRAM 1

Internal SRAM 1 is a 384 KB, read-and-write memory space, addressed by the CPU through the data bus or

instruction bus, in the same order, via the ranges described in Table 3-2.

5. RTC FAST Memory

RTC FAST Memory is a 8 KB, read-and-write SRAM, addressed by the CPU through the data/instruction bus via

the shared address 0x5000_0000 ~ 0x5000_1FFF, as described in Table 3-2.

3.3.3 External Memory

ESP32-C3 supports SPI, Dual SPI, Quad SPI, and QPI interfaces that allow connection to multiple external flash.

It supports hardware manual encryption and automatic decryption based on XTS_AES to protect user programs

and data in the external flash.

3.3.3.1 External Memory Address Mapping

The CPU accesses the external memory via the cache. According to the MMU (Memory Management Unit)

settings, the cache maps the CPU’s address to the external memory’s physical address. Due to this address

mapping, the ESP32-C3 can address up to 16 MB external flash.

Using the cache, ESP32-C3 is able to support the following address space mappings. Note that the instruction

bus address space (8MB) and the data bus address space (8 MB) is always shared.

• Up to 8 MB instruction bus address space can be mapped into the external flash. The mapped address

space is organized as individual 64-KB blocks.

• Up to 8 MB data bus (read-only) address space can be mapped into the external flash. The mapped

address space is organized as individual 64-KB blocks.

Table 3-3 lists the mapping between the cache and the corresponding address ranges on the data bus and

instruction bus.

Table 3­3. External Memory Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target

Data bus (read-only) 0x3C00_0000 0x3C7F_FFFF 8 MB Uniform Cache

Instruction bus 0x4200_0000 0x427F_FFFF 8 MB Uniform Cache

Note:
Only if the CPU obtains permission for accessing the external memory, can it be responded for memory access.

3.3.3.2 Cache

As shown in Figure 3-2, ESP32-C3 has a read-only uniform cache which is eight-way set-associative, its size is

16 KB and its block size is 32 bytes. When cache is active, some internal memory space will be occupied by

Espressif Systems 78
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

3 System and Memory

cache (see Internal SRAM 0 in Section 3.3.2).

The uniform cache is accessible by the instruction bus and the data bus at the same time, but can only respond

to one of them at a time. When a cache miss occurs, the cache controller will initiate a request to the external

memory.

Figure 3­2. Cache Structure

3.3.3.3 Cache Operations

ESP32-C3 cache support the following operations:

1. Invalidate: This operation is used to clear valid data in the cache. After this operation is completed, the

data will only be stored in the external memory. The CPU needs to access the external memory in order to

read this data. There are two types of invalidate-operation: automatic invalidation (Auto-Invalidate) and

manual invalidation (Manual-Invalidate). Manual-Invalidate is performed only on data in the specified area in

the cache, while Auto-Invalidate is performed on all data in the cache.

2. Preload: This operation is used to load instructions and data into the cache in advance. The minimum unit

of preload-operation is one block. There are two types of preload-operation: manual preload

(Manual-Preload) and automatic preload (Auto-Preload). Manual-Preload means that the hardware

prefetches a piece of continuous data according to the virtual address specified by the software.

Auto-Preload means the hardware prefetches a piece of continuous data according to the current address

where the cache hits or misses (depending on configuration).

3. Lock/Unlock: The lock operation is used to prevent the data in the cache from being easily replaced.

There are two types of lock: prelock and manual lock. When prelock is enabled, the cache locks the data

in the specified area when filling the missing data to cache memory, while the data outside the specified

area will not be locked. When manual lock is enabled, the cache checks the data that is already in the

cache memory and only locks the data in the specified area, and leaves the data outside the specified area

unlocked. When there are missing data, the cache will replace the data in the unlocked way first, so the

data in the locked way is always stored in the cache and will not be replaced. But when all ways within the

cache are locked, the cache will replace data, as if it was not locked. Unlocking is the reverse of locking,

except that it only can be done manually.

Please note that the Manual-Invalidate operations will only work on the unlocked data. If you expect to

perform such operation on the locked data, please unlock them first.

Espressif Systems 79
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

3 System and Memory

3.3.4 GDMA Address Space

The GDMA (General Direct Memory Access) peripheral in ESP32-C3 can provide DMA (Direct Memory Access)

services including:

• Data transfers between different locations of internal memory;

• Data transfers between modules/peripherals and internal memory.

GDMA uses the same addresses as the data bus to read and write Internal SRAM 1. Specifically, GDMA uses

address range 0x3FC8_0000 ~ 0x3FCD_FFFF to access Internal SRAM 1. Note that GDMA cannot access the

internal memory occupied by the cache.

There are 7 peripherals/modules that can work together with GDMA. As shown in Figure 3-3, these 7 vertical

lines in turn correspond to these 7 peripherals/modules with GDMA function, the horizontal line represents a

certain channel of GDMA (can be any channel), and the intersection of the vertical line and the horizontal line

indicates that a peripheral/module has the ability to access the corresponding channel of GDMA. If there are

multiple intersections on the same line, it means that these peripherals/modules cannot enable the GDMA

function at the same time.

Figure 3­3. Peripherals/modules that can work with GDMA

These peripherals/modules can access any memory available to GDMA.

Note:
When accessing a memory via GDMA, a corresponding access permission is needed, otherwise this access may

fail.

3.3.5 Modules/Peripherals

The CPU can access modules/peripherals via 0x6000_0000 ~ 0x600D_0FFF shared by the data/instruction

bus.

Espressif Systems 80
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

3 System and Memory

3.3.5.1 Module/Peripheral Address Mapping

Table 3-4 lists all the modules/peripherals and their respective address ranges. Note that the address space of

specific modules/peripherals is defined by ”Boundary Address” (including both Low Address and High

Address).

Table 3­4. Module/Peripheral Address Mapping

Boundary Address
Target

Low Address High Address
Size Notes

UART Controller 0 0x6000_0000 0x6000_0FFF 4 KB

Reserved 0x6000_1000 0x6000_1FFF

SPI Controller 1 0x6000_2000 0x6000_2FFF 4 KB

SPI Controller 0 0x6000_3000 0x6000_3FFF 4 KB

GPIO 0x6000_4000 0x6000_4FFF 4 KB

Reserved 0x6000_5000 0x6000_6FFF

TIMER 0x6000_7000 0x6000_7FFF 4 KB

Low-Power Management 0x6000_8000 0x6000_8FFF 4 KB

IO MUX 0x6000_9000 0x6000_9FFF 4 KB

Reserved 0x6000_A000 0x6000_FFFF

UART Controller 1 0x6001_0000 0x6001_0FFF 4 KB

Reserved 0x6001_1000 0x6001_2FFF

I2C Controller 0x6001_3000 0x6001_3FFF 4 KB

UHCI0 0x6001_4000 0x6001_4FFF 4 KB

Reserved 0x6001_5000 0x6001_5FFF

Remote Control Peripheral 0x6001_6000 0x6001_6FFF 4 KB

Reserved 0x6001_7000 0x6001_8FFF

LED Control PWM 0x6001_9000 0x6001_9FFF 4 KB

eFuse Controller 0x6001_A000 0x6001_AFFF 4 KB

Reserved 0x6001_B000 0x6001_EFFF

Timer Group 0 0x6001_F000 0x6001_FFFF 4 KB

Timer Group 1 0x6002_0000 0x6002_0FFF 4 KB

Reserved 0x6002_1000 0x6002_2FFF

System Timer 0x6002_3000 0x6002_3FFF 4 KB

SPI Controller 2 0x6002_4000 0x6002_4FFF 4 KB

Reserved 0x6002_5000 0x6002_5FFF

APB Controller 0x6002_6000 0x6002_6FFF 4 KB

Reserved 0x6002_7000 0x6002_AFFF

Two-wire Automotive Interface 0x6002_B000 0x6002_BFFF 4 KB

Reserved 0x6002_C000 0x6002_CFFF

I2S Controller 0x6002_D000 0x6002_DFFF 4 KB

Reserved 0x6002_E000 0x6003_9FFF

AES Accelerator 0x6003_A000 0x6003_AFFF 4 KB

SHA Accelerator 0x6003_B000 0x6003_BFFF 4 KB

RSA Accelerator 0x6003_C000 0x6003_CFFF 4 KB

Digital Signature 0x6003_D000 0x6003_DFFF 4 KB

Espressif Systems 81
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

3 System and Memory

Boundary Address
Target

Low Address High Address
Size Notes

HMAC Accelerator 0x6003_E000 0x6003_EFFF 4 KB

GDMA Controller 0x6003_F000 0x6003_FFFF 4 KB

ADC Controller 0x6004_0000 0x6004_0FFF 4 KB

Reserved 0x6004_1000 0x6002_FFFF

USB Serial/JTAG Controller 0x6004_3000 0x6004_3FFF 4 KB

Reserved 0x6004_4000 0x600B_FFFF

System Registers 0x600C_0000 0x600C_0FFF 4 KB

Sensitive Register 0x600C_1000 0x600C_1FFF 4 KB

Interrupt Matrix 0x600C_2000 0x600C_2FFF 4 KB

Reserved 0x600C_3000 0x600C_3FFF

Configure Cache 0x600C_4000 0x600C_BFFF 32 KB

External Memory Encryption and

Decryption

0x600C_C000 0x600C_CFFF 4 KB

Reserved 0x600C_D000 0x600C_DFFF

Assist Debug 0x600C_E000 0x600C_EFFF 4 KB

Reserved 0x600C_F000 0x600C_FFFF

World Controller 0x600D_0000 0x600D_0FFF 4 KB

Espressif Systems 82
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

4 eFuse Controller (EFUSE)

4.1 Overview

ESP32-C3 contains a 4096-bit eFuse controller to store parameters. Once an eFuse bit is programmed to 1, it

can never be reverted to 0. The eFuse controller programs individual bits of parameters in eFuse according to

software configurations. Some of these parameters can be read by software using the eFuse controller, while

some can be directly used by hardware modules.

4.2 Features

• 4096-bit One-time programmable storage

• Programmable write-protection

• Programmable read-protection against software

• Various hardware encoding schemes against data corruption

4.3 Functional Description

4.3.1 Structure

eFuse data is organized in 11 blocks (BLOCK0 ~ BLOCK10).

BLOCK0, which holds most parameters, has 9 bits that can only be used by hardware and are invisible to

software, and 61 further bits are reserved for future use.

Table 4-1 lists all the parameters in BLOCK0 and their offsets, bit widths, as well as information on whether they

can be used by hardware, which bits are write-protected, and corresponding descriptions.

The EFUSE_WR_DIS parameter is used to disable the writing of other parameters, while EFUSE_RD_DIS is

used to disable software from reading BLOCK4 ~ BLOCK10. For more information on these two parameters,

please see Section 4.3.1.1 and Section 4.3.1.2.

Table 4­1. Parameters in eFuse BLOCK0

Parameters Offset
Bit

Width

Hardware

Use

Write-Protect

Bits in

EFUSE_WR_DIS

Description

EFUSE_WR_DIS 0 32 Y N/A
Disable writing of individual

eFuses.

EFUSE_RD_DIS 32 7 Y 0
Disable software from reading

eFuse blocks BLOCK4 ~ 10.

EFUSE_DIS_ICACHE 40 1 Y 2 Disable ICache.

EFUSE_DIS_USB_JTAG 41 1 Y 2 Disable usb-to-jtag function.

EFUSE_DIS_DOWNLOAD_

ICACHE
42 1 Y 2

Disable ICache in Download

mode.

EFUSE_DIS_USB_DEVICE 43 1 Y 2 Disable USB device peripheral.

EFUSE_DIS_FORCE_DOWNLOAD 44 1 Y 2
Disable chip from force-entering

Download mode.

Espressif Systems 83
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Parameters Offset
Bit

Width

Hardware

Use

Write-Protect

Bits in

EFUSE_WR_DIS

Description

EFUSE_DIS_TWAI 46 1 Y 2 Disable TWAI Controller.

EFUSE_JTAG_SEL_ENABLE 47 1 Y 2

Set 1 enables strap pin (GPIO 10)

to select usb-to-jtag function or

use jtag directly (When GPIO 10

is 1, it means usb-to-jtag function

is select; while 0 means using jtag

directly).

EFUSE_SOFT_DIS_JTAG 48 3 Y 31

Disable JTAG by programming 1

to odd number of bits. JTAG can

be re-enabled via HMAC periph-

eral.

EFUSE_DIS_PAD_JTAG 51 1 Y 2
Hardware Disable JTAG perma-

nently.

EFUSE_DIS_DOWNLOAD_

MANUAL_ENCRYPT
52 1 Y 2

Disable flash encryption in Down-

load boot mode.

EFUSE_USB_EXCHG_PINS 57 1 Y 30 Exchange USB D+/D- pins.

EFUSE_VDD_SPI_AS_GPIO 58 1 N 30

Set this parameter to 1 to over-

ride the function of the VDD SPI

pin and use it as a normal GPIO

pin instead.

EFUSE_WDT_DELAY_SEL 80 2 Y 3
Select RTC WDT timeout thresh-

old.

EFUSE_SPI_BOOT_CRYPT_CNT 82 3 Y 4

Enable SPI boot encryption and

decryption. This feature is en-

abled when odd number of bits

are set in this parameter, disabled

otherwise.

EFUSE_SECURE_BOOT_KEY_

REVOKE0
85 1 N 5

Revoke the first secure boot key

when enabled.

EFUSE_SECURE_BOOT_KEY_

REVOKE1
86 1 N 6

Revoke the second secure boot

key when enabled.

EFUSE_SECURE_BOOT_KEY_

REVOKE2
87 1 N 7

Revoke the third secure boot key

when enabled.

EFUSE_KEY_PURPOSE_0 88 4 Y 8 Key0 purpose, see Table 4-2.

EFUSE_KEY_PURPOSE_1 92 4 Y 9 Key1 purpose, see Table 4-2.

EFUSE_KEY_PURPOSE_2 96 4 Y 10 Key2 purpose, see Table 4-2.

EFUSE_KEY_PURPOSE_3 100 4 Y 11 Key3 purpose, see Table 4-2.

EFUSE_KEY_PURPOSE_4 104 4 Y 12 Key4 purpose, see Table 4-2.

EFUSE_KEY_PURPOSE_5 108 4 Y 13 Key5 purpose, see Table 4-2.

EFUSE_SECURE_BOOT_EN 116 1 N 15 Enable secure boot.

EFUSE_SECURE_BOOT_ AG-

GRESSIVE_REVOKE
117 1 N 16

Enable aggressive Secure boot

key revocation mode.

Espressif Systems 84
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Parameters Offset
Bit

Width

Hardware

Use

Write-Protect

Bits in

EFUSE_WR_DIS

Description

EFUSE_FLASH_TPUW 124 4 N 18

Configure flash startup delay after

SoC being powered up (the unit

is ms/2). When the value is 15,

delay will be 7.5 ms.

EFUSE_DIS_DOWNLOAD_MODE 128 1 N 18
Disable all download boot

modes.

EFUSE_USB_PRINT_CHANNEL 130 1 N 18
Set this parameter to 1, the usb

print function will be disabled.

EFUSE_DIS_USB_DOWNLOAD_

MODE
132 1 N 18

Disable the USB OTG download

feature in UART download boot

mode.

EFUSE_ENABLE_SECURITY_

DOWNLOAD
133 1 N 18

Enable UART secure download

mode (read/write flash only).

EFUSE_UART_PRINT_CONTROL 134 2 N 18

Set UART boot message out-

put mode. 2’b00: Force print;

2’b01: Low-level print, con-

trolled by GPIO 8; 2’b10: High-

level print, controlled by GPIO 8;

2’b11: Print force disabled.

EFUSE_FORCE_SEND_RESUME 141 1 N 18

Force ROM code to send an SPI

flash resume command during

SPI boot.

EFUSE_SECURE_VERSION 142 16 N 18
Secure version (used by ESP-IDF

anti-rollback feature).

Table 4-2 lists all key purpose and their values. Setting the eFuse parameter EFUSE_KEY_PURPOSE_n declares

the purpose of KEYn (n: 0 ~ 5).

Table 4­2. Secure Key Purpose Values

Key Purpose Values Purposes

0 For users (software-only)

1 Reserved

2 XTS_AES_256_KEY_1 (flash/SRAM encryption and decryption)

3 XTS_AES_256_KEY_2 (flash/SRAM encryption and decryption)

4 XTS_AES_128_KEY (flash/SRAM encryption and decryption)

5 HMAC Downstream mode (both JTAG and DS)

6 JTAG in HMAC Downstream mode

7 Digital Signature peripheral in HMAC Downstream mode

8 HMAC Upstream mode

9 SECURE_BOOT_DIGEST0 (secure boot key digest)

10 SECURE_BOOT_DIGEST1 (secure boot key digest)

11 SECURE_BOOT_DIGEST2 (secure boot key digest)

Espressif Systems 85
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Table 4-3 provides the details of parameters in BLOCK1 ~ BLOCK10.

Table 4­3. Parameters in BLOCK1 to BLOCK10

BLOCK Parameters Bit Width Hardware

Use

Write-Protect

Bits in

EFUSE_WR_DIS

Software

Read-Protect

Bits in

EFUSE_RD_DIS

Description

BLOCK1 EFUSE_MAC 48 N 20 N/A MAC address

EFUSE_SPI_PAD_ [0:5] N 20 N/A CLK

CONFIGURE [6:11] N 20 N/A Q (D1)

[12:17] N 20 N/A D (D0)

[18:23] N 20 N/A CS

[24:29] N 20 N/A HD (D3)

[30:35] N 20 N/A WP (D2)

[36:41] N 20 N/A DQS

[42:47] N 20 N/A D4

[48:53] N 20 N/A D5

[54:59] N 20 N/A D6

[60:65] N 20 N/A D7

EFUSE_SYS_DATA_PART0 78 N 20 N/A System data

BLOCK2 EFUSE_SYS_DATA_PART1 256 N 21 N/A System data

BLOCK3 EFUSE_USR_DATA 256 N 22 N/A User data

BLOCK4 EFUSE_KEY0_DATA 256 Y 23 0 KEY0 or user data

BLOCK5 EFUSE_KEY1_DATA 256 Y 24 1 KEY1 or user data

BLOCK6 EFUSE_KEY2_DATA 256 Y 25 2 KEY2 or user data

BLOCK7 EFUSE_KEY3_DATA 256 Y 26 3 KEY3 or user data

BLOCK8 EFUSE_KEY4_DATA 256 Y 27 4 KEY4 or user data

BLOCK9 EFUSE_KEY5_DATA 256 Y 28 5 KEY5 or user data

BLOCK10 EFUSE_SYS_DATA_PART2 256 N 29 6 System data

Among these blocks, BLOCK4 ~ 9 stores KEY0 ~ 5, respectively. Up to six 256-bit keys can be written into

eFuse. Whenever a key is written, its purpose value should also be written (see table 4-2). For example, when a

key for the JTAG function in HMAC Downstream mode is written to KEY3 (i.e., BLOCK7), its key purpose value 6

should also be written to EFUSE_KEY_PURPOSE_3.

BLOCK1 ~ BLOCK10 use the RS coding scheme, so there are some restrictions on writing to these parameters.

For more detailed information, please refer to Section 4.3.1.3 and Section 4.3.2.

4.3.1.1 EFUSE_WR_DIS

Parameter EFUSE_WR_DIS determines whether individual eFuse parameters are write-protected. After

EFUSE_WR_DIS has been programmed, execute an eFuse read operation so the new values would take

effect.

Column “Write-Protect Bits in EFUSE_WR_DIS” in Table 4-1 and Table 4-3 list the specific bits in

EFUSE_WR_DIS that disable writing.

When the write-protect bit of a parameter is set to 0, it means that this parameter is not write-protected and can

Espressif Systems 86
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

be programmed, unless it has been programmed before.

When the write-protect bit of a parameter is set to 1, it means that this parameter is write-protected and none of

its bits can be modified, with non-programmed bits always remaining 0 while programmed bits always remain

1.

4.3.1.2 EFUSE_RD_DIS

Only parameters in BLCOK4 ~ BLOCK10 may be read-protected against software reads, as shown in column

“Software Read-Protect Bits in EFUSE_RD_DIS” of Table 4-3. After EFUSE_RD_DIS has been programmed,

execute an eFuse read operation so the new values would take effect.

If a bit in EFUSE_RD_DIS is 0, it means that its parameters are not read-protected against software; if a bit in

EFUSE_RD_DIS is 1, it means that its parameters are read-protected against software.

Other parameters that are not in BLOCK4 ~ BLOCK10 can always be read by software.

However, even if BLOCK4 ~ BLOCK10 are set to be read-protected, they can still be read by hardware modules,

if the EFUSE_KEY_PURPOSE_n bit is set accordingly.

4.3.1.3 Data Storage

Internally, eFuses use hardware encoding schemes to protect data from corruption, which are invisible for

users.

All BLOCK0 parameters except for EFUSE_WR_DIS are stored with four backups, meaning each bit is stored

four times. This backup scheme is not visible to software.

BLOCK1 ~ BLOCK10 use RS (44, 32) coding scheme that supports up to 5 bytes of automatic error correction.

The primitive polynomial of RS (44, 32) is p(x) = x8 + x4 + x3 + x2 + 1.

Figure 4­1. Shift Register Circuit

The shift register circuit that generates the check code is shown in Figure 4-1, where gf_mul_n (n is an integer) is

the result of multiplying a byte of data in the GF (28) field with the element αn.

Software must encode the 32-byte parameter using RS (44, 32) to generate a 12-byte check code, and then

program the parameter and the check code into eFuse at the same time. The eFuse controller will automatically

process decoding and error correction when reading the eFuse block.

Because the RS check codes are generated on the entire 256-bit eFuse block, each block can only be written

once.

4.3.2 Software Programming of Parameters

The eFuse controller can only program eFuse parameters in one block at a time. BLOCK0 ~ BLOCK10 share the

same address range to store the parameters to be programmed. Configure parameter EFUSE_BLK_NUM to

Espressif Systems 87
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

indicate which block should be programmed.

Programming BLOCK0

When EFUSE_BLK_NUM is set to 0, BLOCK0 will be programmed. Register EFUSE_PGM_DATA0_REG stores

EFUSE_WR_DIS. Registers EFUSE_PGM_DATA1_REG ~ EFUSE_PGM_DATA5_REG store the information of

parameters to be programmed. Note that 7 bits can only be used by hardware and must always be set to 0. The

specific bits are:

• EFUSE_PGM_DATA1_REG[24:21]

• EFUSE_PGM_DATA1_REG[31:27]

Data in registers EFUSE_PGM_DATA6_REG ~ EFUSE_PGM_DATA7_REG and

EFUSE_PGM_CHECK_VALUE0_REG ~ EFUSE_PGM_CHECK_VALUE2_REG are ignored when programming

BLOCK0.

Programming BLOCK1

When EFUSE_BLK_NUM is set to 1, registers EFUSE_PGM_DATA0_REG ~ EFUSE_PGM_DATA5_REG store the

BLOCK1 parameters to be programmed. Registers EFUSE_PGM_CHECK_VALUE0_REG ~
EFUSE_PGM_DATA2_REG store the corresponding RS check codes. Data in registers

EFUSE_PGM_DATA6_REG ~ EFUSE_PGM_DATA7_REG are ignored when programming BLOCK1, and the RS

check codes will be calculated with these bits all treated as 0.

Programming BLOCK2 ~ 10

When EFUSE_BLK_NUM is set to 2 ~ 10, registers

EFUSE_PGM_DATA0_REG ~ EFUSE_PGM_DATA7_REG store the parameters to be programmed to this block.

Registers EFUSE_PGM_CHECK_VALUE0_REG ~ EFUSE_PGM_CHECK_VALUE2_REG store the corresponding

RS check codes.

Programming process

The process of programming parameters is as follows:

1. Configure the value of parameter EFUSE_BLK_NUM to determine the block to be programmed.

2. Write parameters to be programmed to registers EFUSE_PGM_DATA0_REG ~ EFUSE_PGM_DATA7_REG

and EFUSE_PGM_CHECK_VALUE0_REG ~ EFUSE_PGM_CHECK_VALUE2_REG.

3. Make sure the eFuse programming voltage VDDQ is configured correctly as described in Section 4.3.4.

4. Configure the field EFUSE_OP_CODE of register EFUSE_CONF_REG to 0x5A5A.

5. Configure the field EFUSE_PGM_CMD of register EFUSE_CMD_REG to 1.

6. Poll register EFUSE_CMD_REG until software reads 0x0, or wait for a PGM_DONE interrupt. For more

information on how to identify a PGM/READ_DONE interrupt, please see the end of Section 4.3.3.

7. Clear the parameters in EFUSE_PGM_DATA0_REG ~ EFUSE_PGM_DATA7_REG and

EFUSE_PGM_CHECK_VALUE0_REG ~ EFUSE_PGM_CHECK_VALUE2_REG.

8. Trigger an eFuse read operation (see Section 4.3.3) to update eFuse registers with the new values.

Limitations

In BLOCK0, each bit can be programmed separately. However, we recommend to minimize programming cycles

and program all the bits of a parameter in one programming action. In addition, after all parameters controlled by

Espressif Systems 88
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

a certain bit of EFUSE_WR_DIS are programmed, that bit should be immediately programmed. The

programming of parameters controlled by a certain bit of EFUSE_WR_DIS, and the programming of the bit itself

can even be completed at the same time. Repeated programming of already programmed bits is strictly

forbidden, otherwise, programming errors will occur.

BLOCK1 cannot be programmed by users as it has been programmed at manufacturing.

BLOCK2 ~ 10 can only be programmed once. Repeated programming is not allowed.

4.3.3 Software Reading of Parameters

Software cannot read eFuse bits directly. The eFuse Controller hardware reads all eFuse bits and stores the

results to their corresponding registers in its memory space. Then, software can read eFuse bits by reading the

registers that start with EFUSE_RD_. Details are provided in Table 4-4.

Table 4­4. Registers Information

BLOCK Read Registers Registers When Programming This Block

0 EFUSE_RD_WR_DIS_REG EFUSE_PGM_DATA0_REG

0 EFUSE_RD_REPEAT_DATA0 ~ 4_REG EFUSE_PGM_DATA1 ~ 5_REG

1 EFUSE_RD_MAC_SPI_SYS_0 ~ 5_REG EFUSE_PGM_DATA0 ~ 5_REG

2 EFUSE_RD_SYS_DATA_PART1_0 ~ 7_REG EFUSE_PGM_DATA0 ~ 7_REG

3 EFUSE_RD_USR_DATA0 ~ 7_REG EFUSE_PGM_DATA0 ~ 7_REG

4-9 EFUSE_RD_KEYn_DATA0 ~ 7_REG (n: 0 ~ 5) EFUSE_PGM_DATA0 ~ 7_REG

10 EFUSE_RD_SYS_DATA_PART2_0 ~ 7_REG EFUSE_PGM_DATA0 ~ 7_REG

Updating eFuse read registers

The eFuse Controller reads internal eFuses to update corresponding registers. This read operation happens on

system reset and can also be triggered manually by software as needed (e.g., if new eFuse values have been

programmed). The process of triggering a read operation by software is as follows:

1. Configure the field EFUSE_OP_CODE in register EFUSE_CONF_REG to 0x5AA5.

2. Configure the field EFUSE_READ_CMD in register EFUSE_CMD_REG to 1.

3. Poll register EFUSE_CMD_REG until software reads 0x0, or wait for a READ_DONE interrupt. Information

on how to identify a PGM/READ_DONE interrupt is provided below in this section.

4. Software reads the values of each parameter from memory.

The eFuse read registers will hold all values until the next read operation.

Error detection

Error record registers allow software to detect if there are any inconsistencies in the stored backup eFuse

parameters.

Registers EFUSE_RD_REPEAT_ERR0 ~ 3_REG indicate if there are any errors of programmed parameters

(except for EFUSE_WR_DIS) in BLOCK0 (value 1 indicates an error is detected, and the bit becomes invalid;

value 0 indicates no error).

Registers EFUSE_RD_RS_ERR0 ~ 1_REG store the number of corrected bytes as well as the result of RS

decoding during eFuse reading BLOCK1 ~ BLOCK10.

Espressif Systems 89
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

The values of above registers will be updated every time after the eFuse read registers have been updated.

Identifying program/read operation

The methods to identify the completion of a program/read operation are described below. Please note that bit 1

corresponds to a program operation, and bit 0 corresponds to a read operation.

• Method one:

1. Poll bit 1/0 in register EFUSE_INT_RAW_REG until it becomes 1, which represents the completion of a

program/read operation.

• Method two:

1. Set bit 1/0 in register EFUSE_INT_ENA_REG to 1 to enable the eFuse Controller to post a

PGM/READ_DONE interrupt.

2. Configure the Interrupt Matrix to enable the CPU to respond to eFuse interrupt signals, see Chapter 8

Interrupt Matrix (INTERRUPT) [to be added later].

3. Wait for the PGM/READ_DONE interrupt.

4. Set bit 1/0 in register EFUSE_INT_CLR_REG to 1 to clear the PGM/READ_DONE interrupt.

4.3.4 eFuse VDDQ Timing

The eFuse Controller operates with 20 MHz of clock frequency, and its programming voltage VDDQ should be

configured as follows:

• EFUSE_DAC_NUM (the rising period of VDDQ): The default value of VDDQ is 2.5 V and the voltage

increases by 0.01 V in each clock cycle. Thus, the default value of this parameter is 255;

• EFUSE_DAC_CLK_DIV (the clock divisor of VDDQ): The clock period to program VDDQ should be larger

than 1 µs;

• EFUSE_PWR_ON_NUM (the power-up time for VDDQ): The programming voltage should be stabilized after

this time, which means the value of this parameter should be configured to exceed the result of

EFUSE_DAC_CLK_DIV times EFUSE_DAC_NUM;

• EFUSE_PWR_OFF_NUM (the power-out time for VDDQ): The value of this parameter should be larger than

10 µs.

Table 4­5. Configuration of Default VDDQ Timing Parameters

EFUSE_DAC_NUM EFUSE_DAC_CLK_DIV EFUSE_PWR_ON_NUM EFUSE_PWR_OFF_NUM

0xFF 0x28 0x3000 0x190

4.3.5 The Use of Parameters by Hardware Modules

Some hardware modules are directly connected to the eFuse peripheral in order to use the parameters listed in

Table 4-1 and Table 4-3, specifically those marked with “Y” in columns “Hardware Use”. Software cannot

intervene in this process.

Espressif Systems 90
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

4.3.6 Interrupts

• PGM_DONE interrupt: Triggered when eFuse programming has finished. To enable this interrupt, set the

EFUSE_PGM_DONE_INT_ENA field of register EFUSE_INT_ENA_REG to 1;

• READ_DONE interrupt: Triggered when eFuse reading has finished. To enable this interrupt, set the

EFUSE_READ_DONE_INT_ENA field of register EFUSE_INT_ENA_REG to 1.

Espressif Systems 91
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

4.4 Register Summary

The addresses in this section are relative to eFuse Controller base address provided in Table 3-4 in Chapter 3

System and Memory.

07

Name Description Address Access

PGM Data Register

EFUSE_PGM_DATA0_REG Register 0 that stores data to be programmed 0x0000 R/W

EFUSE_PGM_DATA1_REG Register 1 that stores data to be programmed 0x0004 R/W

EFUSE_PGM_DATA2_REG Register 2 that stores data to be programmed 0x0008 R/W

EFUSE_PGM_DATA3_REG Register 3 that stores data to be programmed 0x000C R/W

EFUSE_PGM_DATA4_REG Register 4 that stores data to be programmed 0x0010 R/W

EFUSE_PGM_DATA5_REG Register 5 that stores data to be programmed 0x0014 R/W

EFUSE_PGM_DATA6_REG Register 6 that stores data to be programmed 0x0018 R/W

EFUSE_PGM_DATA7_REG Register 7 that stores data to be programmed 0x001C R/W

EFUSE_PGM_CHECK_VALUE0_REG Register 0 that stores the RS code to be pro-

grammed

0x0020 R/W

EFUSE_PGM_CHECK_VALUE1_REG Register 1 that stores the RS code to be pro-

grammed

0x0024 R/W

EFUSE_PGM_CHECK_VALUE2_REG Register 2 that stores the RS code to be pro-

grammed

0x0028 R/W

Read Data Register

EFUSE_RD_WR_DIS_REG BLOCK0 data register 0 0x002C RO

EFUSE_RD_REPEAT_DATA0_REG BLOCK0 data register 1 0x0030 RO

EFUSE_RD_REPEAT_DATA1_REG BLOCK0 data register 2 0x0034 RO

EFUSE_RD_REPEAT_DATA2_REG BLOCK0 data register 3 0x0038 RO

EFUSE_RD_REPEAT_DATA3_REG BLOCK0 data register 4 0x003C RO

EFUSE_RD_REPEAT_DATA4_REG BLOCK0 data register 5 0x0040 RO

EFUSE_RD_MAC_SPI_SYS_0_REG BLOCK1 data register 0 0x0044 RO

EFUSE_RD_MAC_SPI_SYS_1_REG BLOCK1 data register 1 0x0048 RO

EFUSE_RD_MAC_SPI_SYS_2_REG BLOCK1 data register 2 0x004C RO

EFUSE_RD_MAC_SPI_SYS_3_REG BLOCK1 data register 3 0x0050 RO

EFUSE_RD_MAC_SPI_SYS_4_REG BLOCK1 data register 4 0x0054 RO

EFUSE_RD_MAC_SPI_SYS_5_REG BLOCK1 data register 5 0x0058 RO

EFUSE_RD_SYS_PART1_DATA0_REG Register 0 of BLOCK2 (system) 0x005C RO

EFUSE_RD_SYS_PART1_DATA1_REG Register 1 of BLOCK2 (system) 0x0060 RO

EFUSE_RD_SYS_PART1_DATA2_REG Register 2 of BLOCK2 (system) 0x0064 RO

EFUSE_RD_SYS_PART1_DATA3_REG Register 3 of BLOCK2 (system) 0x0068 RO

EFUSE_RD_SYS_PART1_DATA4_REG Register 4 of BLOCK2 (system) 0x006C RO

EFUSE_RD_SYS_PART1_DATA5_REG Register 5 of BLOCK2 (system) 0x0070 RO

EFUSE_RD_SYS_PART1_DATA6_REG Register 6 of BLOCK2 (system) 0x0074 RO

EFUSE_RD_SYS_PART1_DATA7_REG Register 7 of BLOCK2 (system) 0x0078 RO

EFUSE_RD_USR_DATA0_REG Register 0 of BLOCK3 (user) 0x007C RO

EFUSE_RD_USR_DATA1_REG Register 1 of BLOCK3 (user) 0x0080 RO

Espressif Systems 92
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Name Description Address Access

EFUSE_RD_USR_DATA2_REG Register 2 of BLOCK3 (user) 0x0084 RO

EFUSE_RD_USR_DATA3_REG Register 3 of BLOCK3 (user) 0x0088 RO

EFUSE_RD_USR_DATA4_REG Register 4 of BLOCK3 (user) 0x008C RO

EFUSE_RD_USR_DATA5_REG Register 5 of BLOCK3 (user) 0x0090 RO

EFUSE_RD_USR_DATA6_REG Register 6 of BLOCK3 (user) 0x0094 RO

EFUSE_RD_USR_DATA7_REG Register 7 of BLOCK3 (user) 0x0098 RO

EFUSE_RD_KEY0_DATA0_REG Register 0 of BLOCK4 (KEY0) 0x009C RO

EFUSE_RD_KEY0_DATA1_REG Register 1 of BLOCK4 (KEY0) 0x00A0 RO

EFUSE_RD_KEY0_DATA2_REG Register 2 of BLOCK4 (KEY0) 0x00A4 RO

EFUSE_RD_KEY0_DATA3_REG Register 3 of BLOCK4 (KEY0) 0x00A8 RO

EFUSE_RD_KEY0_DATA4_REG Register 4 of BLOCK4 (KEY0) 0x00AC RO

EFUSE_RD_KEY0_DATA5_REG Register 5 of BLOCK4 (KEY0) 0x00B0 RO

EFUSE_RD_KEY0_DATA6_REG Register 6 of BLOCK4 (KEY0) 0x00B4 RO

EFUSE_RD_KEY0_DATA7_REG Register 7 of BLOCK4 (KEY0) 0x00B8 RO

EFUSE_RD_KEY1_DATA0_REG Register 0 of BLOCK5 (KEY1) 0x00BC RO

EFUSE_RD_KEY1_DATA1_REG Register 1 of BLOCK5 (KEY1) 0x00C0 RO

EFUSE_RD_KEY1_DATA2_REG Register 2 of BLOCK5 (KEY1) 0x00C4 RO

EFUSE_RD_KEY1_DATA3_REG Register 3 of BLOCK5 (KEY1) 0x00C8 RO

EFUSE_RD_KEY1_DATA4_REG Register 4 of BLOCK5 (KEY1) 0x00CC RO

EFUSE_RD_KEY1_DATA5_REG Register 5 of BLOCK5 (KEY1) 0x00D0 RO

EFUSE_RD_KEY1_DATA6_REG Register 6 of BLOCK5 (KEY1) 0x00D4 RO

EFUSE_RD_KEY1_DATA7_REG Register 7 of BLOCK5 (KEY1) 0x00D8 RO

EFUSE_RD_KEY2_DATA0_REG Register 0 of BLOCK6 (KEY2) 0x00DC RO

EFUSE_RD_KEY2_DATA1_REG Register 1 of BLOCK6 (KEY2) 0x00E0 RO

EFUSE_RD_KEY2_DATA2_REG Register 2 of BLOCK6 (KEY2) 0x00E4 RO

EFUSE_RD_KEY2_DATA3_REG Register 3 of BLOCK6 (KEY2) 0x00E8 RO

EFUSE_RD_KEY2_DATA4_REG Register 4 of BLOCK6 (KEY2) 0x00EC RO

EFUSE_RD_KEY2_DATA5_REG Register 5 of BLOCK6 (KEY2) 0x00F0 RO

EFUSE_RD_KEY2_DATA6_REG Register 6 of BLOCK6 (KEY2) 0x00F4 RO

EFUSE_RD_KEY2_DATA7_REG Register 7 of BLOCK6 (KEY2) 0x00F8 RO

EFUSE_RD_KEY3_DATA0_REG Register 0 of BLOCK7 (KEY3) 0x00FC RO

EFUSE_RD_KEY3_DATA1_REG Register 1 of BLOCK7 (KEY3) 0x0100 RO

EFUSE_RD_KEY3_DATA2_REG Register 2 of BLOCK7 (KEY3) 0x0104 RO

EFUSE_RD_KEY3_DATA3_REG Register 3 of BLOCK7 (KEY3) 0x0108 RO

EFUSE_RD_KEY3_DATA4_REG Register 4 of BLOCK7 (KEY3) 0x010C RO

EFUSE_RD_KEY3_DATA5_REG Register 5 of BLOCK7 (KEY3) 0x0110 RO

EFUSE_RD_KEY3_DATA6_REG Register 6 of BLOCK7 (KEY3) 0x0114 RO

EFUSE_RD_KEY3_DATA7_REG Register 7 of BLOCK7 (KEY3) 0x0118 RO

EFUSE_RD_KEY4_DATA0_REG Register 0 of BLOCK8 (KEY4) 0x011C RO

EFUSE_RD_KEY4_DATA1_REG Register 1 of BLOCK8 (KEY4) 0x0120 RO

EFUSE_RD_KEY4_DATA2_REG Register 2 of BLOCK8 (KEY4) 0x0124 RO

EFUSE_RD_KEY4_DATA3_REG Register 3 of BLOCK8 (KEY4) 0x0128 RO

EFUSE_RD_KEY4_DATA4_REG Register 4 of BLOCK8 (KEY4) 0x012C RO

Espressif Systems 93
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Name Description Address Access

EFUSE_RD_KEY4_DATA5_REG Register 5 of BLOCK8 (KEY4) 0x0130 RO

EFUSE_RD_KEY4_DATA6_REG Register 6 of BLOCK8 (KEY4) 0x0134 RO

EFUSE_RD_KEY4_DATA7_REG Register 7 of BLOCK8 (KEY4) 0x0138 RO

EFUSE_RD_KEY5_DATA0_REG Register 0 of BLOCK9 (KEY5) 0x013C RO

EFUSE_RD_KEY5_DATA1_REG Register 1 of BLOCK9 (KEY5) 0x0140 RO

EFUSE_RD_KEY5_DATA2_REG Register 2 of BLOCK9 (KEY5) 0x0144 RO

EFUSE_RD_KEY5_DATA3_REG Register 3 of BLOCK9 (KEY5) 0x0148 RO

EFUSE_RD_KEY5_DATA4_REG Register 4 of BLOCK9 (KEY5) 0x014C RO

EFUSE_RD_KEY5_DATA5_REG Register 5 of BLOCK9 (KEY5) 0x0150 RO

EFUSE_RD_KEY5_DATA6_REG Register 6 of BLOCK9 (KEY5) 0x0154 RO

EFUSE_RD_KEY5_DATA7_REG Register 7 of BLOCK9 (KEY5) 0x0158 RO

EFUSE_RD_SYS_PART2_DATA0_REG Register 0 of BLOCK10 (system) 0x015C RO

EFUSE_RD_SYS_PART2_DATA1_REG Register 1 of BLOCK10 (system) 0x0160 RO

EFUSE_RD_SYS_PART2_DATA2_REG Register 2 of BLOCK10 (system) 0x0164 RO

EFUSE_RD_SYS_PART2_DATA3_REG Register 3 of BLOCK10 (system) 0x0168 RO

EFUSE_RD_SYS_PART2_DATA4_REG Register 4 of BLOCK10 (system) 0x016C RO

EFUSE_RD_SYS_PART2_DATA5_REG Register 5 of BLOCK10 (system) 0x0170 RO

EFUSE_RD_SYS_PART2_DATA6_REG Register 6 of BLOCK10 (system) 0x0174 RO

EFUSE_RD_SYS_PART2_DATA7_REG Register 7 of BLOCK10 (system) 0x0178 RO

Report Register

EFUSE_RD_REPEAT_ERR0_REG Programming error record register 0 of BLOCK0 0x017C RO

EFUSE_RD_REPEAT_ERR1_REG Programming error record register 1 of BLOCK0 0x0180 RO

EFUSE_RD_REPEAT_ERR2_REG Programming error record register 2 of BLOCK0 0x0184 RO

EFUSE_RD_REPEAT_ERR3_REG Programming error record register 3 of BLOCK0 0x0188 RO

EFUSE_RD_REPEAT_ERR4_REG Programming error record register 4 of BLOCK0 0x0190 RO

EFUSE_RD_RS_ERR0_REG Programming error record register 0 of BLOCK1

~ 10

0x01C0 RO

EFUSE_RD_RS_ERR1_REG Programming error record register 1 of BLOCK1

~ 10

0x01C4 RO

Configuration Register

EFUSE_CLK_REG eFuse clock configuration register 0x01C8 R/W

EFUSE_CONF_REG eFuse operation mode configuration register 0x01CC R/W

EFUSE_CMD_REG eFuse command register 0x01D4 varies

EFUSE_DAC_CONF_REG Controls the eFuse programming voltage 0x01E8 R/W

EFUSE_RD_TIM_CONF_REG Configures read timing parameters 0x01EC R/W

EFUSE_WR_TIM_CONF1_REG Configuration register 1 of eFuse programming

timing parameters

0x01F4 R/W

EFUSE_WR_TIM_CONF2_REG Configuration register 2 of eFuse programming

timing parameters

0x01F8 R/W

Status Register

EFUSE_STATUS_REG eFuse status register 0x01D0 RO

Interrupt Register

EFUSE_INT_RAW_REG eFuse raw interrupt register 0x01D8 R/WC/SS

Espressif Systems 94
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Name Description Address Access

EFUSE_INT_ST_REG eFuse interrupt status register 0x01DC RO

EFUSE_INT_ENA_REG eFuse interrupt enable register 0x01E0 R/W

EFUSE_INT_CLR_REG eFuse interrupt clear register 0x01E4 WO

Version Register

EFUSE_DATE_REG Version control register 0x01FC R/W

Espressif Systems 95
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

4.5 Registers

The addresses in this section are relative to eFuse Controller base address provided in Table 3-4 in Chapter 3

System and Memory.

Register 4.1. EFUSE_PGM_DATA0_REG (0x0000)

EFU
SE_P

GM
_D

AT
A_0

0x000000

31 0

Reset

EFUSE_PGM_DATA_0 The content of the 0th 32-bit data to be programmed. (R/W)

Register 4.2. EFUSE_PGM_DATA1_REG (0x0004)

EFU
SE_P

GM
_D

AT
A_1

0x000000

31 0

Reset

EFUSE_PGM_DATA_1 The content of the 1st 32-bit data to be programmed. (R/W)

Register 4.3. EFUSE_PGM_DATA2_REG (0x0008)

EFU
SE_P

GM
_D

AT
A_2

0x000000

31 0

Reset

EFUSE_PGM_DATA_2 The content of the 2nd 32-bit data to be programmed. (R/W)

Espressif Systems 96
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.4. EFUSE_PGM_DATA3_REG (0x000C)

EFU
SE_P

GM
_D

AT
A_3

0x000000

31 0

Reset

EFUSE_PGM_DATA_3 The content of the 3rd 32-bit data to be programmed. (R/W)

Register 4.5. EFUSE_PGM_DATA4_REG (0x0010)

EFU
SE_P

GM
_D

AT
A_4

0x000000

31 0

Reset

EFUSE_PGM_DATA_4 The content of the 4th 32-bit data to be programmed. (R/W)

Register 4.6. EFUSE_PGM_DATA5_REG (0x0014)

EFU
SE_P

GM
_D

AT
A_5

0x000000

31 0

Reset

EFUSE_PGM_DATA_5 The content of the 5th 32-bit data to be programmed. (R/W)

Register 4.7. EFUSE_PGM_DATA6_REG (0x0018)

EFU
SE_P

GM
_D

AT
A_6

0x000000

31 0

Reset

EFUSE_PGM_DATA_6 The content of the 6th 32-bit data to be programmed. (R/W)

Espressif Systems 97
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.8. EFUSE_PGM_DATA7_REG (0x001C)

EFU
SE_P

GM
_D

AT
A_7

0x000000

31 0

Reset

EFUSE_PGM_DATA_7 The content of the 7th 32-bit data to be programmed. (R/W)

Register 4.9. EFUSE_PGM_CHECK_VALUE0_REG (0x0020)

EFU
SE_P

GM
_R

S_D
AT

A_0

0x000000

31 0

Reset

EFUSE_PGM_RS_DATA_0 The content of the 0th 32-bit RS code to be programmed. (R/W)

Register 4.10. EFUSE_PGM_CHECK_VALUE1_REG (0x0024)

EFU
SE_P

GM
_R

S_D
AT

A_1

0x000000

31 0

Reset

EFUSE_PGM_RS_DATA_1 The content of the 1st 32-bit RS code to be programmed. (R/W)

Espressif Systems 98
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.11. EFUSE_PGM_CHECK_VALUE2_REG (0x0028)

EFU
SE_P

GM
_R

S_D
AT

A_2

0x000000

31 0

Reset

EFUSE_PGM_RS_DATA_2 The content of the 2nd 32-bit RS code to be programmed. (R/W)

Register 4.12. EFUSE_RD_WR_DIS_REG (0x002C)

EFU
SE_W

R_D
IS

0x000000

31 0

Reset

EFUSE_WR_DIS Disable programming of individual eFuses. (RO)

Espressif Systems 99
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.13. EFUSE_RD_REPEAT_DATA0_REG (0x0030)

(re
se

rve
d)

0 0 0 0 0

31 27

EFU
SE_E

XT
_P

HY_E
NABLE

0

26

EFU
SE_U

SB_E
XC

HG_P
IN

S

0

25

(re
se

rve
d)

0 0 0 0

24 21

EFU
SE_D

IS
_D

OW
NLO

AD_M
ANUAL_

ENCRYPT

0

20

EFU
SE_D

IS
_P

AD_J
TA

G

0

19

EFU
SE_S

OFT
_D

IS
_J

TA
G

0x0

18 16

EFU
SE_D

IS
_A

PP_C
PU

0

15

EFU
SE_D

IS
_T

W
AI

0

14

EFU
SE_D

IS
_U

SB

0

13

EFU
SE_D

IS
_F

ORCE_D
OW

NLO
AD

0

12

EFU
SE_D

IS
_D

OW
NLO

AD_D
CACHE

0

11

EFU
SE_D

IS
_D

OW
NLO

AD_IC
ACHE

0

10

EFU
SE_D

IS
_D

CACHE

0

9

EFU
SE_D

IS
_IC

ACHE

0

8

EFU
SE_R

PT4
_R

ESERVED3

0

7

EFU
SE_R

D_D
IS

0x0

6 0

Reset

EFUSE_RD_DIS Set this bit to disable reading from BlOCK4 ~ 10. (RO)

EFUSE_RPT4_RESERVED3 Reserved (used for four backups method). (RO)

EFUSE_DIS_ICACHE Set this bit to disable Icache. (RO)

EFUSE_DIS_DCACHE Set this bit to disable Dcache. (RO)

EFUSE_DIS_DOWNLOAD_ICACHE Set this bit to disable Icache in download mode

(boot_mode[3:0] is 0, 1, 2, 3, 6, 7). (RO)

EFUSE_DIS_DOWNLOAD_DCACHE Set this bit to disable Dcache in download mode (

boot_mode[3:0] is 0, 1, 2, 3, 6, 7). (RO)

EFUSE_DIS_FORCE_DOWNLOAD Set this bit to disable the function that forces chip into download

mode. (RO)

EFUSE_DIS_USB Set this bit to disable USB function. (RO)

EFUSE_DIS_TWAI Set this bit to disable TWAI function. (RO)

EFUSE_DIS_APP_CPU Disable app cpu. (RO)

EFUSE_SOFT_DIS_JTAG Set these bits to disable JTAG in the soft way (odd number 1 means disable

). JTAG can be enabled in HMAC module. (RO)

EFUSE_DIS_PAD_JTAG Set this bit to disable JTAG in the hard way. JTAG is disabled permanently.

(RO)

EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT Set this bit to disable flash encryption when in

download boot modes. (RO)

EFUSE_USB_EXCHG_PINS Set this bit to exchange USB D+ and D- pins. (RO)

EFUSE_EXT_PHY_ENABLE Set this bit to enable external PHY. (RO)

Espressif Systems 100
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.14. EFUSE_RD_REPEAT_DATA1_REG (0x0034)

EFU
SE_K

EY_P
URPOSE_1

0x0

31 28

EFU
SE_K

EY_P
URPOSE_0

0x0

27 24

EFU
SE_S

ECURE_B
OOT_

KEY_R
EVOKE2

0

23

EFU
SE_S

ECURE_B
OOT_

KEY_R
EVOKE1

0

22

EFU
SE_S

ECURE_B
OOT_

KEY_R
EVOKE0

0

21

EFU
SE_S

PI_B
OOT_

CRYPT_
CNT

0x0

20 18

EFU
SE_W

DT_
DELA

Y_S
EL

0x0

17 16

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

15 7

EFU
SE_V

DD_S
PI_F

ORCE

0

6

EFU
SE_V

DD_S
PI_T

IEH

0

5

EFU
SE_V

DD_S
PI_X

PD

0

4

(re
se

rve
d)

0 0 0 0

3 0

Reset

EFUSE_VDD_SPI_XPD SPI regulator power up signal. (RO)

EFUSE_VDD_SPI_TIEH SPI regulator output is short connected to VDD3P3_RTC_IO. (RO)

EFUSE_VDD_SPI_FORCE Set this bit and force to use the configuration of eFuse to configure

VDD_SPI. (RO)

EFUSE_WDT_DELAY_SEL Selects RTC watchdog timeout threshold, in unit of slow clock cycle. 00:

40000, 01: 80000, 10: 160000, 11:320000. (RO)

EFUSE_SPI_BOOT_CRYPT_CNT Set this bit to enable SPI boot encrypt/decrypt. Odd number of

1: enable. even number of 1: disable. (RO)

EFUSE_SECURE_BOOT_KEY_REVOKE0 Set this bit to enable revoking first secure boot key. (RO)

EFUSE_SECURE_BOOT_KEY_REVOKE1 Set this bit to enable revoking second secure boot key.

(RO)

EFUSE_SECURE_BOOT_KEY_REVOKE2 Set this bit to enable revoking third secure boot key. (RO)

EFUSE_KEY_PURPOSE_0 Purpose of Key0. (RO)

EFUSE_KEY_PURPOSE_1 Purpose of Key1. (RO)

Espressif Systems 101
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.15. EFUSE_RD_REPEAT_DATA2_REG (0x0038)

EFU
SE_F

LA
SH_T

PUW

0x0

31 28

EFU
SE_P

OW
ER_G

LIT
CH_D

SENSE

0x0

27 26

EFU
SE_U

SB_P
HY_S

EL

0

25

EFU
SE_S

TR
AP_J

TA
G_S

EL

0

24

EFU
SE_D

IS
_U

SB_S
ERIA

L_
JT

AG

0

23

EFU
SE_D

IS
_U

SB_J
TA

G

0

22

EFU
SE_S

ECURE_B
OOT_

AGGRESSIVE_R
EVOKE

0

21

EFU
SE_S

ECURE_B
OOT_

EN

0

20

EFU
SE_R

PT4
_R

ESERVED0

0x0

19 16

EFU
SE_K

EY_P
URPOSE_5

0x0

15 12

EFU
SE_K

EY_P
URPOSE_4

0x0

11 8

EFU
SE_K

EY_P
URPOSE_3

0x0

7 4

EFU
SE_K

EY_P
URPOSE_2

0x0

3 0

Reset

EFUSE_KEY_PURPOSE_2 Purpose of Key2. (RO)

EFUSE_KEY_PURPOSE_3 Purpose of Key3. (RO)

EFUSE_KEY_PURPOSE_4 Purpose of Key4. (RO)

EFUSE_KEY_PURPOSE_5 Purpose of Key5. (RO)

EFUSE_RPT4_RESERVED0 Reserved (used for four backups method). (RO)

EFUSE_SECURE_BOOT_EN Set this bit to enable secure boot. (RO)

EFUSE_SECURE_BOOT_AGGRESSIVE_REVOKE Set this bit to enable revoking aggressive secure

boot. (RO)

EFUSE_DIS_USB_JTAG Set this bit to disable function of usb switch to jtag in module of

usb_serial_jtag device. (RO)

EFUSE_DIS_USB_SETIAL_JTAG Set this bit to disable usb_serial_jtag module. (RO)

EFUSE_STRAP_JTAG_SEL Set this bit to enable selection between usb_to_jtag and pad_to_jtag

through strapping gpio10 when both reg_dis_usb_jtag and reg_dis_pad_jtag are equal to 0. (RO)

EFUSE_USB_PHY_SEL This bit is used to switch internal PHY and external PHY for USB OTG and

USB Device. 0: internal PHY is assigned to USB Device while external PHY is assigned to USB

OTG. 1: internal PHY is assigned to USB OTG while external PHY is assigned to USB Device. (RO)

EFUSE_POWER_GLITCH_DSENSE Sample delay configuration of power glitch. (RO)

EFUSE_FLASH_TPUW Configures flash waiting time after power-up, in unit of ms. If the value is

less than 15, the waiting time is the configurable value. Otherwise, the waiting time is twice the

configurable value. (RO)

Espressif Systems 102
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.16. EFUSE_RD_REPEAT_DATA3_REG (0x003C)

EFU
SE_R

PT4
_R

ESERVED1

0

31

EFU
SE_P

OW
ERGLIT

CH_E
N

0

30

EFU
SE_S

ECURE_V
ERSIO

N

0x00

29 14

EFU
SE_F

ORCE_S
END_R

ESUM
E

0

13

EFU
SE_F

LA
SH_E

CC_E
N

0

12

EFU
SE_F

LA
SH_P

AGE_S
IZE

0x0

11 10

EFU
SE_F

LA
SH_T

YPE

0

9

EFU
SE_P

IN
_P

OW
ER_S

ELE
CTIO

N

0

8

EFU
SE_U

ART_
PRIN

T_
CONTR

OL

0x0

7 6

EFU
SE_E

NABLE
_S

ECURITY
_D

OW
NLO

AD

0

5

EFU
SE_D

IS
_U

SB_D
OW

NLO
AD_M

ODE

0

4

EFU
SE_F

LA
SH_E

CC_M
ODE

0

3

EFU
SE_U

ART_
PRIN

T_
CHANNEL

0

2

EFU
SE_D

IS
_L

EGACY_S
PI_B

OOT

0

1

EFU
SE_D

IS
_D

OW
NLO

AD_M
ODE

0

0

Reset

EFUSE_DIS_DOWNLOAD_MODE Set this bit to disable download mode (boot_mode[3:0] = 0, 1, 2,

3, 6, 7). (RO)

EFUSE_DIS_LEGACY_SPI_BOOT Set this bit to disable Legacy SPI boot mode (boot_mode[3:0] =

4). (RO)

EFUSE_UART_PRINT_CHANNEL Selects the default UART print channel. 0: UART0. 1: UART1.

(RO)

EFUSE_FLASH_ECC_MODE Set ECC mode in ROM, 0: ROM would Enable Flash ECC 16-to-18

byte mode. 1: ROM would use 16-to-17 byte mode. (RO)

EFUSE_DIS_USB_DOWNLOAD_MODE Set this bit to disable UART download mode through USB.

(RO)

EFUSE_ENABLE_SECURITY_DOWNLOAD Set this bit to enable secure UART download mode.

(RO)

EFUSE_UART_PRINT_CONTROL Set the default UART boot message output mode. 00: Enabled.

01: Enabled when GPIO8 is low at reset. 10: Enabled when GPIO8 is high at reset. 11:disabled.

(RO)

EFUSE_PIN_POWER_SELECTION GPIO33 ~ GPIO37 power supply selection in ROM code. 0:

VDD3P3_CPU. 1: VDD_SPI. (RO)

EFUSE_FLASH_TYPE Set the maximum lines of SPI flash. 0: four lines. 1: eight lines. (RO)

EFUSE_FLASH_PAGE_SIZE Set Flash page size. (RO)

EFUSE_FLASH_ECC_EN Set 1 to enable ECC for flash boot. (RO)

EFUSE_FORCE_SEND_RESUME Set this bit to force ROM code to send a resume command during

SPI boot. (RO)

EFUSE_SECURE_VERSION Secure version (used by ESP-IDF anti-rollback feature). (RO)

EFUSE_POWERGLITCH_EN Set this bit to enable power glitch function. (RO)

EFUSE_RPT4_RESERVED1 Reserved (used for four backups method). (RO)

Espressif Systems 103
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.17. EFUSE_RD_REPEAT_DATA4_REG (0x0040)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

EFU
SE_R

PT4
_R

ESERVED2

0x0000

23 0

Reset

EFUSE_RPT4_RESERVED2 Reserved (used for four backups method). (RO)

Register 4.18. EFUSE_RD_MAC_SPI_SYS_0_REG (0x0044)

EFU
SE_M

AC_0

0x000000

31 0

Reset

EFUSE_MAC_0 Stores the low 32 bits of MAC address. (RO)

Register 4.19. EFUSE_RD_MAC_SPI_SYS_1_REG (0x0048)

EFU
SE_S

PI_P
AD_C

ONF_
0

0x00

31 16

EFU
SE_M

AC_1

0x00

15 0

Reset

EFUSE_MAC_1 Stores the high 16 bits of MAC address. (RO)

EFUSE_SPI_PAD_CONF_0 Stores the zeroth part of SPI_PAD_CONF. (RO)

Espressif Systems 104
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.20. EFUSE_RD_MAC_SPI_SYS_2_REG (0x004C)

EFU
SE_S

PI_P
AD_C

ONF_
1

0x000000

31 0

Reset

EFUSE_SPI_PAD_CONF_1 Stores the first part of SPI_PAD_CONF. (RO)

Register 4.21. EFUSE_RD_MAC_SPI_SYS_3_REG (0x0050)

EFU
SE_S

YS_D
AT

A_P
ART0

_0

0x00

31 18

EFU
SE_S

PI_P
AD_C

ONF_
2

0x000

17 0

Reset

EFUSE_SPI_PAD_CONF_2 Stores the second part of SPI_PAD_CONF. (RO)

EFUSE_SYS_DATA_PART0_0 Stores the fist 14 bits of the zeroth part of system data. (RO)

Register 4.22. EFUSE_RD_MAC_SPI_SYS_4_REG (0x0054)

EFU
SE_S

YS_D
AT

A_P
ART0

_1

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART0_1 Stores the fist 32 bits of the zeroth part of system data. (RO)

Espressif Systems 105
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.23. EFUSE_RD_MAC_SPI_SYS_5_REG (0x0058)

EFU
SE_S

YS_D
AT

A_P
ART0

_2

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART0_2 Stores the second 32 bits of the zeroth part of system data. (RO)

Register 4.24. EFUSE_RD_SYS_PART1_DATA0_REG (0x005C)

EFU
SE_S

YS_D
AT

A_P
ART1

_0

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART1_0 Stores the zeroth 32 bits of the first part of system data. (RO)

Register 4.25. EFUSE_RD_SYS_PART1_DATA1_REG (0x0060)

EFU
SE_S

YS_D
AT

A_P
ART1

_1

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART1_1 Stores the first 32 bits of the first part of system data. (RO)

Espressif Systems 106
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.26. EFUSE_RD_SYS_PART1_DATA2_REG (0x0064)

EFU
SE_S

YS_D
AT

A_P
ART1

_2

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART1_2 Stores the second 32 bits of the first part of system data. (RO)

Register 4.27. EFUSE_RD_SYS_PART1_DATA3_REG (0x0068)

EFU
SE_S

YS_D
AT

A_P
ART1

_3

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART1_3 Stores the third 32 bits of the first part of system data. (RO)

Register 4.28. EFUSE_RD_SYS_PART1_DATA4_REG (0x006C)

EFU
SE_S

YS_D
AT

A_P
ART1

_4

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART1_4 Stores the fourth 32 bits of the first part of system data. (RO)

Espressif Systems 107
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.29. EFUSE_RD_SYS_PART1_DATA5_REG (0x0070)

EFU
SE_S

YS_D
AT

A_P
ART1

_5

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART1_5 Stores the fifth 32 bits of the first part of system data. (RO)

Register 4.30. EFUSE_RD_SYS_PART1_DATA6_REG (0x0074)

EFU
SE_S

YS_D
AT

A_P
ART1

_6

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART1_6 Stores the sixth 32 bits of the first part of system data. (RO)

Register 4.31. EFUSE_RD_SYS_PART1_DATA7_REG (0x0078)

EFU
SE_S

YS_D
AT

A_P
ART1

_7

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART1_7 Stores the seventh 32 bits of the first part of system data. (RO)

Espressif Systems 108
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.32. EFUSE_RD_USR_DATA0_REG (0x007C)

EFU
SE_U

SR_D
AT

A0

0x000000

31 0

Reset

EFUSE_USR_DATA0 Stores the zeroth 32 bits of BLOCK3 (user). (RO)

Register 4.33. EFUSE_RD_USR_DATA1_REG (0x0080)

EFU
SE_U

SR_D
AT

A1

0x000000

31 0

Reset

EFUSE_USR_DATA1 Stores the first 32 bits of BLOCK3 (user). (RO)

Register 4.34. EFUSE_RD_USR_DATA2_REG (0x0084)

EFU
SE_U

SR_D
AT

A2

0x000000

31 0

Reset

EFUSE_USR_DATA2 Stores the second 32 bits of BLOCK3 (user). (RO)

Register 4.35. EFUSE_RD_USR_DATA3_REG (0x0088)

EFU
SE_U

SR_D
AT

A3

0x000000

31 0

Reset

EFUSE_USR_DATA3 Stores the third 32 bits of BLOCK3 (user). (RO)

Espressif Systems 109
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.36. EFUSE_RD_USR_DATA4_REG (0x008C)

EFU
SE_U

SR_D
AT

A4

0x000000

31 0

Reset

EFUSE_USR_DATA4 Stores the fourth 32 bits of BLOCK3 (user). (RO)

Register 4.37. EFUSE_RD_USR_DATA5_REG (0x0090)

EFU
SE_U

SR_D
AT

A5

0x000000

31 0

Reset

EFUSE_USR_DATA5 Stores the fifth 32 bits of BLOCK3 (user). (RO)

Register 4.38. EFUSE_RD_USR_DATA6_REG (0x0094)

EFU
SE_U

SR_D
AT

A6

0x000000

31 0

Reset

EFUSE_USR_DATA6 Stores the sixth 32 bits of BLOCK3 (user). (RO)

Register 4.39. EFUSE_RD_USR_DATA7_REG (0x0098)

EFU
SE_U

SR_D
AT

A7

0x000000

31 0

Reset

EFUSE_USR_DATA7 Stores the seventh 32 bits of BLOCK3 (user). (RO)

Espressif Systems 110
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.40. EFUSE_RD_KEY0_DATA0_REG (0x009C)

EFU
SE_K

EY0_
DAT

A0

0x000000

31 0

Reset

EFUSE_KEY0_DATA0 Stores the zeroth 32 bits of KEY0. (RO)

Register 4.41. EFUSE_RD_KEY0_DATA1_REG (0x00A0)

EFU
SE_K

EY0_
DAT

A1

0x000000

31 0

Reset

EFUSE_KEY0_DATA1 Stores the first 32 bits of KEY0. (RO)

Register 4.42. EFUSE_RD_KEY0_DATA2_REG (0x00A4)

EFU
SE_K

EY0_
DAT

A2

0x000000

31 0

Reset

EFUSE_KEY0_DATA2 Stores the second 32 bits of KEY0. (RO)

Register 4.43. EFUSE_RD_KEY0_DATA3_REG (0x00A8)

EFU
SE_K

EY0_
DAT

A3

0x000000

31 0

Reset

EFUSE_KEY0_DATA3 Stores the third 32 bits of KEY0. (RO)

Espressif Systems 111
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.44. EFUSE_RD_KEY0_DATA4_REG (0x00AC)

EFU
SE_K

EY0_
DAT

A4

0x000000

31 0

Reset

EFUSE_KEY0_DATA4 Stores the fourth 32 bits of KEY0. (RO)

Register 4.45. EFUSE_RD_KEY0_DATA5_REG (0x00B0)

EFU
SE_K

EY0_
DAT

A5

0x000000

31 0

Reset

EFUSE_KEY0_DATA5 Stores the fifth 32 bits of KEY0. (RO)

Register 4.46. EFUSE_RD_KEY0_DATA6_REG (0x00B4)

EFU
SE_K

EY0_
DAT

A6

0x000000

31 0

Reset

EFUSE_KEY0_DATA6 Stores the sixth 32 bits of KEY0. (RO)

Register 4.47. EFUSE_RD_KEY0_DATA7_REG (0x00B8)

EFU
SE_K

EY0_
DAT

A7

0x000000

31 0

Reset

EFUSE_KEY0_DATA7 Stores the seventh 32 bits of KEY0. (RO)

Espressif Systems 112
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.48. EFUSE_RD_KEY1_DATA0_REG (0x00BC)

EFU
SE_K

EY1_
DAT

A0

0x000000

31 0

Reset

EFUSE_KEY1_DATA0 Stores the zeroth 32 bits of KEY1. (RO)

Register 4.49. EFUSE_RD_KEY1_DATA1_REG (0x00C0)

EFU
SE_K

EY1_
DAT

A1

0x000000

31 0

Reset

EFUSE_KEY1_DATA1 Stores the first 32 bits of KEY1. (RO)

Register 4.50. EFUSE_RD_KEY1_DATA2_REG (0x00C4)

EFU
SE_K

EY1_
DAT

A2

0x000000

31 0

Reset

EFUSE_KEY1_DATA2 Stores the second 32 bits of KEY1. (RO)

Register 4.51. EFUSE_RD_KEY1_DATA3_REG (0x00C8)

EFU
SE_K

EY1_
DAT

A3

0x000000

31 0

Reset

EFUSE_KEY1_DATA3 Stores the third 32 bits of KEY1. (RO)

Espressif Systems 113
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.52. EFUSE_RD_KEY1_DATA4_REG (0x00CC)

EFU
SE_K

EY1_
DAT

A4

0x000000

31 0

Reset

EFUSE_KEY1_DATA4 Stores the fourth 32 bits of KEY1. (RO)

Register 4.53. EFUSE_RD_KEY1_DATA5_REG (0x00D0)

EFU
SE_K

EY1_
DAT

A5

0x000000

31 0

Reset

EFUSE_KEY1_DATA5 Stores the fifth 32 bits of KEY1. (RO)

Register 4.54. EFUSE_RD_KEY1_DATA6_REG (0x00D4)

EFU
SE_K

EY1_
DAT

A6

0x000000

31 0

Reset

EFUSE_KEY1_DATA6 Stores the sixth 32 bits of KEY1. (RO)

Register 4.55. EFUSE_RD_KEY1_DATA7_REG (0x00D8)

EFU
SE_K

EY1_
DAT

A7

0x000000

31 0

Reset

EFUSE_KEY1_DATA7 Stores the seventh 32 bits of KEY1. (RO)

Espressif Systems 114
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.56. EFUSE_RD_KEY2_DATA0_REG (0x00DC)

EFU
SE_K

EY2_
DAT

A0

0x000000

31 0

Reset

EFUSE_KEY2_DATA0 Stores the zeroth 32 bits of KEY2. (RO)

Register 4.57. EFUSE_RD_KEY2_DATA1_REG (0x00E0)

EFU
SE_K

EY2_
DAT

A1

0x000000

31 0

Reset

EFUSE_KEY2_DATA1 Stores the first 32 bits of KEY2. (RO)

Register 4.58. EFUSE_RD_KEY2_DATA2_REG (0x00E4)

EFU
SE_K

EY2_
DAT

A2

0x000000

31 0

Reset

EFUSE_KEY2_DATA2 Stores the second 32 bits of KEY2. (RO)

Register 4.59. EFUSE_RD_KEY2_DATA3_REG (0x00E8)

EFU
SE_K

EY2_
DAT

A3

0x000000

31 0

Reset

EFUSE_KEY2_DATA3 Stores the third 32 bits of KEY2. (RO)

Espressif Systems 115
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.60. EFUSE_RD_KEY2_DATA4_REG (0x00EC)

EFU
SE_K

EY2_
DAT

A4

0x000000

31 0

Reset

EFUSE_KEY2_DATA4 Stores the fourth 32 bits of KEY2. (RO)

Register 4.61. EFUSE_RD_KEY2_DATA5_REG (0x00F0)

EFU
SE_K

EY2_
DAT

A5

0x000000

31 0

Reset

EFUSE_KEY2_DATA5 Stores the fifth 32 bits of KEY2. (RO)

Register 4.62. EFUSE_RD_KEY2_DATA6_REG (0x00F4)

EFU
SE_K

EY2_
DAT

A6

0x000000

31 0

Reset

EFUSE_KEY2_DATA6 Stores the sixth 32 bits of KEY2. (RO)

Register 4.63. EFUSE_RD_KEY2_DATA7_REG (0x00F8)

EFU
SE_K

EY2_
DAT

A7

0x000000

31 0

Reset

EFUSE_KEY2_DATA7 Stores the seventh 32 bits of KEY2. (RO)

Espressif Systems 116
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.64. EFUSE_RD_KEY3_DATA0_REG (0x00FC)

EFU
SE_K

EY3_
DAT

A0

0x000000

31 0

Reset

EFUSE_KEY3_DATA0 Stores the zeroth 32 bits of KEY3. (RO)

Register 4.65. EFUSE_RD_KEY3_DATA1_REG (0x0100)

EFU
SE_K

EY3_
DAT

A1

0x000000

31 0

Reset

EFUSE_KEY3_DATA1 Stores the first 32 bits of KEY3. (RO)

Register 4.66. EFUSE_RD_KEY3_DATA2_REG (0x0104)

EFU
SE_K

EY3_
DAT

A2

0x000000

31 0

Reset

EFUSE_KEY3_DATA2 Stores the second 32 bits of KEY3. (RO)

Register 4.67. EFUSE_RD_KEY3_DATA3_REG (0x0108)

EFU
SE_K

EY3_
DAT

A3

0x000000

31 0

Reset

EFUSE_KEY3_DATA3 Stores the third 32 bits of KEY3. (RO)

Espressif Systems 117
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.68. EFUSE_RD_KEY3_DATA4_REG (0x010C)

EFU
SE_K

EY3_
DAT

A4

0x000000

31 0

Reset

EFUSE_KEY3_DATA4 Stores the fourth 32 bits of KEY3. (RO)

Register 4.69. EFUSE_RD_KEY3_DATA5_REG (0x0110)

EFU
SE_K

EY3_
DAT

A5

0x000000

31 0

Reset

EFUSE_KEY3_DATA5 Stores the fifth 32 bits of KEY3. (RO)

Register 4.70. EFUSE_RD_KEY3_DATA6_REG (0x0114)

EFU
SE_K

EY3_
DAT

A6

0x000000

31 0

Reset

EFUSE_KEY3_DATA6 Stores the sixth 32 bits of KEY3. (RO)

Register 4.71. EFUSE_RD_KEY3_DATA7_REG (0x0118)

EFU
SE_K

EY3_
DAT

A7

0x000000

31 0

Reset

EFUSE_KEY3_DATA7 Stores the seventh 32 bits of KEY3. (RO)

Espressif Systems 118
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.72. EFUSE_RD_KEY4_DATA0_REG (0x011C)

EFU
SE_K

EY4_
DAT

A0

0x000000

31 0

Reset

EFUSE_KEY4_DATA0 Stores the zeroth 32 bits of KEY4. (RO)

Register 4.73. EFUSE_RD_KEY4_DATA1_REG (0x0120)

EFU
SE_K

EY4_
DAT

A1

0x000000

31 0

Reset

EFUSE_KEY4_DATA1 Stores the first 32 bits of KEY4. (RO)

Register 4.74. EFUSE_RD_KEY4_DATA2_REG (0x0124)

EFU
SE_K

EY4_
DAT

A2

0x000000

31 0

Reset

EFUSE_KEY4_DATA2 Stores the second 32 bits of KEY4. (RO)

Register 4.75. EFUSE_RD_KEY4_DATA3_REG (0x0128)

EFU
SE_K

EY4_
DAT

A3

0x000000

31 0

Reset

EFUSE_KEY4_DATA3 Stores the third 32 bits of KEY4. (RO)

Espressif Systems 119
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.76. EFUSE_RD_KEY4_DATA4_REG (0x012C)

EFU
SE_K

EY4_
DAT

A4

0x000000

31 0

Reset

EFUSE_KEY4_DATA4 Stores the fourth 32 bits of KEY4. (RO)

Register 4.77. EFUSE_RD_KEY4_DATA5_REG (0x0130)

EFU
SE_K

EY4_
DAT

A5

0x000000

31 0

Reset

EFUSE_KEY4_DATA5 Stores the fifth 32 bits of KEY4. (RO)

Register 4.78. EFUSE_RD_KEY4_DATA6_REG (0x0134)

EFU
SE_K

EY4_
DAT

A6

0x000000

31 0

Reset

EFUSE_KEY4_DATA6 Stores the sixth 32 bits of KEY4. (RO)

Register 4.79. EFUSE_RD_KEY4_DATA7_REG (0x0138)

EFU
SE_K

EY4_
DAT

A7

0x000000

31 0

Reset

EFUSE_KEY4_DATA7 Stores the seventh 32 bits of KEY4. (RO)

Espressif Systems 120
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.80. EFUSE_RD_KEY5_DATA0_REG (0x013C)

EFU
SE_K

EY5_
DAT

A0

0x000000

31 0

Reset

EFUSE_KEY5_DATA0 Stores the zeroth 32 bits of KEY5. (RO)

Register 4.81. EFUSE_RD_KEY5_DATA1_REG (0x0140)

EFU
SE_K

EY5_
DAT

A1

0x000000

31 0

Reset

EFUSE_KEY5_DATA1 Stores the first 32 bits of KEY5. (RO)

Register 4.82. EFUSE_RD_KEY5_DATA2_REG (0x0144)

EFU
SE_K

EY5_
DAT

A2

0x000000

31 0

Reset

EFUSE_KEY5_DATA2 Stores the second 32 bits of KEY5. (RO)

Register 4.83. EFUSE_RD_KEY5_DATA3_REG (0x0148)

EFU
SE_K

EY5_
DAT

A3

0x000000

31 0

Reset

EFUSE_KEY5_DATA3 Stores the third 32 bits of KEY5. (RO)

Espressif Systems 121
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.84. EFUSE_RD_KEY5_DATA4_REG (0x014C)

EFU
SE_K

EY5_
DAT

A4

0x000000

31 0

Reset

EFUSE_KEY5_DATA4 Stores the fourth 32 bits of KEY5. (RO)

Register 4.85. EFUSE_RD_KEY5_DATA5_REG (0x0150)

EFU
SE_K

EY5_
DAT

A5

0x000000

31 0

Reset

EFUSE_KEY5_DATA5 Stores the fifth 32 bits of KEY5. (RO)

Register 4.86. EFUSE_RD_KEY5_DATA6_REG (0x0154)

EFU
SE_K

EY5_
DAT

A6

0x000000

31 0

Reset

EFUSE_KEY5_DATA6 Stores the sixth 32 bits of KEY5. (RO)

Register 4.87. EFUSE_RD_KEY5_DATA7_REG (0x0158)

EFU
SE_K

EY5_
DAT

A7

0x000000

31 0

Reset

EFUSE_KEY5_DATA7 Stores the seventh 32 bits of KEY5. (RO)

Espressif Systems 122
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.88. EFUSE_RD_SYS_PART2_DATA0_REG (0x015C)

EFU
SE_S

YS_D
AT

A_P
ART2

_0

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART2_0 Stores the 0th 32 bits of the 2nd part of system data. (RO)

Register 4.89. EFUSE_RD_SYS_PART2_DATA1_REG (0x0160)

EFU
SE_S

YS_D
AT

A_P
ART2

_1

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART2_1 Stores the 1st 32 bits of the 2nd part of system data. (RO)

Register 4.90. EFUSE_RD_SYS_PART2_DATA2_REG (0x0164)

EFU
SE_S

YS_D
AT

A_P
ART2

_2

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART2_2 Stores the 2nd 32 bits of the 2nd part of system data. (RO)

Espressif Systems 123
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.91. EFUSE_RD_SYS_PART2_DATA3_REG (0x0168)

EFU
SE_S

YS_D
AT

A_P
ART2

_3

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART2_3 Stores the 3rd 32 bits of the 2nd part of system data. (RO)

Register 4.92. EFUSE_RD_SYS_PART2_DATA4_REG (0x016C)

EFU
SE_S

YS_D
AT

A_P
ART2

_4

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART2_4 Stores the 4th 32 bits of the 2nd part of system data. (RO)

Register 4.93. EFUSE_RD_SYS_PART2_DATA5_REG (0x0170)

EFU
SE_S

YS_D
AT

A_P
ART2

_5

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART2_5 Stores the 5th 32 bits of the 2nd part of system data. (RO)

Espressif Systems 124
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.94. EFUSE_RD_SYS_PART2_DATA6_REG (0x0174)

EFU
SE_S

YS_D
AT

A_P
ART2

_6

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART2_6 Stores the 6th 32 bits of the 2nd part of system data. (RO)

Register 4.95. EFUSE_RD_SYS_PART2_DATA7_REG (0x0178)

EFU
SE_S

YS_D
AT

A_P
ART2

_7

0x000000

31 0

Reset

EFUSE_SYS_DATA_PART2_7 Stores the 7th 32 bits of the 2nd part of system data. (RO)

Espressif Systems 125
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.96. EFUSE_RD_REPEAT_ERR0_REG (0x017C)

(re
se

rve
d)

0 0 0 0 0

31 27

EFU
SE_E

XT
_P

HY_E
NABLE

_E
RR

0

26

EFU
SE_U

SB_E
XC

HG_P
IN

S_E
RR

0

25

(re
se

rve
d)

0 0 0 0

24 21

EFU
SE_D

IS
_D

OW
NLO

AD_M
ANUAL_

ENCRYPT_
ERR

0

20

EFU
SE_D

IS
_P

AD_J
TA

G_E
RR

0

19

EFU
SE_S

OFT
_D

IS
_J

TA
G_E

RR

0x0

18 16

EFU
SE_D

IS
_A

PP_C
PU_E

RR

0

15

EFU
SE_D

IS
_T

W
AI_E

RR

0

14

EFU
SE_D

IS
_U

SB_E
RR

0

13

EFU
SE_D

IS
_F

ORCE_D
OW

NLO
AD_E

RR

0

12

EFU
SE_D

IS
_D

OW
NLO

AD_D
CACHE_E

RR

0

11

EFU
SE_D

IS
_D

OW
NLO

AD_IC
ACHE_E

RR

0

10

EFU
SE_D

IS
_D

CACHE_E
RR

0

9

EFU
SE_D

IS
_IC

ACHE_E
RR

0

8

EFU
SE_D

IS
_R

TC
_R

AM
_B

OOT_
ERR

0

7

EFU
SE_R

D_D
IS

_E
RR

0x0

6 0

Reset

EFUSE_RD_DIS_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

EFUSE_DIS_RTC_RAM_BOOT_ERR If any bits in this filed are 1, then it indicates a programming

error. (RO)

EFUSE_DIS_ICACHE_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

EFUSE_DIS_DCACHE_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

EFUSE_DIS_DOWNLOAD_ICACHE_ERR If any bits in this filed are 1, then it indicates a program-

ming error. (RO)

EFUSE_DIS_DOWNLOAD_DCACHE_ERR If any bits in this filed are 1, then it indicates a program-

ming error. (RO)

EFUSE_DIS_FORCE_DOWNLOAD_ERR If any bits in this filed are 1, then it indicates a programming

error. (RO)

EFUSE_DIS_USB_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

EFUSE_DIS_TWAI_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

EFUSE_DIS_APP_CPU_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

EFUSE_SOFT_DIS_JTAG_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_DIS_PAD_JTAG_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

Continued on the next page...

Espressif Systems 126
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.96. EFUSE_RD_REPEAT_ERR0_REG (0x017C)

Continued from the previous page...

EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT_ERR If any bits in this filed are 1, then it indicates

a programming error. (RO)

EFUSE_USB_EXCHG_PINS_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_EXT_PHY_ENABLE_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

Espressif Systems 127
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.97. EFUSE_RD_REPEAT_ERR1_REG (0x0180)

EFU
SE_K

EY_P
URPOSE_1

_E
RR

0x0

31 28

EFU
SE_K

EY_P
URPOSE_0

_E
RR

0x0

27 24

EFU
SE_S

ECURE_B
OOT_

KEY_R
EVOKE2_

ERR

0

23

EFU
SE_S

ECURE_B
OOT_

KEY_R
EVOKE1_

ERR

0

22

EFU
SE_S

ECURE_B
OOT_

KEY_R
EVOKE0_

ERR

0

21

EFU
SE_S

PI_B
OOT_

CRYPT_
CNT_

ERR

0x0

20 18

EFU
SE_W

DT_
DELA

Y_S
EL_

ERR

0x0

17 16

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

15 7

EFU
SE_V

DD_S
PI_F

ORCE_E
RR

0

6

EFU
SE_V

DD_S
PI_T

IEH_E
RR

0

5

EFU
SE_V

DD_S
PI_X

PD_E
RR

0

4

(re
se

rve
d)

0 0 0 0

3 0

Reset

EFUSE_VDD_SPI_XPD_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

EFUSE_VDD_SPI_TIEH_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

EFUSE_VDD_SPI_FORCE_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_WDT_DELAY_SEL_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_SPI_BOOT_CRYPT_CNT_ERR If any bits in this filed are 1, then it indicates a programming

error. (RO)

EFUSE_SECURE_BOOT_KEY_REVOKE0_ERR If any bits in this filed are 1, then it indicates a pro-

gramming error. (RO)

EFUSE_SECURE_BOOT_KEY_REVOKE1_ERR If any bits in this filed are 1, then it indicates a pro-

gramming error. (RO)

EFUSE_SECURE_BOOT_KEY_REVOKE2_ERR If any bits in this filed are 1, then it indicates a pro-

gramming error. (RO)

EFUSE_KEY_PURPOSE_0_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_KEY_PURPOSE_1_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

Espressif Systems 128
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.98. EFUSE_RD_REPEAT_ERR2_REG (0x0184)

EFU
SE_F

LA
SH_T

PUW
_E

RR

0x0

31 28

EFU
SE_P

OW
ER_G

LIT
CH_D

SENSE_E
RR

0x0

27 26

EFU
SE_U

SB_P
HY_S

EL_
ERR

0

25

EFU
SE_S

TR
AP_J

TA
G_S

EL_
ERR

0

24

EFU
SE_D

IS
_U

SB_D
EVIC

E_E
RR

0

23

EFU
SE_D

IS
_U

SB_J
TA

G_E
RR

0x0

22

EFU
SE_S

ECURE_B
OOT_

AGGRESSIVE_R
EVOKE_E

RR

0

21

EFU
SE_S

ECURE_B
OOT_

EN_E
RR

0

20

EFU
SE_R

PT4
_R

ESERVED0_
ERR

0x0

19 16

EFU
SE_K

EY_P
URPOSE_5

_E
RR

0x0

15 12

EFU
SE_K

EY_P
URPOSE_4

_E
RR

0x0

11 8

EFU
SE_K

EY_P
URPOSE_3

_E
RR

0x0

7 4

EFU
SE_K

EY_P
URPOSE_2

_E
RR

0x0

3 0

Reset

EFUSE_KEY_PURPOSE_2_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_KEY_PURPOSE_3_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_KEY_PURPOSE_4_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_KEY_PURPOSE_5_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_RPT4_RESERVED0_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_SECURE_BOOT_EN_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_SECURE_BOOT_AGGRESSIVE_REVOKE_ERR If any bits in this filed are 1, then it indicates

a programming error. (RO)

EFUSE_DIS_USB_JTAG_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

EFUSE_DIS_USB_DEVICE_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_STRAP_JTAG_SEL_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_USB_PHY_SEL_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

EFUSE_POWER_GLITCH_DSENSE_ERR If any bits in this filed are 1, then it indicates a program-

ming error. (RO)

EFUSE_FLASH_TPUW_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

Espressif Systems 129
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.99. EFUSE_RD_REPEAT_ERR3_REG (0x0188)

EFU
SE_R

PT4
_R

ESERVED1_
ERR

0

31

EFU
SE_P

OW
ERGLIT

CH_E
N_E

RR

0

30

EFU
SE_S

ECURE_V
ERSIO

N_E
RR

0x00

29 14

EFU
SE_F

ORCE_S
END_R

ESUM
E_E

RR

0

13

EFU
SE_F

LA
SH_E

CC_E
N_E

RR

0

12

EFU
SE_F

LA
SH_P

AGE_S
IZE

_E
RR

0x0

11 10

EFU
SE_F

LA
SH_T

YPE_E
RR

0

9

EFU
SE_P

IN
_P

OW
ER_S

ELE
CTIO

N_E
RR

0

8

EFU
SE_U

ART_
PRIN

T_
CONTR

OL_
ERR

0x0

7 6

EFU
SE_E

NABLE
_S

ECURITY
_D

OW
NLO

AD_E
RR

0

5

EFU
SE_D

IS
_U

SB_D
OW

NLO
AD_M

ODE_E
RR

0

4

EFU
SE_F

LA
SH_E

CC_M
ODE_E

RR

0

3

EFU
SE_U

ART_
PRIN

T_
CHANNEL_

ERR

0

2

EFU
SE_D

IS
_L

EGACY_S
PI_B

OOT_
ERR

0

1

EFU
SE_D

IS
_D

OW
NLO

AD_M
ODE_E

RR

0

0

Reset

EFUSE_DIS_DOWNLOAD_MODE_ERR If any bits in this filed are 1, then it indicates a programming

error. (RO)

EFUSE_DIS_LEGACY_SPI_BOOT_ERR If any bits in this filed are 1, then it indicates a programming

error. (RO)

EFUSE_UART_PRINT_CHANNEL_ERR If any bits in this filed are 1, then it indicates a programming

error. (RO)

EFUSE_FLASH_ECC_MODE_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_DIS_USB_DOWNLOAD_MODE_ERR If any bits in this filed are 1, then it indicates a pro-

gramming error. (RO)

EFUSE_ENABLE_SECURITY_DOWNLOAD_ERR If any bits in this filed are 1, then it indicates a

programming error. (RO)

EFUSE_UART_PRINT_CONTROL_ERR If any bits in this filed are 1, then it indicates a programming

error. (RO)

EFUSE_PIN_POWER_SELECTION_ERR If any bits in this filed are 1, then it indicates a programming

error. (RO)

EFUSE_FLASH_TYPE_ERR If any bits in this filed are 1, then it indicates a programming error. (RO)

EFUSE_FLASH_PAGE_SIZE_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_FLASH_ECC_EN_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_FORCE_SEND_RESUME_ERR If any bits in this filed are 1, then it indicates a programming

error. (RO)

EFUSE_SECURE_VERSION_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_POWERGLITCH_EN_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

EFUSE_RPT4_RESERVED1_ERR Reserved. (RO)
Espressif Systems 130

Submit Documentation Feedback
ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.100. EFUSE_RD_REPEAT_ERR4_REG (0x0190)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

EFU
SE_R

PT4
_R

ESERVED2_
ERR

0x0000

23 0

Reset

EFUSE_RPT4_RESERVED2_ERR If any bits in this filed are 1, then it indicates a programming error.

(RO)

Espressif Systems 131
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.101. EFUSE_RD_RS_ERR0_REG (0x01C0)

EFU
SE_K

EY3_
FA

IL

0

31

EFU
SE_K

EY4_
ERR_N

UM

0x0

30 28

EFU
SE_K

EY2_
FA

IL

0

27

EFU
SE_K

EY3_
ERR_N

UM

0x0

26 24

EFU
SE_K

EY1_
FA

IL

0

23

EFU
SE_K

EY2_
ERR_N

UM

0x0

22 20

EFU
SE_K

EY0_
FA

IL

0

19

EFU
SE_K

EY1_
ERR_N

UM

0x0

18 16

EFU
SE_U

SR_D
AT

A_F
AIL

0

15

EFU
SE_K

EY0_
ERR_N

UM

0x0

14 12

EFU
SE_S

YS_P
ART1

_F
AIL

0

11

EFU
SE_U

SR_D
AT

A_E
RR_N

UM

0x0

10 8

EFU
SE_M

AC_S
PI_8

M
_F

AIL

0

7

EFU
SE_S

YS_P
ART1

_N
UM

0x0

6 4

(re
se

rve
d)

0

3

EFU
SE_M

AC_S
PI_8

M
_E

RR_N
UM

0x0

2 0

Reset

EFUSE_MAC_SPI_8M_ERR_NUM The value of this signal means the number of error bytes. (RO)

EFUSE_SYS_PART1_NUM The value of this signal means the number of error bytes. (RO)

EFUSE_MAC_SPI_8M_FAIL 0: Means no failure and that the data of MAC_SPI_8M is reliable 1:

Means that programming data of MAC_SPI_8M failed and the number of error bytes is over 6.

(RO)

EFUSE_USR_DATA_ERR_NUM The value of this signal means the number of error bytes. (RO)

EFUSE_SYS_PART1_FAIL 0: Means no failure and that the data of system part1 is reliable 1: Means

that programming data of system part1 failed and the number of error bytes is over 6. (RO)

EFUSE_KEY0_ERR_NUM The value of this signal means the number of error bytes. (RO)

EFUSE_USR_DATA_FAIL 0: Means no failure and that the user data is reliable 1: Means that pro-

gramming user data failed and the number of error bytes is over 6. (RO)

EFUSE_KEY1_ERR_NUM The value of this signal means the number of error bytes. (RO)

EFUSE_KEY0_FAIL 0: Means no failure and that the data of key0 is reliable 1: Means that program-

ming key0 failed and the number of error bytes is over 6. (RO)

EFUSE_KEY2_ERR_NUM The value of this signal means the number of error bytes. (RO)

EFUSE_KEY1_FAIL 0: Means no failure and that the data of key1 is reliable 1: Means that program-

ming key1 failed and the number of error bytes is over 6. (RO)

EFUSE_KEY3_ERR_NUM The value of this signal means the number of error bytes. (RO)

EFUSE_KEY2_FAIL 0: Means no failure and that the data of key2 is reliable 1: Means that program-

ming key2 failed and the number of error bytes is over 6. (RO)

EFUSE_KEY4_ERR_NUM The value of this signal means the number of error bytes. (RO)

EFUSE_KEY3_FAIL 0: Means no failure and that the data of key3 is reliable 1: Means that program-

ming key3 failed and the number of error bytes is over 6. (RO)

Espressif Systems 132
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.102. EFUSE_RD_RS_ERR1_REG (0x01C4)

(re
se

rve
d)

0 0

31 8

EFU
SE_K

EY5_
FA

IL

0

7

EFU
SE_S

YS_P
ART2

_E
RR_N

UM

0x0

6 4

EFU
SE_K

EY4_
FA

IL

0

3

EFU
SE_K

EY5_
ERR_N

UM

0x0

2 0

Reset

EFUSE_KEY5_ERR_NUM The value of this signal means the number of error bytes. (RO)

EFUSE_KEY4_FAIL 0: Means no failure and that the data of KEY4 is reliable 1: Means that program-

ming KEY4 data failed and the number of error bytes is over 6. (RO)

EFUSE_SYS_PART2_ERR_NUM The value of this signal means the number of error bytes. (RO)

EFUSE_KEY5_FAIL 0: Means no failure and that the data of KEY5 is reliable 1: Means that program-

ming KEY5 data failed and the number of error bytes is over 6. (RO)

Register 4.103. EFUSE_CLK_REG (0x01C8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

EFU
SE_C

LK
_E

N

0

16

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

15 3

EFU
SE_E

FU
SE_M

EM
_F

ORCE_P
U

0

2

EFU
SE_M

EM
_C

LK
_F

ORCE_O
N

1

1

EFU
SE_E

FU
SE_M

EM
_F

ORCE_P
D

0

0

Reset

EFUSE_EFUSE_MEM_FORCE_PD Set this bit to force eFuse SRAM into power-saving mode. (R/W)

EFUSE_MEM_CLK_FORCE_ON Set this bit and force to activate clock signal of eFuse SRAM. (R/W)

EFUSE_EFUSE_MEM_FORCE_PU Set this bit to force eFuse SRAM into working mode. (R/W)

EFUSE_CLK_EN Set this bit and force to enable clock signal of eFuse memory. (R/W)

Espressif Systems 133
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.104. EFUSE_CONF_REG (0x01CC)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

EFU
SE_O

P_C
ODE

0x00

15 0

Reset

EFUSE_OP_CODE 0x5A5A: Operate programming command 0x5AA5: Operate read command.

(R/W)

Register 4.105. EFUSE_CMD_REG (0x01D4)

(re
se

rve
d)

0 0

31 6

EFU
SE_B

LK
_N

UM

0x0

5 2

EFU
SE_P

GM
_C

M
D

0

1

EFU
SE_R

EAD_C
M

D

0

0

Reset

EFUSE_READ_CMD Set this bit to send read command. (R/WS/SC)

EFUSE_PGM_CMD Set this bit to send programming command. (R/WS/SC)

EFUSE_BLK_NUM The serial number of the block to be programmed. Value 0 ~ 10 corresponds to

block number 0 ~ 10, respectively. (R/W)

Register 4.106. EFUSE_DAC_CONF_REG (0x01E8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

EFU
SE_O

E_C
LR

0

17

EFU
SE_D

AC_N
UM

255

16 9

EFU
SE_D

AC_C
LK

_P
AD_S

EL

0

8

EFU
SE_D

AC_C
LK

_D
IV

28

7 0

Reset

EFUSE_DAC_CLK_DIV Controls the division factor of the rising clock of the programming voltage.

(R/W)

EFUSE_DAC_CLK_PAD_SEL Don’t care. (R/W)

EFUSE_DAC_NUM Controls the rising period of the programming voltage. (R/W)

EFUSE_OE_CLR Reduces the power supply of the programming voltage. (R/W)

Espressif Systems 134
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.107. EFUSE_RD_TIM_CONF_REG (0x01EC)

EFU
SE_R

EAD_IN
IT_

NUM

0x12

31 24

(re
se

rve
d)

0 0

23 0

Reset

EFUSE_READ_INIT_NUM Configures the initial read time of eFuse. (R/W)

Register 4.108. EFUSE_WR_TIM_CONF1_REG (0x01F4)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

EFU
SE_P

W
R_O

N_N
UM

0x2880

23 8

(re
se

rve
d)

0 0 0 0 0 0 0 0

7 0

Reset

EFUSE_PWR_ON_NUM Configures the power up time for VDDQ. (R/W)

Register 4.109. EFUSE_WR_TIM_CONF2_REG (0x01F8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

EFU
SE_P

W
R_O

FF
_N

UM

0x190

15 0

Reset

EFUSE_PWR_OFF_NUM Configures the power outage time for VDDQ. (R/W)

Espressif Systems 135
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.110. EFUSE_STATUS_REG (0x01D0)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

EFU
SE_R

EPEAT
_E

RR_C
NT

0x0

17 10

(re
se

rve
d)

0 0 0 0 0 0

9 4

EFU
SE_S

TA
TE

0x0

3 0

Reset

EFUSE_STATE Indicates the state of the eFuse state machine. (RO)

EFUSE_REPEAT_ERR_CNT Indicates the number of error bits during programming BLOCK0. (RO)

Register 4.111. EFUSE_INT_RAW_REG (0x01D8)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_D

ONE_IN
T_

RAW

0

1

EFU
SE_R

EAD_D
ONE_IN

T_
RAW

0

0

Reset

EFUSE_READ_DONE_INT_RAW The raw bit signal for read_done interrupt. (R/WC/SS)

EFUSE_PGM_DONE_INT_RAW The raw bit signal for pgm_done interrupt. (R/WC/SS)

Register 4.112. EFUSE_INT_ST_REG (0x01DC)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_D

ONE_IN
T_

ST

0

1

EFU
SE_R

EAD_D
ONE_IN

T_
ST

0

0

Reset

EFUSE_READ_DONE_INT_ST The status signal for read_done interrupt. (RO)

EFUSE_PGM_DONE_INT_ST The status signal for pgm_done interrupt. (RO)

Espressif Systems 136
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

4 eFuse Controller (EFUSE)

Register 4.113. EFUSE_INT_ENA_REG (0x01E0)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_D

ONE_IN
T_

ENA

0

1

EFU
SE_R

EAD_D
ONE_IN

T_
ENA

0

0

Reset

EFUSE_READ_DONE_INT_ENA The enable signal for read_done interrupt. (R/W)

EFUSE_PGM_DONE_INT_ENA The enable signal for pgm_done interrupt. (R/W)

Register 4.114. EFUSE_INT_CLR_REG (0x01E4)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_D

ONE_IN
T_

CLR

0

1

EFU
SE_R

EAD_D
ONE_IN

T_
CLR

0

0

Reset

EFUSE_READ_DONE_INT_CLR The clear signal for read_done interrupt. (WO)

EFUSE_PGM_DONE_INT_CLR The clear signal for pgm_done interrupt. (WO)

Register 4.115. EFUSE_DATE_REG (0x01FC)

(re
se

rve
d)

0 0 0 0

31 28

EFU
SE_D

AT
E

0x2003310

27 0

Reset

EFUSE_DATE Stores eFuse version. (R/W)

Espressif Systems 137
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

5.1 Overview

The ESP32-C3 chip features 22 physical GPIO pins. Each pin can be used as a general-purpose I/O, or be

connected to an internal peripheral signal. Through GPIO matrix and IO MUX, peripheral input signals can be

from any IO pins, and peripheral output signals can be routed to any IO pins. Together these modules provide

highly configurable I/O.

Note that the GPIO pins are numbered from 0 ~ 21.

5.2 Features

GPIO Matrix Features

• A full-switching matrix between the peripheral input/output signals and the pins. Control signals: DRV, IE,

OE, WPU, WPD.

• 49 peripheral input signals can be sourced from the input of any GPIO pins. Control signals: SIG_IN_SEL,

IE, etc.

• The output of any GPIO pins can be from any of the 125 peripheral output signals. Control signals:

SIG_OUT_SEL, OE, etc.

• Supports signal synchronization for peripheral inputs based on APB clock bus.

• Provides input signal filter.

• Supports sigma delta modulated output.

• Supports GPIO simple input and output.

IO MUX Features

• Provides one configuration register IO_MUX_GPIOn_REG for each GPIO pin. The pin can be configured to

– perform GPIO function routed by GPIO matrix;

– or perform direct connection bypassing GPIO matrix.

• Supports some high-speed digital signals (SPI, JTAG, UART) bypassing GPIO matrix for better

high-frequency digital performance. In this case, IO MUX is used to connect these pins directly to

peripherals.

5.3 Architectural Overview

This section provides an overview to the architecture of IO MUX and GPIO matrix with the following figures:

• Figure 5-1 shows the general work flow of IO MUX and GPIO matix.

• Figure 5-2 shows in details how IO MUX and GPIO matrix route signals from pins to peripherals, and from

peripherals to pins.

• Figure 5-3 shows the interface logic for a GPIO pin.

Espressif Systems 138
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Figure 5­1. Diagram of IO MUX and GPIO Matrix

Figure 5­2. Architecture of IO MUX and GPIO Matirx

1. Only part of peripheral input signals (Y: 0 ~ 3, 6 ~ 7, 9 ~ 10, 63 ~ 68) can bypass GPIO matrix. The other

input signals can only be routed to peripherals via GPIO matrix.

2. There are only 22 inputs from GPIO SYNC to GPIO matrix, since ESP32-C3 provides 22 GPIO pins in total.

3. The pins supplied by VDD3P3_CPU or by VDD3P3_RTC are controlled by the signals: IE, OE, WPU, and

WPD.

4. Only part of peripheral outputs (0 ~ 6, 63~ 68) can be routed to pins bypassing GPIO matrix. See Table 5-1.

Espressif Systems 139
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

5. There are only 22 outputs (GPIO pin X: 0 ~ 21) from GPIO matrix to IO MUX.

Figure 5-3 shows the internal structure of a pad, which is an electrical interface between the chip logic and the

GPIO pin. The structure is applicable to all 22 GPIO pins and can be controlled using IE, OE, WPU, and WPD

signals.

Figure 5­3. Internal Structure of a Pad

Note:

• IE: input enable

• OE: output enable

• WPU: internal weak pull-up

• WPD: internal weak pull-down

• Bonding pad: a terminal point of the chip logic used to make a physical connection from the chip die to GPIO pin

in the chip package.

5.4 Peripheral Input via GPIO Matrix

5.4.1 Overview

To receive a peripheral input signal via GPIO matrix, the matrix is configured to source the peripheral input signal

from one of the 22 GPIOs (0 ~ 21), see Table 5-1. Meanwhile, register corresponding to the peripheral signal

should be set to receive input signal via GPIO matrix.

5.4.2 Signal Synchronization

When signals are directed from pins using GPIO matrix, the signals will be synchronized to the APB bus clock by

GPIO SYNC hardware, then go to GPIO matrix. This synchronization applies to all GPIO matrix signals but does

not apply when using the IO MUX, see Figure 5-2.

Espressif Systems 140
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Figure 5­4. GPIO Input Synchronized on APB Clock Rising Edge or on Falling Edge

Figure 5-4 shows the functionality of GPIO SYNC. In the figure, negative sync and positive sync mean GPIO input

is synchronized on APB clock falling edge and on APB clock rising edge, respectively.

5.4.3 Functional Description

To read GPIO pin X1 into peripheral signal Y, follow the steps below:

1. Configure register GPIO_FUNCy_IN_SEL_CFG_REG corresponding to peripheral signal Y in GPIO matrix:

• Set GPIO_SIGy_IN_SEL to enable peripheral signal input via GPIO matrix.

• Set GPIO_FUNCy_IN_SEL to the desired GPIO pin, i.e. X here.

Note that some peripheral signals have no valid GPIO_SIGy_IN_SEL bit, namely, these peripherals can only

receive input signals via GPIO matrix.

2. Optionally enable the filter for pin input signals by setting the register IO_MUX_GPIOn_FILTER_EN. Only the

signals with a valid width of more than two clock cycles can be sampled, see Figure 5-5.

Figure 5­5. Filter Timing of GPIO Input Signals

3. Synchronize GPIO input. To do so, please set GPIO_PINx_REG corresponding to GPIO pin X as follows:

• Set GPIO_PINx_SYNC1_BYPASS to enable input signal synchronized on rising edge or on falling edge

in the first clock, see Figure 5-4.

• Set GPIO_PINx_SYNC2_BYPASS to enable input signal synchronized on rising edge or on falling edge

in the second clock, see Figure 5-4.

Espressif Systems 141
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

4. Configure IO MUX register to enable pin input. For this end, please set IO_MUX_GPIOx_REG

corresponding to GPIO pin X as follows:

• Set IO_MUX_GPIOx_FUN_IE to enable input2.

• Set or clear IO_MUX_GPIOx_FUN_WPU and IO_MUX_GPIOx_FUN_WPD, as desired, to enable or

disable pull-up and pull-down resistors.

For example, to connect I2S MCLK input signal3 (I2S_MCLK_in, signal index 12) to GPIO7, please follow the

steps below. Note that GPIO7 is also named as MTDO pin.

1. Set GPIO_SIG12_IN_SEL in register GPIO_FUNC12_IN_SEL_CFG_REG to enable peripheral signal input

via GPIO matrix.

2. Set GPIO_FUNC12_IN_SEL in register GPIO_FUNC12_IN_SEL_CFG_REG to 7.

3. Set IO_MUX_GPIO7_FUN_IE in register IO_MUX_GPIO7_REG to enable pin input.

Note:

1. One input pin can be connected to multiple peripheral input signals.

2. The input signal can be inverted by configuring GPIO_FUNCy_IN_INV_SEL.

3. It is possible to have a peripheral read a constantly low or constantly high input value without connecting this input

to a pin. This can be done by selecting a special GPIO_FUNCy_IN_SEL input, instead of a GPIO number:

• When GPIO_FUNCy_IN_SEL is set to 0x1F, input signal is always 0.

• When GPIO_FUNCy_IN_SEL is set to 0x1E, input signal is always 1.

5.4.4 Simple GPIO Input

GPIO_IN_REG holds the input values of each GPIO pin. The input value of any GPIO pin can be read at any time

without configuring GPIO matrix for a particular peripheral signal. However, it is necessary to enable the input via

IO MUX by setting IO_MUX_GPIOx_FUN_IE bit in register IO_MUX_GPIOx_REG corresponding to pin X, as

mentioned in Section 5.4.2.

5.5 Peripheral Output via GPIO Matrix

5.5.1 Overview

To output a signal from a peripheral via GPIO matrix, the matrix is configured to route peripheral output signals (0

~ 59, 63~ 127) to one of the 22 GPIOs (0 ~ 21). See Table 5-1.

The output signal is routed from the peripheral into GPIO matrix and then into IO MUX. IO MUX must be

configured to set the chosen pin to GPIO function. This enables the output GPIO signal to be connected to the

pin.

Note:

There is a range of peripheral output signals (97 ~ 100) which are not connected to any peripheral, but to the input signals

(97 ~ 100) directly. These can be used to input a signal from one GPIO pin and output directly to another GPIO pin.

Espressif Systems 142
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

5.5.2 Functional Description

Some of the 125 output signals (0 ~ 59, 63~ 127) can be set to go through GPIO matrix into IO MUX and then to

a pin. Figure 5-2 illustrates the configuration.

To output peripheral signal Y to a particular GPIO pin X1, follow these steps:

1. Configure register GPIO_FUNCx_OUT_SEL_CFG_REG and GPIO_ENABLE_REG[x] corresponding to GPIO

pin X in GPIO matrix. Recommended operation: use corresponding W1TS (write 1 to set) and W1TC (write

1 to clear) registers to set or clear GPIO_ENABLE_REG.

• Set the GPIO_FUNCx_OUT_SEL field in register GPIO_FUNCx_OUT_SEL_CFG_REG to the index of

the desired peripheral output signal Y.

• If the signal should always be enabled as an output, set the GPIO_FUNCx_OEN_SEL bit in register

GPIO_FUNCx_OUT_SEL_CFG_REG and the bit in register GPIO_ENABLE_W1TS_REG,

corresponding to GPIO pin X. To have the output enable signal decided by internal logic (for example,

the SPIQ_oe in column “Output enable signal when GPIO_FUNCn_OEN_SEL = 0” in Table 5-1), clear

GPIO_FUNCx

_OEN_SEL bit instead.

• Clear the corresponding bit in register GPIO_ENABLE_W1TC_REG to disable the output from the

GPIO pin.

2. For an open drain output, set the GPIO_PINx_PAD_DRIVER bit in register GPIO_PINx_REG corresponding

to GPIO pin X.

3. Configure IO MUX register to enable output via GPIO matrix. Set the IO_MUX_GPIOx_REG corresponding

to GPIO pin X as follows:

• Set the field IO_MUX_GPIOx_MCU_SEL to desired IO MUX function corresponding to GPIO pinX. This

is Function 1 (GPIO function), numeric value 1, for all pins.

• Set the IO_MUX_GPIOx_FUN_DRV field to the desired value for output strength (0 ~ 3). The higher the

driver strength, the more current can be sourced/sunk from the pin.

– 0: ~5 mA

– 1: ~10 mA

– 2: ~20 mA (default value)

– 3: ~40 mA

• If using open drain mode, set/clear the IO_MUX_GPIOx_FUN_WPU and IO_MUX_GPIOx_FUN_WPD

bits to enable/disable the internal pull-up/pull-down resistors.

Note:

1. The output signal from a single peripheral can be sent to multiple pins simultaneously.

2. The output signal can be inverted by setting GPIO_FUNCx_OUT_INV_SEL bit.

5.5.3 Simple GPIO Output

GPIO matrix can also be used for simple GPIO output. This can be done as below:

Espressif Systems 143
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

• Set GPIO matrix GPIO_FUNCn_OUT_SEL with a special peripheral index 128 (0x80);

• Set the corresponding bit in GPIO_OUT_REG register to the desired GPIO output value.

Note:

• GPIO_OUT_REG[0] ~ GPIO_OUT_REG[21] correspond to GPIO0 ~ GPIO21, and GPIO_OUT_REG[25:22] are in-

valid.

• Recommended operation: use corresponding W1TS and W1TC registers, such as GPIO_OUT_W1TS/GPIO_OUT

_W1TC to set or clear the registers GPIO_OUT_REG.

5.5.4 Sigma Delta Modulated Output (SDM)

5.5.4.1 Functional Description

Four out of the 125 peripheral outputs (output index: 55 ~ 58) support 1-bit second-order sigma delta

modulation. By default output is enabled for these four channels. This modulator can also output PDM (pulse

density modulation) signal with configurable duty cycle. The transfer function of this second-order SDM

modulator is:

H(z) = X(z)z−1 + E(z)(1-z−1)2

E(z) is quantization error and X(z) is the input.

Sigma Delta modulator supports scaling down of APB_CLK by divider 1 ~ 256:

• Set GPIOSD_FUNCTION_CLK_EN to enable the modulator clock.

• Configure register GPIOSD_SDn_PRESCALE (n is 0 ~ 3 for four channels).

After scaling, the clock cycle is equal to one pulse output cycle from the modulator.

GPIOSD_SDn_IN is a signed number with a range of [-128, 127] and is used to control the duty cycle 1 of PDM

output signal.

• GPIOSD_SDn_IN = -128, the duty cycle of the output signal is 0%.

• GPIOSD_SDn_IN = 0, the duty cycle of the output signal is near 50%.

• GPIOSD_SDn_IN = 127, the duty cycle of the output signal is close to 100%.

The formula for calculating PDM signal duty cycle is shown as below:

Duty_Cycle =
GPIOSD_SDn_IN + 128

256

Note:

For PDM signals, duty cycle refers to the percentage of high level cycles to the whole statistical period (several pulse

cycles, for example 256 pulse cycles).

Espressif Systems 144
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

5.5.4.2 SDM Configuration

The configuration of SDM is shown below:

• Route one of SDM outputs to a pin via GPIO matrix, see Section 5.5.2.

• Enable the modulator clock by setting the register GPIOSD_FUNCTION_CLK_EN.

• Configure the divider value by setting the register GPIOSD_SDn_PRESCALE.

• Configure the duty cycle of SDM output signal by setting the register GPIOSD_SDn_IN.

5.6 Direct Input and Output via IO MUX

5.6.1 Overview

Some high-speed signals (SPI and JTAG) can bypass GPIO matrix for better high-frequency digital performance.

In this case, IO MUX is used to connect these pins directly to peripherals.

This option is less flexible than routing signals via GPIO matrix, as the IO MUX register for each GPIO pin can only

select from a limited number of functions, but high-frequency digital performance can be improved.

5.6.2 Functional Description

Two registers must be configured in order to bypass GPIO matrix for peripheral input signals:

1. IO_MUX_GPIOn_MCU_SEL for the GPIO pin must be set to the required pin function. For the list of pin

functions, please refer to Section 5.11.

2. Clear GPIO_SIGn_IN_SEL to route the input directly to the peripheral.

To bypass GPIO matrix for peripheral output signals, IO_MUX_GPIOn_MCU_SEL for the GPIO pin must be set to

the required pin function. For the list of pin functions, please refer to Section 5.11.

Note:

Not all signals can be directly connected to peripheral via IO MUX. Some input/output signals can only be connected to

peripheral via GPIO matrix.

5.7 Analog Functions of GPIO Pins

Some GPIO pins in ESP32-C3 provide analog functions. When the pin is used for analog purpose, make sure

that pull-up and pull-down resistors are disabled by following configuration:

• Set IO_MUX_GPIOn_MCU_SEL to 1, and clear IO_MUX_GPIOn_FUN_IE, IO_MUX_GPIOn_FUN_WPU, IO_

MUX_GPIOn_FUN_WPD.

• Write 1 to GPIO_ENABLE_W1TC[n], to clear output enable.

See Table 5-4 for analog functions of ESP32-C3 pins.

Espressif Systems 145
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

5.8 Pin Hold Feature

Each GPIO pin (including the RTC pins: GPIO0 ~ GPIO5) has an individual hold function controlled by a RTC

register. When the pin is set to hold, the state is latched at that moment and will not change no matter how the

internal signals change or how the IO MUX/GPIO configuration is modified. Users can use the hold function for

the pins to retain the pin state through a core reset and system reset triggered by watchdog time-out or

Deep-sleep events.

Note:

• For digital pins (GPIO6 ~21), to maintain pin input/output status in Deep-sleep mode, users can set RTC_CNTL_DIG

_PAD_HOLDn in register RTC_CNTL_DIG_PAD_HOLD_REG to 1 before powering down. To disable the hold func-

tion after the chip is woken up, users can set RTC_CNTL_DIG_PAD_HOLDn to 0.

• For RTC pins (GPIO0 ~5), the input and output values are controlled by the corresponding bits of register RTC_CNTL

_RTC_PAD_HOLD_REG, and users can set it to 1 to hold the value or set it to 0 to unhold the value.

5.9 Power Supplies and Management of GPIO Pins

5.9.1 Power Supplies of GPIO Pins

For more information on the power supply for GPIO pins, please refer to Pin Definition in ESP32-C3 Datasheet. All

the pins can be used to wake up the chip from Light-sleep mode, but only the pins (GPIO0 ~ GPIO5) in

VDD3P3_RTC domain can be used to wake up the chip from Deep-sleep mode.

5.9.2 Power Supply Management

Each ESP32-C3 pin is connected to one of the two different power domains.

• VDD3P3_RTC: the input power supply for both RTC and CPU

• VDD3P3_CPU: the input power supply for CPU

5.10 Peripheral Signal List

Table 5-1 shows the peripheral input/output signals via GPIO matrix.

Please pay attention to the configuration of the bit GPIO_FUNCn_OEN_SEL:

• GPIO_FUNCn_OEN_SEL = 1: the output enable is controlled by the corresponding bit n of

GPIO_ENABLE_REG:

– GPIO_ENABLE_REG = 0: output is disabled;

– GPIO_ENABLE_REG = 1: output is enabled;

• GPIO_FUNCn_OEN_SEL = 0: use the output enable signal from peripheral, for example SPIQ_oe in the

column “Output enable signal when GPIO_FUNCn_OEN_SEL = 0” of Table 5-1. Note that the signals such

as SPIQ_oe can be 1 (1’d1) or 0 (1’d0), depending on the configuration of corresponding peripherals. If it’s

1’d1 in the “Output enable signal when GPIO_FUNCn_OEN_SEL = 0”, it indicates that once the register

GPIO_FUNCn_OEN_SEL is cleared, the output signal is always enabled by default.

Espressif Systems 146
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Note:

Signals are numbered consecutively, but not all signals are valid.

• For input signals, only 0 ~ 3, 6 ~ 19, 28 ~ 35, 45, 51 ~ 54, 63 ~ 68, 74, 77 ~ 80, 97 ~ 100 are valid.

• For output signals, only 0 ~ 39, 45 ~ 59, 63 ~ 127 are valid.

Espressif Systems 147
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
INARY

5
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Table 5­1. Peripheral Signals via GPIO Matrix

Signal

No.

Input Signal Default

value

Direct

Input

through

IO MUX

Output Signal Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output

through

IO MUX

0 SPIQ_in 0 yes SPIQ_out SPIQ_oe yes

1 SPID_in 0 yes SPID_out SPID_oe yes

2 SPIHD_in 0 yes SPIHD_out SPIHD_oe yes

3 SPIWP_in 0 yes SPIWP_out SPIWP_oe yes

4 - - - SPICLK_out_mux SPICLK_oe yes

5 - - - SPICS0_out SPICS0_oe yes

6 U0RXD_in 0 yes U0TXD_out 1’d1 yes

7 U0CTS_in 0 yes U0RTS_out 1’d1 no

8 U0DSR_in 0 no U0DTR_out 1’d1 no

9 U1RXD_in 0 yes U1TXD_out 1’d1 no

10 U1CTS_in 0 yes U1RTS_out 1’d1 no

11 U1DSR_in 0 no U1DTR_out 1’d1 no

12 I2S_MCLK_in 0 no I2S_MCLK_out 1’d1 no

13 I2SO_BCK_in 0 no I2SO_BCK_out 1’d1 no

13 I2SO_WS_in 0 no I2SO_WS_out 1’d1 no

15 I2SI_SD_in 0 no I2SO_SD_out 1’d1 no

16 I2SI_BCK_in 0 no I2SI_BCK_out 1’d1 no

17 I2SI_WS_in 0 no I2SI_WS_out 1’d1 no

18 gpio_bt_priority 0 no gpio_wlan_prio 1’d1 no

19 gpio_bt_active 0 no gpio_wlan_active 1’d1 no

20 - - - cpu_test_bu0 1’d1 no

21 - - - cpu_test_bu1 1’d1 no

22 - - - cpu_test_bu2 1’d1 no

23 - - - cpu_test_bu3 1’d1 no

E
spressifS

ystem
s

148
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
INARY

5
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.

Input Signal Default

value

Direct

Input

through

IO_MUX

Output Signal Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output

through

IO_MUX

24 - - - cpu_test_bu4 1’d1 no

25 - - - cpu_test_bu5 1’d1 no

26 - - - cpu_test_bu6 1’d1 no

27 - - - cpu_test_bu7 1’d1 no

28 cpu_gpio_in0 0 no cpu_gpio_out0 cpu_gpio_out_oen0 no

29 cpu_gpio_in1 0 no cpu_gpio_out1 cpu_gpio_out_oen1 no

30 cpu_gpio_in2 0 no cpu_gpio_out2 cpu_gpio_out_oen2 no

31 cpu_gpio_in3 0 no cpu_gpio_out3 cpu_gpio_out_oen3 no

32 cpu_gpio_in4 0 no cpu_gpio_out4 cpu_gpio_out_oen4 no

33 cpu_gpio_in5 0 no cpu_gpio_out5 cpu_gpio_out_oen5 no

34 cpu_gpio_in6 0 no cpu_gpio_out6 cpu_gpio_out_oen6 no

35 cpu_gpio_in7 0 no cpu_gpio_out7 cpu_gpio_out_oen7 no

36 - - - usb_jtag_tck 1’d1 no

37 - - - usb_jtag_tms 1’d1 no

38 - - - usb_jtag_tdi 1’d1 no

39 - - - usb_jtag_tdo 1’d1 no

40 - - - - 1’d1 no

41 - - - - 1’d1 no

42 - - - - 1’d1 no

43 - - - - 1’d1 no

44 - - - - 1’d1 no

45 ext_adc_start 0 no ledc_ls_sig_out0 1’d1 no

46 - - - ledc_ls_sig_out1 1’d1 no

47 - - - ledc_ls_sig_out2 1’d1 no

48 - - - ledc_ls_sig_out3 1’d1 no

49 - - - ledc_ls_sig_out4 1’d1 no

E
spressifS

ystem
s

149
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
INARY

5
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.

Input Signal Default

value

Direct

Input

through

IO_MUX

Output Signal Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output

through

IO_MUX

50 - - - ledc_ls_sig_out5 1’d1 no

51 rmt_sig_in0 0 no rmt_sig_out0 1’d1 no

52 rmt_sig_in1 0 no rmt_sig_out1 1’d1 no

53 I2CEXT0_SCL_in 1 no I2CEXT0_SCL_out I2CEXT0_SCL_oe no

54 I2CEXT0_SDA_in 1 no I2CEXT0_SDA_out I2CEXT0_SDA_oe no

55 - - - gpio_sd0_out 1’d1 no

56 - - - gpio_sd1_out 1’d1 no

57 - - - gpio_sd2_out 1’d1 no

58 - - - gpio_sd3_out 1’d1 no

59 - - - I2SO_SD1_out 1’d1 no

60 - - - - 1’d1 -

61 - - - - 1’d1 -

62 - - - - 1’d1 -

63 FSPICLK_in 0 yes FSPICLK_out_mux FSPICLK_oe yes

64 FSPIQ_in 0 yes FSPIQ_out FSPIQ_oe yes

65 FSPID_in 0 yes FSPID_out FSPID_oe yes

66 FSPIHD_in 0 yes FSPIHD_out FSPIHD_oe yes

67 FSPIWP_in 0 yes FSPIWP_out FSPIWP_oe yes

68 FSPICS0_in 0 yes FSPICS0_out FSPICS0_oe yes

69 - - - FSPICS1_out FSPICS1_oe no

70 - - - FSPICS2_out FSPICS2_oe no

71 - - - FSPICS3_out FSPICS3_oe no

72 - - - FSPICS4_out FSPICS4_oe no

73 - - - FSPICS5_out FSPICS5_oe no

74 twai_rx 1 no twai_tx 1’d1 no

75 - - - twai_bus_off_on 1’d1 no

E
spressifS

ystem
s

150
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
INARY

5
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.

Input Signal Default

value

Direct

Input

through

IO_MUX

Output Signal Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output

through

IO_MUX

76 - - - twai_clkout 1’d1 no

77 pcmfsync_in 0 no bt_audio0_irq 1’d1 no

78 pcmclk_in 0 no bt_audio1_irq 1’d1 no

79 pcmdin 0 no bt_audio2_irq 1’d1 no

80 rw_wakeup_req 0 no ble_audio0_irq 1’d1 no

81 - - - ble_audio1_irq 1’d1 no

82 - - - ble_audio2_irq 1’d1 no

83 - - - pcmfsync_out pcmfsync_en no

84 - - - pcmclk_out pcmclk_en no

85 - - - pcmdout pcmdout_en no

86 - - - ble_audio_sync0_p 1’d1 no

87 - - - ble_audio_sync1_p 1’d1 no

88 - - - ble_audio_sync2_p 1’d1 no

89 - - - ant_sel0 1’d1 no

90 - - - ant_sel1 1’d1 no

91 - - - ant_sel2 1’d1 no

92 - - - ant_sel3 1’d1 no

93 - - - ant_sel4 1’d1 no

94 - - - ant_sel5 1’d1 no

95 - - - ant_sel6 1’d1 no

96 - - - ant_sel7 1’d1 no

97 sig_in_func_97 0 no sig_in_func97 1’d1 no

98 sig_in_func_98 0 no sig_in_func98 1’d1 no

99 sig_in_func_99 0 no sig_in_func99 1’d1 no

100 sig_in_func_100 0 no sig_in_func100 1’d1 no

101 - - - syncerr !efuse_dis_btlc_gpio1 no

E
spressifS

ystem
s

151
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
INARY

5
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
M

U
X)

Signal

No.

Input Signal Default

value

Direct

Input

through

IO_MUX

Output Signal Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output

through

IO_MUX

102 - - - syncfound_flag !efuse_dis_btlc_gpio1 no

103 - - - evt_cntl_immediate_abort !(efuse_dis_btlc_gpio1&efuse_dis_btlc_gpio0) no

104 - - - linklbl !efuse_dis_btlc_gpio1&!efuse_dis_btlc_gpio0 no

105 - - - data_en !efuse_dis_btlc_gpio1&!efuse_dis_btlc_gpio0 no

106 - - - data !efuse_dis_btlc_gpio1&!efuse_dis_btlc_gpio0 no

107 - - - pkt_tx_on !efuse_dis_btlc_gpio1 no

108 - - - pkt_rx_on !efuse_dis_btlc_gpio1 no

109 - - - rw_tx_on !efuse_dis_btlc_gpio1 no

110 - - - rw_rx_on !efuse_dis_btlc_gpio1 no

111 - - - evt_req_p !(efuse_dis_btlc_gpio1&efuse_dis_btlc_gpio0) no

112 - - - evt_stop_p !(efuse_dis_btlc_gpio1&efuse_dis_btlc_gpio0) no

113 - - - bt_mode_on !(efuse_dis_btlc_gpio1&efuse_dis_btlc_gpio0) no

114 - - - gpio_lc_diag0 !efuse_dis_btlc_gpio1 no

115 - - - gpio_lc_diag1 !efuse_dis_btlc_gpio1 no

116 - - - gpio_lc_diag2 !efuse_dis_btlc_gpio1 no

117 - - - ch_idx !efuse_dis_btlc_gpio1&!efuse_dis_btlc_gpio0 no

118 - - - rx_window !efuse_dis_btlc_gpio1 no

119 - - - update_rx !efuse_dis_btlc_gpio1 no

120 - - - rx_status !efuse_dis_btlc_gpio1 no

121 - - - clk_gpio !efuse_dis_btlc_gpio1 no

122 - - - nbt_ble !(efuse_dis_btlc_gpio1&efuse_dis_btlc_gpio0) no

123 - - - CLK_OUT_out1 1’d1 no

124 - - - CLK_OUT_out2 1’d1 no

125 - - - CLK_OUT_out3 1’d1 no

126 - - - SPICS1_out 1’d1 no

127 - - - usb_jtag_trst 1’d1 no

E
spressifS

ystem
s

152
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

5.11 IO MUX Functions List

Table 5-2 shows the IO MUX functions of each pin.

Table 5­2. IO MUX Pin Functions

GPIO Pin Name Function 0 Function 1 Function 2 Function 3 DRV Reset Notes

0 XTAL_32K_P GPIO0 GPIO0 - - 2 0 R

1 XTAL_32K_N GPIO1 GPIO1 - - 2 0 R

2 GPIO2 GPIO2 GPIO2 FSPIQ - 2 1 R

3 GPIO3 GPIO3 GPIO3 - - 2 1 R

4 MTMS MTMS GPIO4 FSPIHD - 2 1 R

5 MTDI MTDI GPIO5 FSPIWP - 2 1 R

6 MTCK MTCK GPIO6 FSPICLK - 2 1* G

7 MTDO MTDO GPIO7 FSPID - 2 1 G

8 GPIO8 GPIO8 GPIO8 - - 2 1 -

9 GPIO9 GPIO9 GPIO9 - - 2 3 -

10 GPIO10 GPIO10 GPIO10 FSPICS0 - 2 1 G

11 VDD_SPI GPIO11 GPIO11 - - 2 0 -

12 SPIHD SPIHD GPIO12 - - 2 3 -

13 SPIWP SPIWP GPIO13 - - 2 3 -

14 SPICS0 SPICS0 GPIO14 - - 2 3 -

15 SPICLK SPICLK GPIO15 - - 2 3 -

16 SPID SPID GPIO16 - - 2 3 -

17 SPIQ SPIQ GPIO17 - - 2 3 -

18 GPIO18 GPIO18 GPIO18 - - 3 0 USB, G

19 GPIO19 GPIO19 GPIO19 - - 3 0* USB

20 U0RXD U0RXD GPIO20 - - 2 1 G

21 U0TXD U0TXD GPIO21 - - 2 1 -

Drive Strength

“DRV” column shows the drive strength of each pin after reset:

• 0 - Drive current = ~5 mA

• 1 - Drive current = ~10 mA.

• 2 - Drive current = ~20 mA.

• 3 - Drive current = ~40 mA.

Reset Configurations

“Reset” column shows the default configuration of each pin after reset:

• 0 - IE = 0 (input disabled)

• 1 - IE = 1 (input enabled)

• 2 - IE = 1, WPD = 1 (input enabled, pull-down resistor enabled)

• 3 - IE = 1, WPU = 1 (input enabled, pull-up resistor enabled)

Espressif Systems 153
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

• 0* - IE = 0, WPU = 0. The USB pull-up value of GPIO19 is 1 by default, therefore, the pin’s pull-up resistor

is enabled. For more information, see the note below.

• 1* - If eFuse bit EFUSE_DIS_PAD_JTAG = 1, the pin MTCK is left floating after reset, i.e. IE = 1. If eFuse bit

EFUSE_DIS_PAD_JTAG = 0, the pin MTCK is connected to internal pull-up resistor, i.e. IE = 1, WPU = 1.

Note:

• R - Pins in VDD3P3_RTC domain, and part of them have analog functions, see Table 5-4.

• USB - GPIO18 and GPIO19 are USB pins. The pull-up value of the two pins are controlled by the pins’

pull-up value together with USB pull-up value. If any one of the pull-up value is 1, the pin’s pull-up resistor

will be enabled. The pull-up resistors of USB pins are controlled by USB_SERIAL_JTAG_DP_PULLUP.

• G - These pins have glitches during power-up. See details in Table 5-3.

Table 5­3. Power­Up Glitches on Pins

Typical Time Period
Pin Glitch

(ns)

MTCK Low-level glitch 5

MTDO Low-level glitch 5

GPIO10 Low-level glitch 5

U0RXD Low-level glitch 5

GPIO18 Pull-up glitch 50000

5.12 Analog Functions List

Table 5-4 shows the IO MUX pins with analog functions.

Table 5­4. Analog Functions of IO MUX Pins

GPIO Num Pin Name Analog Function 0 Analog Function 1

0 XTAL_32K_P XTAL_32K_P ADC1_CH0

1 XTAL_32K_N XTAL_32K_N ADC1_CH1

2 GPIO2 - ADC1_CH2

3 GPIO3 - ADC1_CH3

4 MTMS - ADC1_CH4

Note:

1. The pin VDD_SPI can be configured as either power supply or normal GPIO.

2. The pins GPIO18 and GPIO19 can be configured as USB pins. For detailed configuration, please refer to 5

USB Serial/JTAG Controller (USB_SERIAL_JTAG) [to be added later].

5.13 Register Summary

The addresses in this section are relative to GPIO Matrix, IO MUX and SDM base addresses provided in Table 3-4

in Chapter 3 System and Memory.

Espressif Systems 154
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

5.13.1 GPIO Matrix Register Summary

Name Description Address Access

Configuration Registers

GPIO_BT_SELECT_REG GPIO bit select register 0x0000 R/W

GPIO_OUT_REG GPIO output register 0x0004 R/W/SS

GPIO_OUT_W1TS_REG GPIO output set register 0x0008 WT

GPIO_OUT_W1TC_REG GPIO output clear register 0x000C WT

GPIO_ENABLE_REG GPIO output enable register 0x0020 R/W/SS

GPIO_ENABLE_W1TS_REG GPIO output enable set register 0x0024 WT

GPIO_ENABLE_W1TC_REG GPIO output enable clear register 0x0028 WT

GPIO_STRAP_REG pin strapping register 0x0038 RO

GPIO_IN_REG GPIO input register 0x003C RO

GPIO_STATUS_REG GPIO interrupt status register 0x0044 R/W/SS

GPIO_STATUS_W1TS_REG GPIO interrupt status set register 0x0048 WT

GPIO_STATUS_W1TC_REG GPIO interrupt status clear register 0x004C WT

GPIO_PCPU_INT_REG GPIO PRO_CPU interrupt status register 0x005C RO

GPIO_PCPU_NMI_INT_REG GPIO PRO_CPU (non-maskable) interrupt status

register

0x0060 RO

GPIO_STATUS_NEXT_REG GPIO interrupt source register 0x014C RO

Pin Configuration Registers

GPIO_PIN0_REG GPIO pin0 configuration register 0x0074 R/W

GPIO_PIN1_REG GPIO pin1 configuration register 0x0078 R/W

GPIO_PIN2_REG GPIO pin2 configuration register 0x007C R/W

GPIO_PIN3_REG GPIO pin3 configuration register 0x0080 R/W

GPIO_PIN4_REG GPIO pin4 configuration register 0x0084 R/W

GPIO_PIN5_REG GPIO pin5 configuration register 0x0088 R/W

GPIO_PIN6_REG GPIO pin6 configuration register 0x008C R/W

GPIO_PIN7_REG GPIO pin7 configuration register 0x0090 R/W

GPIO_PIN8_REG GPIO pin8 configuration register 0x0094 R/W

GPIO_PIN9_REG GPIO pin9 configuration register 0x0098 R/W

GPIO_PIN10_REG GPIO pin10 configuration register 0x009C R/W

GPIO_PIN11_REG GPIO pin11 configuration register 0x00A0 R/W

GPIO_PIN12_REG GPIO pin12 configuration register 0x00A4 R/W

GPIO_PIN13_REG GPIO pin13 configuration register 0x00A8 R/W

GPIO_PIN14_REG GPIO pin14 configuration register 0x00AC R/W

GPIO_PIN15_REG GPIO pin15 configuration register 0x00B0 R/W

GPIO_PIN16_REG GPIO pin16 configuration register 0x00B4 R/W

GPIO_PIN17_REG GPIO pin17 configuration register 0x00B8 R/W

GPIO_PIN18_REG GPIO pin18 configuration register 0x00BC R/W

GPIO_PIN19_REG GPIO pin19 configuration register 0x00C0 R/W

GPIO_PIN20_REG GPIO pin20 configuration register 0x00C4 R/W

GPIO_PIN21_REG GPIO pin21 configuration register 0x00C8 R/W

Input Function Configuration Registers

GPIO_FUNC0_IN_SEL_CFG_REG Configuration register for input signal 0 0x0154 R/W

Espressif Systems 155
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Name Description Address Access

GPIO_FUNC1_IN_SEL_CFG_REG Configuration register for input signal 1 0x0158 R/W

...

GPIO_FUNC126_IN_SEL_CFG_REG Configuration register for input signal 126 0x034C R/W

GPIO_FUNC127_IN_SEL_CFG_REG Configuration register for input signal 127 0x0350 R/W

Output Function Configuration Registers

GPIO_FUNC0_OUT_SEL_CFG_REG Configuration register for GPIO0 output 0x0554 R/W

GPIO_FUNC1_OUT_SEL_CFG_REG Configuration register for GPIO1 output 0x0558 R/W

GPIO_FUNC2_OUT_SEL_CFG_REG Configuration register for GPIO2 output 0x055C R/W

GPIO_FUNC3_OUT_SEL_CFG_REG Configuration register for GPIO3 output 0x0560 R/W

GPIO_FUNC4_OUT_SEL_CFG_REG Configuration register for GPIO4 output 0x0564 R/W

GPIO_FUNC5_OUT_SEL_CFG_REG Configuration register for GPIO5 output 0x0568 R/W

GPIO_FUNC6_OUT_SEL_CFG_REG Configuration register for GPIO6 output 0x056C R/W

GPIO_FUNC7_OUT_SEL_CFG_REG Configuration register for GPIO7 output 0x0570 R/W

GPIO_FUNC8_OUT_SEL_CFG_REG Configuration register for GPIO8 output 0x0574 R/W

GPIO_FUNC9_OUT_SEL_CFG_REG Configuration register for GPIO9 output 0x0578 R/W

GPIO_FUNC10_OUT_SEL_CFG_REG Configuration register for GPIO10 output 0x057C R/W

GPIO_FUNC11_OUT_SEL_CFG_REG Configuration register for GPIO11 output 0x0580 R/W

GPIO_FUNC12_OUT_SEL_CFG_REG Configuration register for GPIO12 output 0x0584 R/W

GPIO_FUNC13_OUT_SEL_CFG_REG Configuration register for GPIO13 output 0x0588 R/W

GPIO_FUNC14_OUT_SEL_CFG_REG Configuration register for GPIO14 output 0x058C R/W

GPIO_FUNC15_OUT_SEL_CFG_REG Configuration register for GPIO15 output 0x0590 R/W

GPIO_FUNC16_OUT_SEL_CFG_REG Configuration register for GPIO16 output 0x0594 R/W

GPIO_FUNC17_OUT_SEL_CFG_REG Configuration register for GPIO17 output 0x0598 R/W

GPIO_FUNC18_OUT_SEL_CFG_REG Configuration register for GPIO18 output 0x059C R/W

GPIO_FUNC19_OUT_SEL_CFG_REG Configuration register for GPIO19 output 0x05A0 R/W

GPIO_FUNC20_OUT_SEL_CFG_REG Configuration register for GPIO20 output 0x05A4 R/W

GPIO_FUNC21_OUT_SEL_CFG_REG Configuration register for GPIO21 output 0x05A8 R/W

Version Register

GPIO_DATE_REG GPIO version register 0x06FC R/W

Clock Gate Register

GPIO_CLOCK_GATE_REG GPIO clock gate register 0x062C R/W

5.13.2 IO MUX Register Summary

Name Description Address Access

Configuration Registers

IO_MUX_PIN_CTRL_REG Clock output configuration Register 0x0000 R/W

IO_MUX_GPIO0_REG IO MUX configuration register for pin

XTAL_32K_P

0x0004 R/W

IO_MUX_GPIO1_REG IO MUX configuration register for pin

XTAL_32K_N

0x0008 R/W

IO_MUX_GPIO2_REG IO MUX configuration register for pin GPIO2 0x000C R/W

IO_MUX_GPIO3_REG IO MUX configuration register for pin GPIO3 0x0010 R/W

Espressif Systems 156
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Name Description Address Access

IO_MUX_GPIO4_REG IO MUX configuration register for pin MTMS 0x0014 R/W

IO_MUX_GPIO5_REG IO MUX configuration register for pin MTDI 0x0018 R/W

IO_MUX_GPIO6_REG IO MUX configuration register for pin MTCK 0x001C R/W

IO_MUX_GPIO7_REG IO MUX configuration register for pin MTDO 0x0020 R/W

IO_MUX_GPIO8_REG IO MUX configuration register for pin GPIO8 0x0024 R/W

IO_MUX_GPIO9_REG IO MUX configuration register for pin GPIO9 0x0028 R/W

IO_MUX_GPIO10_REG IO MUX configuration register for pin GPIO10 0x002C R/W

IO_MUX_GPIO11_REG IO MUX configuration register for pin VDD_SPI 0x0030 R/W

IO_MUX_GPIO12_REG IO MUX configuration register for pin SPIHD 0x0034 R/W

IO_MUX_GPIO13_REG IO MUX configuration register for pin SPIWP 0x0038 R/W

IO_MUX_GPIO14_REG IO MUX configuration register for pin SPICS0 0x003C R/W

IO_MUX_GPIO15_REG IO MUX configuration register for pin SPICLK 0x0040 R/W

IO_MUX_GPIO16_REG IO MUX configuration register for pin SPID 0x0044 R/W

IO_MUX_GPIO17_REG IO MUX configuration register for pin SPIQ 0x0048 R/W

IO_MUX_GPIO18_REG IO MUX configuration register for pin GPIO18 0x004C R/W

IO_MUX_GPIO19_REG IO MUX configuration register for pin GPIO19 0x0050 R/W

IO_MUX_GPIO20_REG IO MUX configuration register for pin U0RXD 0x0054 R/W

IO_MUX_GPIO21_REG IO MUX configuration register for pin U0TXD 0x0058 R/W

Version Register

IO_MUX_DATE_REG IO MUX Version Control Register 0x00FC R/W

5.13.3 SDM Register Summary

Name Description Address Access

Configuration registers

GPIOSD_SIGMADELTA0_REG Duty Cycle Configuration Register of SDM0 0x0000 R/W

GPIOSD_SIGMADELTA1_REG Duty Cycle Configuration Register of SDM1 0x0004 R/W

GPIOSD_SIGMADELTA2_REG Duty Cycle Configuration Register of SDM2 0x0008 R/W

GPIOSD_SIGMADELTA3_REG Duty Cycle Configuration Register of SDM3 0x000C R/W

GPIOSD_SIGMADELTA_CG_REG Clock Gating Configuration Register 0x0020 R/W

GPIOSD_SIGMADELTA_MISC_REG MISC Register 0x0024 R/W

Version register

GPIOSD_SIGMADELTA_VERSION_REG Version Control Register 0x0028 R/W

5.14 Registers

The addresses in this section are relative to GPIO Matrix, IO MUX and SDM base addresses provided in Table 3-4

in Chapter 3 System and Memory.

Espressif Systems 157
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

5.14.1 GPIO Matrix Registers

Register 5.1. GPIO_BT_SELECT_REG (0x0000)

GPIO
_B

T_
SEL

0x000000

31 0

Reset

GPIO_BT_SEL Reserved (R/W)

Register 5.2. GPIO_OUT_REG (0x0004)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_O

UT_
DAT

A_O
RIG

0x00000

25 0

Reset

GPIO_OUT_DATA_ORIG GPIO0 ~ 21 output value in simple GPIO output mode. The values of bit0 ~
bit21 correspond to the output value of GPIO0 ~ GPIO21 respectively, and bit22 ~ bit25 are invalid.

(R/W/SS)

Register 5.3. GPIO_OUT_W1TS_REG (0x0008)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_O

UT_
W

1T
S

0x00000

25 0

Reset

GPIO_OUT_W1TS GPIO0 ~ 21 output set register. Bit0 ~ bit21 are corresponding to GPIO0

~ 21, and bit22 ~ bit25 are invalid. If the value 1 is written to a bit here, the correspond-

ing bit in GPIO_OUT_REG will be set to 1. Recommended operation: use this register to set

GPIO_OUT_REG. (WT)

Espressif Systems 158
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 5.4. GPIO_OUT_W1TC_REG (0x000C)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_O

UT_
W

1T
C

0x00000

25 0

Reset

GPIO_OUT_W1TC GPIO0 ~ 21 output clear register. Bit0 ~ bit21 are corresponding to GPIO0

~ 21, and bit22 ~ bit25 are invalid. If the value 1 is written to a bit here, the correspond-

ing bit in GPIO_OUT_REG will be cleared. Recommended operation: use this register to clear

GPIO_OUT_REG. (WT)

Register 5.5. GPIO_ENABLE_REG (0x0020)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_E

NABLE
_D

AT
A

0x00000

25 0

Reset

GPIO_ENABLE_DATA GPIO output enable register for GPIO0 ~ 21. Bit0 ~ bit21 are corresponding

to GPIO0 ~ 21, and bit22 ~ bit25 are invalid. (R/W/SS)

Register 5.6. GPIO_ENABLE_W1TS_REG (0x0024)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_E

NABLE
_W

1T
S

0x00000

25 0

Reset

GPIO_ENABLE_W1TS GPIO0 ~ 21 output enable set register. Bit0 ~ bit21 are corresponding to

GPIO0 ~ 21, and bit22 ~ bit25 are invalid. If the value 1 is written to a bit here, the corresponding

bit in GPIO_ENABLE_REG will be set to 1. Recommended operation: use this register to set

GPIO_ENABLE_REG. (WT)

Espressif Systems 159
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 5.7. GPIO_ENABLE_W1TC_REG (0x0028)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_E

NABLE
_W

1T
C

0x00000

25 0

Reset

GPIO_ENABLE_W1TC GPIO0 ~ 21 output enable clear register. Bit0 ~ bit21 are corresponding to

GPIO0 ~ 21, and bit22 ~ bit25 are invalid. If the value 1 is written to a bit here, the corresponding

bit in GPIO_ENABLE_REG will be cleared. Recommended operation: use this register to clear

GPIO_ENABLE_REG. (WT)

Register 5.8. GPIO_STRAP_REG (0x0038)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

GPIO
_S

TR
APPIN

G

0x00

15 0

Reset

GPIO_STRAPPING GPIO strapping values. (RO)

• bit 0: GPIO2

• bit 2: GPIO8

• bit 3: GPIO9

Register 5.9. GPIO_IN_REG (0x003C)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_IN

_D
AT

A_N
EXT

0x00000

25 0

Reset

GPIO_IN_DATA_NEXT GPIO0 ~ 21 input value. Bit0 ~ bit21 are corresponding to GPIO0 ~ 21, and

bit22 ~ bit25 are invalid. Each bit represents a pin input value, 1 for high level and 0 for low level.

(RO)

Espressif Systems 160
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 5.10. GPIO_STATUS_REG (0x0044)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_S

TA
TU

S_IN
TE

RRUPT

0x00000

25 0

Reset

GPIO_STATUS_INTERRUPT GPIO0 ~ 21 interrupt status register. Bit0 ~ bit21 are corresponding to

GPIO0 ~ 21, and bit22 ~ bit25 are invalid. (R/W/SS)

Register 5.11. GPIO_STATUS_W1TS_REG (0x0048)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_S

TA
TU

S_W
1T

S

0x00000

25 0

Reset

GPIO_STATUS_W1TS GPIO0 ~ 21 interrupt status set register. Bit0 ~ bit21 are corresponding to

GPIO0 ~ 21, and bit22 ~ bit25 are invalid. If the value 1 is written to a bit here, the corresponding

bit in GPIO_STATUS_INTERRUPT will be set to 1. Recommended operation: use this register to

set GPIO_STATUS_INTERRUPT. (WT)

Register 5.12. GPIO_STATUS_W1TC_REG (0x004C)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_S

TA
TU

S_W
1T

C

0x00000

25 0

Reset

GPIO_STATUS_W1TC GPIO0 ~ 21 interrupt status clear register. Bit0 ~ bit21 are corresponding to

GPIO0 ~ 21, and bit22 ~ bit25 are invalid. If the value 1 is written to a bit here, the corresponding

bit in GPIO_STATUS_INTERRUPT will be cleared. Recommended operation: use this register to

clear GPIO_STATUS_INTERRUPT. (WT)

Espressif Systems 161
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 5.13. GPIO_PCPU_INT_REG (0x005C)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_P

ROCPU_IN
T

0x00000

25 0

Reset

GPIO_PROCPU_INT GPIO0 ~ 21 PRO_CPU interrupt status. Bit0 ~ bit21 are corresponding to

GPIO0 ~ 21, and bit22 ~ bit25 are invalid. This interrupt status is corresponding to the bit in

GPIO_STATUS_REG when assert (high) enable signal (bit13 of GPIO_PINn_REG). (RO)

Register 5.14. GPIO_PCPU_NMI_INT_REG (0x0060)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_P

ROCPU_N
M

I_I
NT

0x00000

25 0

Reset

GPIO_PROCPU_NMI_INT GPIO0 ~ 21 PRO_CPU non-maskable interrupt status. Bit0 ~ bit21 are

corresponding to GPIO0 ~ 21, and bit22 ~ bit25 are invalid. This interrupt status is corresponding

to the bit in GPIO_STATUS_REG when assert (high) enable signal (bit 14 of GPIO_PINn_REG). (RO)

Espressif Systems 162
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 5.15. GPIO_PINn_REG (n: 0­21) (0x0074+4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

GPIO
_P

IN
n_

IN
T_

ENA

0x0

17 13

GPIO
_P

IN
n_

CONFIG

0x0

12 11

GPIO
_P

IN
n_

W
AKEUP_E

NABLE

0

10

GPIO
_P

IN
n_

IN
T_

TY
PE

0x0

9 7

(re
se

rve
d)

0 0

6 5

GPIO
_P

IN
n_

SYNC1_
BYPA

SS

0x0

4 3

GPIO
_P

IN
n_

PA
D_D

RIVER

0

2

GPIO
_P

IN
n_

SYNC2_
BYPA

SS

0x0

1 0

Reset

GPIO_PINn_SYNC2_BYPASS For the second stage synchronization, GPIO input data can be syn-

chronized on either edge of the APB clock. 0: no synchronization; 1: synchronized on falling edge;

2 and 3: synchronized on rising edge. (R/W)

GPIO_PINn_PAD_DRIVER pin drive selection. 0: normal output; 1: open drain output. (R/W)

GPIO_PINn_SYNC1_BYPASS For the first stage synchronization, GPIO input data can be synchro-

nized on either edge of the APB clock. 0: no synchronization; 1: synchronized on falling edge; 2

and 3: synchronized on rising edge. (R/W)

GPIO_PINn_INT_TYPE Interrupt type selection. 0: GPIO interrupt disabled; 1: rising edge trigger; 2:

falling edge trigger; 3: any edge trigger; 4: low level trigger; 5: high level trigger. (R/W)

GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable bit, only wakes up the CPU from Light-sleep.

(R/W)

GPIO_PINn_CONFIG reserved (R/W)

GPIO_PINn_INT_ENA Interrupt enable bits. bit13: CPU interrupt enabled; bit14: CPU non-maskable

interrupt enabled. (R/W)

Register 5.16. GPIO_STATUS_NEXT_REG (0x014C)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_S

TA
TU

S_IN
TE

RRUPT_
NEXT

0x00000

25 0

Reset

GPIO_STATUS_INTERRUPT_NEXT Interrupt source signal of GPIO0 ~ 21, could be rising edge in-

terrupt, falling edge interrupt, level sensitive interrupt and any edge interrupt. Bit0 ~ bit21 are

corresponding to GPIO0 ~ 21, and bit22 ~ bit25 are invalid. (RO)

Espressif Systems 163
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 5.17. GPIO_FUNCn_IN_SEL_CFG_REG (n: 0­127) (0x0154+4*n)

(re
se

rve
d)

0 0

31 7

GPIO
_S

IG
n_

IN
_S

EL

0

6

GPIO
_F

UNCn
_IN

_IN
V_S

EL

0

5

GPIO
_F

UNCn
_IN

_S
EL

0x0

4 0

Reset

GPIO_FUNCn_IN_SEL Selection control for peripheral input signal n, selects a pin from the 22 GPIO

matrix pins to connect this input signal. Or selects 0x1e for a constantly high input or 0x1f for a

constantly low input. (R/W)

GPIO_FUNCn_IN_INV_SEL Invert the input value. 1: invert enabled; 0: invert disabled. (R/W)

GPIO_SIGn_IN_SEL Bypass GPIO matrix. 1: route signals via GPIO matrix, 0: connect signals di-

rectly to peripheral configured in IO MUX. (R/W)

Register 5.18. GPIO_FUNCn_OUT_SEL_CFG_REG (n: 0­21) (0x0554+4*n)

(re
se

rve
d)

0 0

31 11

GPIO
_F

UNCn
_O

EN_IN
V_S

EL

0

10

GPIO
_F

UNCn
_O

EN_S
EL

0

9

GPIO
_F

UNCn
_O

UT_
IN

V_S
EL

0

8

GPIO
_F

UNCn
_O

UT_
SEL

0x80

7 0

Reset

GPIO_FUNCn_OUT_SEL Selection control for GPIO output n. If a value Y (0<=Y<128) is written to

this field, the peripheral output signal Y will be connected to GPIO output X. If a value 128 is written

to this field, bit n of GPIO_OUT_REG and GPIO_ENABLE_REG will be selected as the output value

and output enable. (R/W)

GPIO_FUNCn_OUT_INV_SEL 0: Do not invert the output value; 1: Invert the output value. (R/W)

GPIO_FUNCn_OEN_SEL 0: Use output enable signal from peripheral; 1: Force the output enable

signal to be sourced from bit n of GPIO_ENABLE_REG. (R/W)

GPIO_FUNCn_OEN_INV_SEL 0: Do not invert the output enable signal; 1: Invert the output enable

signal. (R/W)

Espressif Systems 164
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 5.19. GPIO_CLOCK_GATE_REG (0x062C)

(re
se

rve
d)

0 0

31 1

GPIO
_C

LK
_E

N

1

0

Reset

GPIO_CLK_EN Clock gating enable bit. If set to 1, the clock is free running. (R/W)

Register 5.20. GPIO_DATE_REG (0x06FC)

(re
se

rve
d)

0 0 0 0

31 28

GPIO
_D

AT
E_R

EG

0x2006130

27 0

Reset

GPIO_DATE_REG Version control register (R/W)

5.14.2 IO MUX Registers

Register 5.21. IO_MUX_PIN_CTRL_REG (0x0000)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

IO
_M

UX_
CLK

_O
UT3

0x7

11 8

IO
_M

UX_
CLK

_O
UT2

0xf

7 4

IO
_M

UX_
CLK

_O
UT1

0xf

3 0

Reset

IO_MUX_CLK_OUTx If you want to output clock for I2S to CLK_OUT_outx, set IO_MUX_CLK_OUTx

to 0x0. CLK_OUT_outx can be found in Table 5-1. (R/W)

Espressif Systems 165
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 5.22. IO_MUX_GPIOn_REG (n: 0­21) (0x0004+4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

IO
_M

UX_
GPIO

n_
FIL

TE
R_E

N

0

15

IO
_M

UX_
GPIO

n_
M

CU_S
EL

0x0

14 12

IO
_M

UX_
GPIO

n_
FU

N_D
RV

0x2

11 10

IO
_M

UX_
GPIO

n_
FU

N_IE

1

9

IO
_M

UX_
GPIO

n_
FU

N_W
PU

1

8

IO
_M

UX_
GPIO

n_
FU

N_W
PD

0

7

(re
se

rve
d)

0 0

6 5

IO
_M

UX_
GPIO

n_
M

CU_IE

0

4

IO
_M

UX_
GPIO

n_
M

CU_W
PU

0

3

IO
_M

UX_
GPIO

n_
M

CU_W
PD

0

2

IO
_M

UX_
GPIO

n_
SLP

_S
EL

0

1

IO
_M

UX_
GPIO

n_
M

CU_O
E

0

0

Reset

IO_MUX_GPIOn_MCU_OE Output enable of the pin in sleep mode. 1: output enabled; 0: output

disabled. (R/W)

IO_MUX_GPIOn_SLP_SEL Sleep mode selection of this pin. Set to 1 to put the pin in sleep mode.

(R/W)

IO_MUX_GPIOn_MCU_WPD Pull-down enable of the pin in sleep mode. 1: internal pull-down en-

abled; 0: internal pull-down disabled. (R/W)

IO_MUX_GPIOn_MCU_WPU Pull-up enable of the pin during sleep mode. 1: internal pull-up en-

abled; 0: internal pull-up disabled. (R/W)

IO_MUX_GPIOn_MCU_IE Input enable of the pin during sleep mode. 1: input enabled; 0: input

disabled. (R/W)

IO_MUX_GPIOn_FUN_WPD Pull-down enable of the pin. 1: internal pull-down enabled; 0: internal

pull-down disabled. (R/W)

IO_MUX_GPIOn_FUN_WPU Pull-up enable of the pin. 1: internal pull-up enabled; 0: internal pull-up

disabled. (R/W)

IO_MUX_GPIOn_FUN_IE Input enable of the pin. 1: input enabled; 0: input disabled. (R/W)

IO_MUX_GPIOn_FUN_DRV Select the drive strength of the pin. 0: ~5 mA; 1: ~ 10 mA; 2: ~ 20 mA;

3: ~40mA. (R/W)

IO_MUX_GPIOn_MCU_SEL Select IO MUX function for this signal. 0: Select Function 0; 1: Select

Function 1; etc. (R/W)

IO_MUX_GPIOn_FILTER_EN Enable filter for pin input signals. 1: Filter enabled; 2: Filter disabled.

(R/W)

Espressif Systems 166
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 5.23. IO_MUX_DATE_REG (0x00FC)

(re
se

rve
d)

0 0 0 0

31 28

IO
_M

UX_
DAT

E_R
EG

0x2006050

27 0

Reset

IO_MUX_DATE_REG Version control register (R/W)

5.14.3 SDM Output Registers

Register 5.24. GPIOSD_SIGMADELTAn_REG (n: 0­3) (0x0000+4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

GPIO
SD_S

Dn
_P

RESCALE

0xff

15 8

GPIO
SD_S

Dn
_IN

0x0

7 0

Reset

GPIOSD_SDn_IN This field is used to configure the duty cycle of sigma delta modulation output.

(R/W)

GPIOSD_SDn_PRESCALE This field is used to set a divider value to divide APB clock. (R/W)

Register 5.25. GPIOSD_SIGMADELTA_CG_REG (0x0020)

GPIO
SD_C

LK
_E

N

0

31

(re
se

rve
d)

0 0

30 0

Reset

GPIOSD_CLK_EN Clock enable bit of configuration registers for sigma delta modulation. (R/W)

Espressif Systems 167
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Register 5.26. GPIOSD_SIGMADELTA_MISC_REG (0x0024)

GPIO
SD_S

PI_S
W

AP

0

31

GPIO
SD_F

UNCTIO
N_C

LK
_E

N

0

30

(re
se

rve
d)

0 0

29 0

Reset

GPIOSD_FUNCTION_CLK_EN Clock enable bit of sigma delta modulation. (R/W)

GPIOSD_SPI_SWAP Reserved. (R/W)

Register 5.27. GPIOSD_SIGMADELTA_VERSION_REG (0x0028)

(re
se

rve
d)

0 0 0 0

31 28

GPIO
SD_D

AT
E

0x2006230

27 0

Reset

GPIOSD_DATE Version Control Register. (R/W)

Espressif Systems 168
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

6 Reset and Clock

6 Reset and Clock

6.1 Reset

6.1.1 Overview

ESP32-C3 provides four types of reset that occur at different levels, namely CPU Reset, Core Reset, System

Reset, and Chip Reset. All reset types mentioned above (except Chip Reset) maintain the data stored in internal

memory. Figure 6-1 shows the scope of affected subsystems by each type of reset.

6.1.2 Architectural Overview

Figure 6­1. Reset Types

6.1.3 Features

• Support four reset levels:

– CPU Reset: Only resets CPU core. Once such reset is triggered, the instructions from the CPU reset

vector will be executed.

– Core Reset: Resets the whole digital system except RTC, including CPU, peripherals, Wi-Fi,

Bluetooth® LE, and digital GPIOs.

– System Reset: Resets the whole digital system, including RTC.

– Chip Reset: Resets the whole chip.

• Support software reset and hardware reset:

– Software Reset: the CPU can trigger a software reset by configuring the corresponding registers.

– Hardware Reset: Hardware reset is directly triggered by the circuit.

Espressif Systems 169
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

6 Reset and Clock

Note:

If CPU is reset, SENSITIVE registers will be reset, too.

6.1.4 Functional Description

CPU will be reset immediately when any of the reset above occurs. Users can get reset source codes by reading

register RTC_CNTL_RESET_CAUSE_PROCPU after the reset is released.

Table 6-1 lists possible reset sources and the types of reset they trigger.

Table 6­1. Reset Sources

Code Source Reset Type Comments

0x01 Chip reset1 Chip Reset -

0x0F Brown-out system reset Chip Reset or

System Reset

Triggered by brown-out detector2

0x10 RWDT system reset System Reset See Chapter 7 Watchdog Timers (WDT) [to be added later]

0x13 CLK GLITCH reset System Reset See Chapter 16 Clock Glitch Detection [to be added later]

0x12 Super Watchdog reset System Reset See Chapter 7 Watchdog Timers (WDT) [to be added later]

0x03 Software system reset Core Reset Triggered by configuring RTC_CNTL_SW_SYS_RST

0x05 Deep-sleep reset Core Reset See Chapter 12 Low-Power Management (RTC_CNTL) [to be

added later]

0x14 eFuse reset Core Reset Triggered by eFuse CRC error

0x17 Power glitch reset Core Reset Triggered by power glitch

0x07 MWDT0 core reset Core Reset See Chapter 7 Watchdog Timers (WDT) [to be added later]

0x08 MWDT1 core reset Core Reset See Chapter 7 Watchdog Timers (WDT) [to be added later]

0x09 RWDT core reset Core Reset See Chapter 7 Watchdog Timers (WDT) [to be added later]

0x0B MWDT0 CPU reset CPU Reset See Chapter 7 Watchdog Timers (WDT) [to be added later]

0x0C Software CPU reset CPU Reset Triggered by configuring RTC_CNTL_SW_PROCPU_RST

0x0D RWDT CPU reset CPU Reset See Chapter 7 Watchdog Timers (WDT) [to be added later]

0x11 MWDT1 CPU reset CPU Reset See Chapter 7 Watchdog Timers (WDT) [to be added later]

1 Chip Reset can be triggered by the following two sources:

• Triggered by chip power-on.

• Triggered by brown-out detector.
2 Once brown-out status is detected, the detector will trigger System Reset or Chip Reset, depending on register

configuration. See Chapter 12 Low-Power Management (RTC_CNTL) [to be added later].

6.2 Clock

6.2.1 Overview

ESP32-C3 clocks are mainly sourced from oscillator (OSC), RC, and PLL circuit, and then processed by the

dividers or selectors, which allows most functional modules to select their working clock according to their power

consumption and performance requirements. Figure 6-2 shows the system clock structure.

Espressif Systems 170
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://github.com/espressif/esp-idf/blob/master/components/soc/esp32c3/include/soc/sensitive_reg.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

6 Reset and Clock

6.2.2 Architectural Overview

Figure 6­2. System Clock

6.2.3 Features

ESP32-C3 clocks can be classified in two types depending on their frequencies:

• High speed clocks for devices working at a higher frequency, such as CPU and digital peripherals

– PLL_CLK (320 MHz or 480 MHz): internal PLL clock

– XTAL_CLK (40 MHz): external crystal clock

• Slow speed clocks for low-power devices, such as RTC module and low-power peripherals

– XTAL32K_CLK (32 kHz): external crystal clock

– RTC20M_CLK (20 MHz by default): internal oscillator with adjustable frequency

– RTC20M_D256_CLK (78.125 kHz by default): internal clock derived from RTC20M_CLK divided by

256

– RTC_CLK (150 kHz by default): internal low power clock with adjustable frequency

Espressif Systems 171
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

6 Reset and Clock

6.2.4 Functional Description

6.2.4.1 CPU Clock

As Figure 6-2 shows, CPU_CLK is the master clock for CPU and it can be as high as 160 MHz when CPU works

in high performance mode. Alternatively, CPU can run at lower frequencies, such as at 2 MHz, to lower power

consumption. Users can set PLL_CLK, RTC20M_CLK or XTAL_CLK as CPU_CLK clock source by configuring

register SYSTEM_SOC_CLK_SEL, see Table 6-2 and Table 6-3. By default, the CPU clock is sourced from

XTAL_CLK with a divider of 2, i.e. the CPU clock is 20 MHz.

Table 6­2. CPU_CLK Clock Source

SYSTEM_SOC_CLK_SEL Value CPU Clock Source

0 XTAL_CLK

1 PLL_CLK

2 RTC20M_CLK

Table 6­3. CPU Clock Frequency

CPU Clock Source SEL_0* SEL_1* SEL_2* CPU Clock Frequency

XTAL_CLK 0 - -
CPU_CLK = XTAL_CLK/(SYSTEM_PRE_DIV_CNT + 1)

SYSTEM_PRE_DIV_CNT ranges from 0 ~ 1023. Default is 1

PLL_CLK (480 MHz) 1 1 0
CPU_CLK = PLL_CLK/6

CPU_CLK frequency is 80 MHz

PLL_CLK (480 MHz) 1 1 1
CPU_CLK = PLL_CLK/3

CPU_CLK frequency is 160 MHz

PLL_CLK (320 MHz) 1 0 0
CPU_CLK = PLL_CLK/4

CPU_CLK frequency is 80 MHz

PLL_CLK (320 MHz) 1 0 1
CPU_CLK = PLL_CLK/2

CPU_CLK frequency is 160 MHz

RTC20M_CLK 2 - -
CPU_CLK = RTC20M_CLK/(SYSTEM_PRE_DIV_CNT + 1)

SYSTEM_PRE_DIV_CNT ranges from 0 ~ 1023. Default is 1

* The value of register SYSTEM_SOC_CLK_SEL.
* The value of register SYSTEM_PLL_FREQ_SEL.
* The value of register SYSTEM_CPUPERIOD_SEL.

6.2.4.2 Peripheral Clock

Peripheral clocks include APB_CLK, CRYPTO_CLK, PLL_160M_CLK, LEDC_SCLK, XTAL_CLK, and

RTC20M_CLK. Table 6-4 shows which clock can be used by each peripheral.

Espressif Systems 172
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
INARY

6
R

esetand
C

lock

Table 6­4. Peripheral Clocks

Peripheral XTAL_CLK APB_CLK PLL_160M_CLK (RTC) FAST_CLK RTC20M_CLK CRYPTO_CLK LEDC_SCLK

TIMG Y Y

I2S Y Y

UHCI Y

UART Y Y Y

RMT Y Y Y

I2C Y Y

SPI Y Y

eFuse Controller Y

SARADC Y

Temperature

Sensor

Y Y

USB Y

CRYPTO Y

TWAI Controller Y

LEDC Y Y Y Y Y

SYS_TIMER Y Y

E
spressifS

ystem
s

173
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

6 Reset and Clock

APB_CLK

The frequency of APB_CLK is determined by the clock source of CPU_CLK as shown in Table 6-5.

Table 6­5. APB_CLK Clock Frequency

CPU_CLK Source APB_CLK Frequency

PLL_CLK 80 MHz

XTAL_CLK CPU_CLK

RTC20M_CLK CPU_CLK

CRYPTO_CLK

The frequency of CRYPTO_CLK is determined by the CPU_CLK source, as shown in Table 6-6.

Table 6­6. CRYPTO_CLK Frequency

CPU_CLK Source CRYPTO_CLK Frequency

PLL_CLK 160 MHz

XTAL_CLK CPU_CLK

RTC20M_CLK CPU_CLK

PLL_160M_CLK

PLL_160M_CLK is divided from PLL_CLK according to current PLL frequency.

LEDC_SCLK

LEDC module uses RTC20M_CLK as clock source when APB_CLK is disabled. In other words, when the system

is in low-power mode, most peripherals will be halted (as APB_CLK is turned off), but LEDC can still work

normally via RTC20M_CLK.

6.2.4.3 Wi­Fi and Bluetooth® LE Clock

Wi-Fi and Bluetooth LE can only work when CPU_CLK uses PLL_CLK as its clock source. Suspending PLL_CLK

requires that Wi-Fi and Bluetooth LE have entered low-power mode first.

LOW_POWER_CLK uses XTAL32K_CLK, XTAL_CLK, RTC20M_CLK or SLOW_CLK (the low clock selected by

RTC) as its clock source for Wi-Fi and Bluetooth LE in low-power mode.

6.2.4.4 RTC Clock

The clock sources for SLOW_CLK and FAST_CLK are low-frequency clocks. RTC module can operate when

most other clocks are stopped. SLOW_CLK derived from RTC_CLK, XTAL32K_CLK or RTC20M_D256_CLK is

used to clock Power Management module. FAST_CLK is used to clock On-chip Sensor module. It can be

sourced from a divided XTAL_CLK or from a divided RTC20M_CLK.

Espressif Systems 174
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

7 Chip Boot Control

7 Chip Boot Control

7.1 Overview

ESP32-C3 has three strapping pins:

• GPIO2

• GPIO8

• GPIO9

These strapping pins are used to control the following functions during chip power-on or hardware reset:

• control chip boot mode

• enable or disable ROM code printing to UART

During system reset triggered by power-on, brown-out or by analog super watchdog (see Chapter 6 Reset and

Clock), hardware captures samples and stores the voltage level of strapping pins as strapping bit of “0” or “1” in

latches, and holds these bits until the chip is powered down or shut down. Software can read the latch status

(strapping value) from the register GPIO_STRAPPING.

By default, GPIO9 is connected to the chip’s internal pull-up resistor. If GPIO9 is not connected or connected to

an external high-impedance circuit, the internal weak pull-up determines the default input level of this strapping

pin (see Table 7-1).

Table 7­1. Default Configuration of Strapping Pins

Strapping Pin Defualt Configuration

GPIO2 N/A

GPIO8 N/A

GPIO9 Pull-up

To change the strapping bit values, users can apply external pull-down/pull-up resistors, or use host MCU GPIOs

to control the voltage level of these pins when powering on ESP32-C3. After the reset is released, the strapping

pins work as normal-function pins.

7.2 Boot Mode Control

GPIO2, GPIO8, and GPIO9 control the boot mode after the reset is released.

Table 7­2. Boot Mode Control

Boot Mode GPIO2 GPIO8 GPIO9

SPI Boot 1 x 1

Download Boot 1 1 0

Table 7-2 shows the strapping pin values of GPIO2, GPIO8 and GPIO9, and the associated boot modes. “x”

means that this value is ignored.

In SPI Boot mode, the CPU boots the system by reading the program stored in SPI flash. SPI Boot mode can be

Espressif Systems 175
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

7 Chip Boot Control

further classified as follows:

• Normal Flash Boot: supports Security Boot and programs run in RAM.

• Direct Boot: does not support Security Boot and programs run directly in flash. To enable this mode, make

sure that the first two words of the bin file downloading to flash (address: 0x42000000) are 0xaebd041d.

In Download Boot mode, users can download code to flash using UART0 or USB interface. It is also possible to

load a program into SRAM and execute it in this mode.

The following eFuses control boot mode behaviors:

• EFUSE_DIS_FORCE_DOWNLOAD

If this eFuse is 0 (default), software can force switch the chip from SPI Boot mode to Download Boot mode

by setting register RTC_CNTL_FORCE_DOWNLOAD_BOOT and triggering a CPU reset. If this eFuse is 1,

RTC_CNTL_FORCE_DOWNLOAD_BOOT is disabled.

• EFUSE_DIS_DOWNLOAD_MODE

If this eFuse is 1, Download Boot mode is disabled.

• EFUSE_ENABLE_SECURITY_DOWNLOAD

If this eFuse is 1, Download Boot mode only allows reading, writing, and erasing plaintext flash and does

not support any SRAM or register operations. Ignore this eFuse if Download Boot mode is disabled.

USB Serial/JTAG Controller can also force the chip into Download Boot mode from SPI Boot mode, as well as

force the chip into SPI Boot mode from Download Boot mode. For detailed information, please refer to Chapter 5

USB Serial/JTAG Controller (USB_SERIAL_JTAG) [to be added later].

7.3 ROM Code Printing Control

GPIO8 controls ROM code printing of information during the early boot process. This GPIO is used together with

EFUSE_UART_PRINT_CONTROL.

Table 7­3. ROM Code Printing Control

eFuse1 GPIO8 ROM Code Printing

0 x
ROM code is always printed to UART during boot.

The value of GPIO8 is ignored.

1
0 Print is enabled during boot

1 Print is disabled during boot

2
0 Print is disabled during boot

1 Print is enabled during boot

3 x Print is always disabled during boot. The value of GPIO8 is

ignored.

1 eFuse: EFUSE_UART_PRINT_CONTROL

ROM code will print to pin U0TXD (default) or to USB Serial/JTAG Controller during power-on, depending on the

eFuse bit EFUSE_USB_PRINT_CHANNEL (0: USB; 1: UART). Note that if this eFuse bit is set to 0, i.e., USB is

selected, but USB Serial/JTAG Controller is disabled, then ROM code will not print.

Espressif Systems 176
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

8 Timer Group (TIMG)

8.1 Overview

General purpose timers can be used to precisely time an interval, trigger an interrupt after a particular interval

(periodically and aperiodically), or act as a hardware clock. As shown in Figure 8-1, the ESP32-C3 chip contains

two timer groups, namely timer group 0 and timer group 1. Each timer group consists of one general purpose

timer referred to as T0 and one Main System Watchdog Timer. All general purpose timers are based on 16-bit

prescalers and 54-bit auto-reload-capable up-down counters.

Figure 8­1. Timer Units within Groups

Note that while the Main System Watchdog Timer registers are described in this chapter, their functional

description is included in the Chapter 7 Watchdog Timers (WDT) [to be added later]. Therefore, the term ‘timers’

within this chapter refers to the general purpose timers.

The timers’ features are summarized as follows:

• A 16-bit clock prescaler, from 2 to 65536

• A 54-bit time-base counter programmable to incrementing or decrementing

• Able to read real-time value of the time-base counter

• Halting and resuming the time-base counter

• Programmable alarm generation

• Timer value reload (Auto-reload at alarm or software-controlled instant reload)

• Level interrupt generation

Espressif Systems 177
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

8.2 Functional Description

Figure 8­2. Timer Group Architecture

Figure8-2 is a diagram of timer T0 in a timer group. T0 contains a clock selector, a 16-bit integer divider as a

prescaler, a timer-based counter and a comparator for alarm generation.

8.2.1 16­bit Prescaler and Clock Selection

The timer can select between the APB clock (APB_CLK) or external clock (XTAL_CLK) as its clock source by

setting the TIMG_T0_USE_XTAL field of the TIMG_T0CONFIG_REG register. The selected clock is switched on

by setting TIMG_TIMER_CLK_IS_ACTIVE field of the TIMG_REGCLK_REG register to 1 and switched off by

setting it to 0. The clock is then divided by a 16-bit prescaler to generate the time-base counter clock (TB_CLK)

used by the time-base counter. When the TIMG_T0_DIVIDER field is configured as 2 ~ 65536, the divisor of the

prescaler would be 2 ~ 65536. Note that programming value 0 to TIMG_T0_DIVIDER will result in the divisor

being 65536. When the TIMG_T0_DIVIDER is set to 1, the actual divisor is 2 so the timer counter value

represents the half of real time.

To modify the 16-bit prescaler, please first configure the TIMG_T0_DIVIDER field, and then set

TIMG_T0_DIVIDER_RST to 1. Meanwhile, the timer must be disabled (i.e. TIMG_T0_EN should be cleared).

Otherwise, the result can be unpredictable.

8.2.2 54­bit Time­base Counter

The 54-bit time-base counters are based on TB_CLK and can be configured to increment or decrement via the

TIMG_T0_INCREASE field. The time-base counter can be enabled or disabled by setting or clearing the

TIMG_T0_EN field, respectively. When enabled, the time-base counter increments or decrements on each cycle

of TB_CLK. When disabled, the time-base counter is essentially frozen. Note that the TIMG_T0_INCREASE field

can be changed while TIMG_T0_EN is set and this will cause the time-base counter to change direction

instantly.

To read the 54-bit value of the time-base counter, the timer value must be latched to two registers before being

read by the CPU (due to the CPU being 32-bit). By writing any value to the TIMG_T0UPDATE_REG, the current

value of the 54-bit timer is instantly latched into the TIMG_T0LO_REG and TIMG_T0HI_REG registers containing

the lower 32-bits and higher 22-bits, respectively. TIMG_T0LO_REG and TIMG_T0HI_REG registers will remain

unchanged for the CPU to read in its own time until TIMG_T0UPDATE_REG is written to again.

Espressif Systems 178
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

8.2.3 Alarm Generation

A timer can be configured to trigger an alarm when the timer’s current value matches the alarm value. An alarm

will cause an interrupt to occur and (optionally) an automatic reload of the timer’s current value (see Section

8.2.4).

The 54-bit alarm value is configured using TIMG_T0ALARMLO_REG and TIMG_T0ALARMHI_REG, which

represent the lower 32-bits and higher 22-bits of the alarm value, respectively. However, the configured alarm

value is ineffective until the alarm is enabled by setting the TIMG_T0_ALARM_EN field. To avoid alarm being

enabled ‘too late’ (i.e. the timer value has already passed the alarm value when the alarm is enabled), the

hardware will trigger the alarm immediately if the current timer value is higher than the alarm value (within a

defined range) when the up-down counter increments, or lower than the alarm value (within a defined range)

when the up-down counter decrements. Table 8-1 and Table 8-2 show the relationship between the current

value of the timer, the alarm value, and when an alarm is triggered.The current time value and the alarm value are

defined as follows:

• TIMG_VALUE = {TIMG_T0HI_REG, TIMG_T0LO_REG}

• ALARM_VALUE = {TIMG_T0ALARMHI_REG, TIMG_T0ALARMLO_REG}

Table 8­1. Alarm Generation When Up­Down Counter Increments

Scenario Range Alarm

1 ALARM_VALUE − TIMG_VALUE > 253 Triggered

2 0 < ALARM_VALUE − TIMG_VALUE ≤ 253
Triggered when the up-down counter counts

TIMG_VALUE up to ALARM_VALUE

3 0 ≤ TIMG_VALUE − ALARM_VALUE < 253 Triggered

4 TIMG_VALUE − ALARM_VALUE ≥ 253

Triggered when the up-down counter restarts

counting up from 0 after reaching the timer’s

maximum value and counts TIMG_VALUE up

to ALARM_VALUE

Table 8­2. Alarm Generation When Up­Down Counter Decrements

Scenario Range Alarm

5 TIMG_VALUE − ALARM_VALUE > 253 Triggered

6 0 < TIMG_VALUE − ALARM_VALUE ≤ 253
Triggered when the up-down counter counts

TIMG_VALUE down to ALARM_VALUE

7 0 ≤ ALARM_VALUE − TIMG_VALUE < 253 Triggered

8 ALARM_VALUE − TIMG_VALUE ≥ 253

Triggered when the up-down counter restarts

counting down from the timer’s maximum value

after reaching the minimum value and counts

TIMG_VALUE down to ALARM_VALUE

When an alarm occurs, the TIMG_T0_ALARM_EN field is automatically cleared and no alarm will occur again until

the TIMG_T0_ALARM_EN is set next time.

Espressif Systems 179
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

8.2.4 Timer Reload

A timer is reloaded when a timer’s current value is overwritten with a reload value stored in the

TIMG_T0_LOAD_LO and TIMG_T0_LOAD_HI fields that correspond to the lower 32-bits and higher 22-bits of

the timer’s new value, respectively. However, writing a reload value to TIMG_T0_LOAD_LO and

TIMG_T0_LOAD_HI will not cause the timer’s current value to change. Instead, the reload value is ignored by the

timer until a reload event occurs. A reload event can be triggered either by a software instant reload or an

auto-reload at alarm.

A software instant reload is triggered by the CPU writing any value to TIMG_T0LOAD_REG, which causes the

timer’s current value to be instantly reloaded. If TIMG_T0_EN is set, the timer will continue incrementing or

decrementing from the new value. If TIMG_T0_EN is cleared, the timer will remain frozen at the new value until

counting is re-enabled.

An auto-reload at alarm will cause a timer reload when an alarm occurs, thus allowing the timer to continue

incrementing or decrementing from the reload value. This is generally useful for resetting the timer’s value when

using periodic alarms. To enable auto-reload at alarm, the TIMG_T0_AUTORELOAD field should be set. If not

enabled, the timer’s value will continue to increment or decrement past the alarm value after an alarm.

8.2.5 SLOW_CLK Frequency Calculation

Via XTAL_CLK, a timer could calculate the frequency of clock sources for SLOW_CLK (i.e. RTC_CLK,

RTC20M_D256_CLK, and XTAL32K_CLK) as follows:

1. Start periodic or one-shot frequency calculation;

2. Once receiving the signal to start calculation, the counter of XTAL_CLK and the counter of SLOW_CLK

begin to work at the same time. When the counter of SLOW_CLK counts to C0, the two counters stop

counting simultaneously;

3. Assume the value of XTAL_CLK’s counter is C1, and the frequency of SLOW_CLK would be calculated as:

f_rtc = C0×f_XTAL_CLK
C1

8.2.6 Interrupts

Each timer has its own interrupt line that can be routed to the CPU, and thus each timer group has a total of two

interrupt lines. Timers generate level interrupts that must be explicitly cleared by the CPU on each

triggering.

Interrupts are triggered after an alarm (or stage timeout for watchdog timers) occurs. Level interrupts will be held

high after an alarm (or stage timeout) occurs, and will remain so until manually cleared. To enable a timer’s

interrupt, the TIMG_T0_INT_ENA bit should be set.

The interrupts of each timer group are governed by a set of registers. Each timer within the group has a

corresponding bit in each of these registers:

• TIMG_T0_INT_RAW : An alarm event sets it to 1. The bit will remain set until the timer’s corresponding bit in

TIMG_T0_INT_CLR is written.

• TIMG_WDT_INT_RAW : A stage time out will set the timer’s bit to 1. The bit will remain set until the timer’s

corresponding bit in TIMG_WDT_INT_CLR is written.

• TIMG_T0_INT_ST : Reflects the status of each timer’s interrupt and is generated by masking the bits of

TIMG_T0_INT_RAW with TIMG_T0_INT_ENA.

Espressif Systems 180
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

• TIMG_WDT_INT_ST : Reflects the status of each watchdog timer’s interrupt and is generated by masking

the bits of TIMG_WDT_INT_RAW with TIMG_WDT_INT_ENA.

• TIMG_T0_INT_ENA : Used to enable or mask the interrupt status bits of timers within the group.

• TIMG_WDT_INT_ENA : Used to enable or mask the interrupt status bits of watchdog timer within the group.

• TIMG_T0_INT_CLR : Used to clear a timer’s interrupt by setting its corresponding bit to 1. The timer’s

corresponding bit in TIMG_T0_INT_RAW and TIMG_T0_INT_ST will be cleared as a result. Note that a

timer’s interrupt must be cleared before the next interrupt occurs.

• TIMG_WDT_INT_CLR : Used to clear a timer’s interrupt by setting its corresponding bit to 1. The watchdog

timer’s corresponding bit in TIMG_WDT_INT_RAW and TIMG_WDT_INT_ST will be cleared as a result.

Note that a watchdog timer’s interrupt must be cleared before the next interrupt occurs.

8.3 Configuration and Usage

8.3.1 Timer as a Simple Clock

1. Configure the time-base counter

• Select clock source by setting or clearing TIMG_T0_USE_XTAL field.

• Configure the 16-bit prescaler by setting TIMG_T0_DIVIDER.

• Configure the timer direction by setting or clearing TIMG_T0_INCREASE.

• Set the timer’s starting value by writing the starting value to TIMG_T0_LOAD_LO and

TIMG_T0_LOAD_HI, then reloading it into the timer by writing any value to TIMG_T0LOAD_REG.

2. Start the timer by setting TIMG_T0_EN.

3. Get the timer’s current value.

• Write any value to TIMG_T0UPDATE_REG to latch the timer’s current value.

• Read the latched timer value from TIMG_T0LO_REG and TIMG_T0HI_REG.

8.3.2 Timer as One­shot Alarm

1. Configure the time-base counter following step 1 of Section 8.3.1.

2. Configure the alarm.

• Configure the alarm value by setting TIMG_T0ALARMLO_REG and TIMG_T0ALARMHI_REG.

• Enable interrupt by setting TIMG_T0_INT_ENA.

3. Disable auto reload by clearing TIMG_T0_AUTORELOAD.

4. Start the alarm by setting TIMG_T0_ALARM_EN.

5. Handle the alarm interrupt.

• Clear the interrupt by setting the timer’s corresponding bit in TIMG_T0_INT_CLR.

• Disable the timer by clearing TIMG_T0_EN.

Espressif Systems 181
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

8.3.3 Timer as Periodic Alarm

1. Configure the time-base counter following step 1 in Section 8.3.1.

2. Configure the alarm following step 2 in Section 8.3.2.

3. Enable auto reload by setting TIMG_T0_AUTORELOAD and configure the reload value via

TIMG_T0_LOAD_LO and TIMG_T0_LOAD_HI.

4. Start the alarm by setting TIMG_T0_ALARM_EN.

5. Handle the alarm interrupt (repeat on each alarm iteration).

• Clear the interrupt by setting the timer’s corresponding bit in TIMG_T0_INT_CLR.

• If the next alarm requires a new alarm value and reload value (i.e. different alarm interval per iteration),

then TIMG_T0ALARMLO_REG, TIMG_T0ALARMHI_REG, TIMG_T0_LOAD_LO, and

TIMG_T0_LOAD_HI should be reconfigured as needed. Otherwise, the aforementioned registers

should remain unchanged.

• Re-enable the alarm by setting TIMG_T0_ALARM_EN.

6. Stop the timer (on final alarm iteration).

• Clear the interrupt by setting the timer’s corresponding bit in TIMG_T0_INT_CLR.

• Disable the timer by clearing TIMG_T0_EN.

8.3.4 SLOW_CLK Frequency Calculation

1. One-shot frequency calculation

• Select the clock whose frequency is to be calculated (clock source of SLOW_CLK) via

TIMG_RTC_CALI_CLK_SEL, and configure the time of calculation via TIMG_RTC_CALI_MAX.

• Select one-shot frequency calculation by clearing TIMG_RTC_CALI_START_CYCLING, and enable

the two counters via TIMG_RTC_CALI_START.

• Once TIMG_RTC_CALI_RDY becomes 1, read TIMG_RTC_CALI_VALUE to get the value of

XTAL_CLK’s counter, and calculate the frequency of SLOW_CLK.

2. Periodic frequency calculation

• Select the clock whose frequency is to be calculated (clock source of SLOW_CLK) via

TIMG_RTC_CALI_CLK_SEL, and configure the time of calculation via TIMG_RTC_CALI_MAX.

• Select periodic frequency calculation by enabling TIMG_RTC_CALI_START_CYCLING.

• When TIMG_RTC_CALI_CYCLING_DATA_VLD is 1, TIMG_RTC_CALI_VALUE is valid.

3. Timeout

If the counter of SLOW_CLK cannot finish counting in TIMG_RTC_CALI_TIMEOUT_RST_CNT cycles,

TIMG_RTC_CALI_TIMEOUT will be set to indicate a timeout.

Espressif Systems 182
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

8.4 Register Summary

The addresses in this section are relative to Timer Group base addresses (one for Timer Group 0 and another

one for Timer Group 1) provided in Table 3-4 in Chapter 3 System and Memory.

Name Description Address Access

T0 control and configuration registers

TIMG_T0CONFIG_REG Timer 0 configuration register 0x0000 varies

TIMG_T0LO_REG Timer 0 current value, low 32 bits 0x0004 RO

TIMG_T0HI_REG Timer 0 current value, high 22 bits 0x0008 RO

TIMG_T0UPDATE_REG Write to copy current timer value to

TIMGn_T0_(LO/HI)_REG

0x000C R/W/SC

TIMG_T0ALARMLO_REG Timer 0 alarm value, low 32 bits 0x0010 R/W

TIMG_T0ALARMHI_REG Timer 0 alarm value, high bits 0x0014 R/W

TIMG_T0LOADLO_REG Timer 0 reload value, low 32 bits 0x0018 R/W

TIMG_T0LOADHI_REG Timer 0 reload value, high 22 bits 0x001C R/W

TIMG_T0LOAD_REG Write to reload timer from

TIMG_T0_(LOADLOLOADHI)_REG

0x0020 WT

WDT control and configuration registers

TIMG_WDTCONFIG0_REG Watchdog timer configuration register 0x0048 varies

TIMG_WDTCONFIG1_REG Watchdog timer prescaler register 0x004C varies

TIMG_WDTCONFIG2_REG Watchdog timer stage 0 timeout value 0x0050 R/W

TIMG_WDTCONFIG3_REG Watchdog timer stage 1 timeout value 0x0054 R/W

TIMG_WDTCONFIG4_REG Watchdog timer stage 2 timeout value 0x0058 R/W

TIMG_WDTCONFIG5_REG Watchdog timer stage 3 timeout value 0x005C R/W

TIMG_WDTFEED_REG Write to feed the watchdog timer 0x0060 WT

TIMG_WDTWPROTECT_REG Watchdog write protect register 0x0064 R/W

RTC frequency calculation control and configuration registers

TIMG_RTCCALICFG_REG RTC frequency calculation configuration reg-

ister 0

0x0068 varies

TIMG_RTCCALICFG1_REG RTC frequency calculation configuration reg-

ister 1

0x006C RO

TIMG_RTCCALICFG2_REG RTC frequency calculation configuration reg-

ister 2

0x0080 varies

Interrupt registers

TIMG_INT_ENA_TIMERS_REG Interrupt enable bits 0x0070 R/W

TIMG_INT_RAW_TIMERS_REG Raw interrupt status 0x0074 R/SS/WTC

TIMG_INT_ST_TIMERS_REG Masked interrupt status 0x0078 RO

TIMG_INT_CLR_TIMERS_REG Interrupt clear bits 0x007C WT

Version register

TIMG_NTIMERS_DATE_REG Timer version control register 0x00F8 R/W

Clock configuration registers

TIMG_REGCLK_REG Timer group clock gate register 0x00FC R/W

Espressif Systems 183
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

8.5 Registers

The addresses in this section are relative to Timer Group base address provided in Table 3-4 in Chapter 3 System

and Memory.

Register 8.1. TIMG_T0CONFIG_REG (0x0000)

TIM
G_T

0_
EN

0

31

TIM
G_T

0_
IN

CREASE

1

30

TIM
G_T

0_
AUTO

RELO
AD

1

29

TIM
G_T

0_
DIVID

ER

0x01

28 13

TIM
G_T

0_
DIVID

ER_R
ST

0

12

(re
se

rve
d)

0

11

TIM
G_T

0_
ALA

RM
_E

N

0

10

TIM
G_T

0_
USE_X

TA
L

0

9

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

8 0

Reset

TIMG_T0_USE_XTAL 1: Use XTAL_CLK as the source clock of timer group. 0: Use APB_CLK as

the source clock of timer group. (R/W)

TIMG_T0_ALARM_EN When set, the alarm is enabled. This bit is automatically cleared once an alarm

occurs. (R/W/SC)

TIMG_T0_DIVIDER_RST When set, Timer 0 ’s clock divider counter will be reset. (WT)

TIMG_T0_DIVIDER Timer 0 clock (T0_clk) prescaler value. (R/W)

TIMG_T0_AUTORELOAD When set, Timer 0 auto-reload at alarm is enabled. (R/W)

TIMG_T0_INCREASE When set, the Timer 0 time-base counter will increment every clock tick. When

cleared, the Timer 0 time-base counter will decrement. (R/W)

TIMG_T0_EN When set, the Timer 0 time-base counter is enabled. (R/W)

Register 8.2. TIMG_T0LO_REG (0x0004)

TIM
G_T

0_
LO

0x000000

31 0

Reset

TIMG_T0_LO After writing to TIMG_T0UPDATE_REG, the low 32 bits of the time-base counter of

Timer 0 can be read here. (RO)

Espressif Systems 184
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

Register 8.3. TIMG_T0HI_REG (0x0008)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

TIM
G_T

0_
HI

0x0000

21 0

Reset

TIMG_T0_HI After writing to TIMG_T0UPDATE_REG, the high 22 bits of the time-base counter of

Timer 0 can be read here. (RO)

Register 8.4. TIMG_T0UPDATE_REG (0x000C)

TIM
G_T

0_
UPDAT

E

0

31

(re
se

rve
d)

0 0

30 0

Reset

TIMG_T0_UPDATE After writing 0 or 1 to TIMG_T0UPDATE_REG, the counter value is latched.

(R/W/SC)

Register 8.5. TIMG_T0ALARMLO_REG (0x0010)

TIM
G_T

0_
ALA

RM
_L

O

0x000000

31 0

Reset

TIMG_T0_ALARM_LO Timer 0 alarm trigger time-base counter value, low 32 bits. (R/W)

Register 8.6. TIMG_T0ALARMHI_REG (0x0014)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

TIM
G_T

0_
ALA

RM
_H

I

0x0000

21 0

Reset

TIMG_T0_ALARM_HI Timer 0 alarm trigger time-base counter value, high 22 bits. (R/W)

Espressif Systems 185
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

Register 8.7. TIMG_T0LOADLO_REG (0x0018)

TIM
G_T

0_
LO

AD_L
O

0x000000

31 0

Reset

TIMG_T0_LOAD_LO Low 32 bits of the value that a reload will load onto Timer 0 time-base counter.

(R/W)

Register 8.8. TIMG_T0LOADHI_REG (0x001C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

TIM
G_T

0_
LO

AD_H
I

0x0000

21 0

Reset

TIMG_T0_LOAD_HI High 22 bits of the value that a reload will load onto Timer 0 time-base counter.

(R/W)

Register 8.9. TIMG_T0LOAD_REG (0x0020)

TIM
G_T

0_
LO

AD

0x000000

31 0

Reset

TIMG_T0_LOAD Write any value to trigger a Timer 0 time-base counter reload. (WT)

Espressif Systems 186
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

Register 8.10. TIMG_WDTCONFIG0_REG (0x0048)

TIM
G_W

DT_
EN

0

31

TIM
G_W

DT_
STG

0

0

30 29

TIM
G_W

DT_
STG

1

0

28 27

TIM
G_W

DT_
STG

2

0

26 25

TIM
G_W

DT_
STG

3

0

24 23

TIM
G_W

DT_
CONF_

UPDAT
E_E

N

0

22

TIM
G_W

DT_
USE_X

TA
L

0

21

TIM
G_W

DT_
CPU_R

ESET_
LE

NGTH

0x1

20 18

TIM
G_W

DT_
SYS_R

ESET_
LE

NGTH

0x1

17 15

TIM
G_W

DT_
FL

ASHBOOT_
M

OD_E
N

1

14

TIM
G_W

DT_
PROCPU_R

ESET_
EN

0

13

TIM
G_W

DT_
APPCPU_R

ESET_
EN

0

12

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

TIMG_WDT_APPCPU_RESET_EN WDT reset CPU enable. (R/W)

TIMG_WDT_PROCPU_RESET_EN WDT reset CPU enable. (R/W)

TIMG_WDT_FLASHBOOT_MOD_EN When set, Flash boot protection is enabled. (R/W)

TIMG_WDT_SYS_RESET_LENGTH System reset signal length selection. 0: 100 ns, 1: 200 ns, 2:

300 ns, 3: 400 ns, 4: 500 ns, 5: 800 ns, 6: 1.6 µs, 7: 3.2 µs. (R/W)

TIMG_WDT_CPU_RESET_LENGTH CPU reset signal length selection. 0: 100 ns, 1: 200 ns, 2: 300

ns, 3: 400 ns, 4: 500 ns, 5: 800 ns, 6: 1.6 µs, 7: 3.2 µs. (R/W)

TIMG_WDT_USE_XTAL Chooses WDT clock. 0: APB_CLK; 1:XTAL_CLK. (R/W)

TIMG_WDT_CONF_UPDATE_EN Updates the WDT configuration registers. (WT)

TIMG_WDT_STG3 Stage 3 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system. (R/W)

TIMG_WDT_STG2 Stage 2 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system. (R/W)

TIMG_WDT_STG1 Stage 1 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system. (R/W)

TIMG_WDT_STG0 Stage 0 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system. (R/W)

TIMG_WDT_EN When set, MWDT is enabled. (R/W)

Register 8.11. TIMG_WDTCONFIG1_REG (0x004C)

TIM
G_W

DT_
CLK

_P
RESCALE

0x01

31 16

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 1

TIM
G_W

DT_
DIVCNT_

RST

0

0

Reset

TIMG_WDT_DIVCNT_RST When set, WDT ’s clock divider counter will be reset. (WT)

TIMG_WDT_CLK_PRESCALE MWDT clock prescaler value. MWDT clock period = 12.5 ns *

TIMG_WDT_CLK_PRESCALE. (R/W)

Espressif Systems 187
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

Register 8.12. TIMG_WDTCONFIG2_REG (0x0050)

TIM
G_W

DT_
STG

0_
HOLD

26000000

31 0

Reset

TIMG_WDT_STG0_HOLD Stage 0 timeout value, in MWDT clock cycles. (R/W)

Register 8.13. TIMG_WDTCONFIG3_REG (0x0054)

TIM
G_W

DT_
STG

1_
HOLD

0x7ffffff

31 0

Reset

TIMG_WDT_STG1_HOLD Stage 1 timeout value, in MWDT clock cycles. (R/W)

Register 8.14. TIMG_WDTCONFIG4_REG (0x0058)

TIM
G_W

DT_
STG

2_
HOLD

0x0fffff

31 0

Reset

TIMG_WDT_STG2_HOLD Stage 2 timeout value, in MWDT clock cycles. (R/W)

Espressif Systems 188
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

Register 8.15. TIMG_WDTCONFIG5_REG (0x005C)

TIM
G_W

DT_
STG

3_
HOLD

0x0fffff

31 0

Reset

TIMG_WDT_STG3_HOLD Stage 3 timeout value, in MWDT clock cycles. (R/W)

Register 8.16. TIMG_WDTFEED_REG (0x0060)

TIM
G_W

DT_
FE

ED

0x000000

31 0

Reset

TIMG_WDT_FEED Write any value to feed the MWDT. (WO) (WT)

Register 8.17. TIMG_WDTWPROTECT_REG (0x0064)

TIM
G_W

DT_
W

KEY

0x50d83aa1

31 0

Reset

TIMG_WDT_WKEY If the register contains a different value than its reset value, write protection is

enabled. (R/W)

Espressif Systems 189
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

Register 8.18. TIMG_RTCCALICFG_REG (0x0068)

TIM
G_R

TC
_C

ALI_
STA

RT

0

31

TIM
G_R

TC
_C

ALI_
M

AX

0x01

30 16

TIM
G_R

TC
_C

ALI_
RDY

0

15

TIM
G_R

TC
_C

ALI_
CLK

_S
EL

0x1

14 13

TIM
G_R

TC
_C

ALI_
STA

RT_
CYCLIN

G

1

12

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

TIMG_RTC_CALI_START_CYCLING Enables periodic frequency calculation. (R/W)

TIMG_RTC_CALI_CLK_SEL 0: RTC_CLK; 1: RTC20M_D256_CLK; 2: XTAL32K_CLK. (R/W)

TIMG_RTC_CALI_RDY Marks the completion of frequency calculation. (RO)

TIMG_RTC_CALI_MAX Configures the time of frequency calculation. (R/W)

TIMG_RTC_CALI_START Enables one-shot frequency calculation. (R/W)

Register 8.19. TIMG_RTCCALICFG1_REG (0x006C)

TIM
G_R

TC
_C

ALI_
VA

LU
E

0x00000

31 7

(re
se

rve
d)

0 0 0 0 0 0

6 1

TIM
G_R

TC
_C

ALI_
CYCLIN

G_D
AT

A_V
LD

0

0

Reset

TIMG_RTC_CALI_CYCLING_DATA_VLD Marks the completion of periodic frequency calculation.

(RO)

TIMG_RTC_CALI_VALUE Frequency calculation result. (RO)

Espressif Systems 190
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

Register 8.20. TIMG_RTCCALICFG2_REG (0x0080)

TIM
G_R

TC
_C

ALI_
TIM

EOUT_
TH

RES

0x1ffffff

31 7

TIM
G_R

TC
_C

ALI_
TIM

EOUT_
RST_

CNT

3

6 3

(re
se

rve
d)

0 0

2 1

TIM
G_R

TC
_C

ALI_
TIM

EOUT

0

0

Reset

TIMG_RTC_CALI_TIMEOUT Indicates frequency calculation timeout. (RO)

TIMG_RTC_CALI_TIMEOUT_RST_CNT Cycles to reset frequency calculation timeout. (R/W)

TIMG_RTC_CALI_TIMEOUT_THRES Threshold value for the frequency calculation timer. If the

timer’s value exceeds this threshold, a timeout is triggered. (R/W)

Register 8.21. TIMG_INT_ENA_TIMERS_REG (0x0070)

(re
se

rve
d)

0 0

31 2

TIM
G_W

DT_
IN

T_
ENA

0

1

TIM
G_T

0_
IN

T_
ENA

0

0

Reset

TIMG_T0_INT_ENA The interrupt enable bit for the TIMG_T0_INT interrupt. (R/W)

TIMG_WDT_INT_ENA The interrupt enable bit for the TIMG_WDT_INT interrupt. (R/W)

Register 8.22. TIMG_INT_RAW_TIMERS_REG (0x0074)

(re
se

rve
d)

0 0

31 2

TIM
G_W

DT_
IN

T_
RAW

0

1

TIM
G_T

0_
IN

T_
RAW

0

0

Reset

TIMG_T0_INT_RAW The raw interrupt status bit for the TIMG_T0_INT interrupt. (R/SS/WTC)

TIMG_WDT_INT_RAW The raw interrupt status bit for the TIMG_WDT_INT interrupt. (R/SS/WTC)

Espressif Systems 191
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

Register 8.23. TIMG_INT_ST_TIMERS_REG (0x0078)

(re
se

rve
d)

0 0

31 2

TIM
G_W

DT_
IN

T_
ST

0

1

TIM
G_T

0_
IN

T_
ST

0

0

Reset

TIMG_T0_INT_ST The masked interrupt status bit for the TIMG_T0_INT interrupt. (RO)

TIMG_WDT_INT_ST The masked interrupt status bit for the TIMG_WDT_INT interrupt. (RO)

Register 8.24. TIMG_INT_CLR_TIMERS_REG (0x007C)

(re
se

rve
d)

0 0

31 2

TIM
G_W

DT_
IN

T_
CLR

0

1

TIM
G_T

0_
IN

T_
CLR

0

0

Reset

TIMG_T0_INT_CLR Set this bit to clear the TIMG_T0_INT interrupt. (WT)

TIMG_WDT_INT_CLR Set this bit to clear the TIMG_WDT_INT interrupt. (WT)

Register 8.25. TIMG_NTIMERS_DATE_REG (0x00F8)

(re
se

rve
d)

0 0 0 0

31 28

TIM
G_N

TIM
GS_D

AT
E

0x2006191

27 0

Reset

TIMG_NTIMGS_DATE Timer version control register (R/W)

Espressif Systems 192
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

8 Timer Group (TIMG)

Register 8.26. TIMG_REGCLK_REG (0x00FC)

TIM
G_C

LK
_E

N

0

31

TIM
G_T

IM
ER_C

LK
_IS

_A
CTIV

E

1

30

TIM
G_W

DT_
CLK

_IS
_A

CTIV
E

1

29

(re
se

rve
d)

0 0

28 0

Reset

TIMG_WDT_CLK_IS_ACTIVE enable WDT’s clock (R/W)

TIMG_TIMER_CLK_IS_ACTIVE enable Timer 0’s clock (R/W)

TIMG_CLK_EN Register clock gate signal. 0: The clock used by software to read and write registers

is on only when there is software operation. 1: The clock used by software to read and write

registers is always on. (R/W)

Espressif Systems 193
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

9 SHA Accelerator (SHA)

9.1 Introduction

ESP32-C3 integrates an SHA accelerator, which is a hardware device that speeds up SHA algorithm significantly,

compared to SHA algorithm implemented solely in software. The SHA accelerator integrated in ESP32-C3 has

two working modes, which are Typical SHA and DMA-SHA.

9.2 Features

The following functionality is supported:

• The following hash algorithms introduced in FIPS PUB 180-4 Spec.

– SHA-1

– SHA-224

– SHA-256

• Two working modes

– Typical SHA

– DMA-SHA

• Interleaved function when working in Typical SHA working mode

• Interrupt function when working in DMA-SHA working mode

9.3 Working Modes

The SHA accelerator integrated in ESP32-C3 has two working modes.

• Typical SHA Working Mode: all the data is written and read via CPU directly.

• DMA-SHA Working Mode: all the data is read via DMA. That is, users can configure the DMA controller to

read all the data needed for hash operation, thus releasing CPU for completing other tasks.

Users can start the SHA accelerator with different working modes by configuring registers SHA_START_REG and

SHA_DMA_START_REG. For details, please see Table 9-1.

Table 9­1. SHA Accelerator Working Mode

Working Mode Configuration Method

Typical SHA Set SHA_START_REG to 1

DMA-SHA Set SHA_DMA_START_REG to 1

Espressif Systems 194
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://doi.org/10.6028/NIST.FIPS.180-4
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Users can choose hash algorithms by configuring the SHA_MODE_REG register. For details, please see Table

9-2.

Table 9­2. SHA Hash Algorithm Selection

Hash Algorithm SHA_MODE_REG Configuration

SHA-1 0

SHA-224 1

SHA-256 2

Notice:

ESP32-C3’s Digital Signature (DS) [to be added later] and HMAC Accelerator (HMAC) [to be added later]

modules also call the SHA accelerator. Therefore, users cannot access the SHA accelerator when these

modules are working.

9.4 Function Description

SHA accelerator can generate the message digest via two steps: Preprocessing and Hash operation.

9.4.1 Preprocessing

Preprocessing consists of three steps: padding the message, parsing the message into message blocks and

setting the initial hash value.

9.4.1.1 Padding the Message

The SHA accelerator can only process message blocks of 512 bits. Thus, all the messages should be padded to

a multiple of 512 bits before the hash task.

Suppose that the length of the message M is m bits. Then M shall be padded as introduced below:

1. First, append the bit “1” to the end of the message;

2. Second, append k bits of zeros, where k is the smallest, non-negative solution to the equation

m+ 1 + k ≡ 448 mod 512;

3. Last, append the 64-bit block of value equal to the number m expressed using a binary representation.

For more details, please refer to Section “5.1 Padding the Message” in FIPS PUB 180-4 Spec.

9.4.1.2 Parsing the Message

The message and its padding must be parsed into N 512-bit blocks, M (1), M (2), …, M (N). Since the 512 bits

of the input block may be expressed as sixteen 32-bit words, the first 32 bits of message block i are denoted

M(i)
0 , the next 32 bits are M(i)

1 , and so on up to M(i)
15 .

During the task, all the message blocks are written into the SHA_M_n_REG: M(i)
0 is stored in SHA_M_0_REG,

M(i)
1 stored in SHA_M_1_REG, …, and M(i)

15 stored in SHA_M_15_REG.

Espressif Systems 195
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://doi.org/10.6028/NIST.FIPS.180-4
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Note:

For more information about “message block”, please refer to Section “2.1 Glossary of Terms and Acronyms” in FIPS PUB
180-4 Spec.

9.4.1.3 Initial Hash Value

Before hash task begins for any secure hash algorithms, the initial Hash value H(0) must be set based on different

algorithms. However, the SHA accelerator uses the initial Hash values (constant C) stored in the hardware for

hash tasks.

9.4.2 Hash Task Process

After the preprocessing, the ESP32-C3 SHA accelerator starts to hash a message M and generates message

digest of different lengths, depending on different hash algorithms. As described above, the ESP32-C3 SHA

accelerator supports two working modes, which are Typical SHA and DMA-SHA. The operation process for the

SHA accelerator under two working modes is described in the following subsections.

9.4.2.1 Typical SHA Mode Process

Usually, the SHA accelerator will process all blocks of a message and produce a message digest before starting

the computation of the next message digest.

However, ESP32-C3 SHA also supports optional “interleaved” message digest calculation. Users can insert new

calculation (both Typical SHA and DMA-SHA) each time the SHA accelerator completes a sequence of

operations.

• In Typical SHA mode, this can be done after each individual message block.

• In DMA-SHA mode, this can be done after a full sequence of DMA operations is complete.

Specifically, users can read out the message digest from registers SHA_H_n_REG after completing part of a

message digest calculation, and use the SHA accelerator for a different calculation. After the different calculation

completes, users can restore the previous message digest to registers SHA_H_n_REG, and resume the

accelerator with the previously paused calculation.

Typical SHA Process

1. Select a hash algorithm.

• Configure the SHA_MODE_REG register based on Table 9-2.

2. Process the current message block 1.

• Write the message block in registers SHA_M_n_REG.

3. Start the SHA accelerator.

• If this is the first time to execute this step, set the SHA_START_REG register to 1 to start the SHA

accelerator. In this case, the accelerator uses the initial hash value stored in hardware for a given

algorithm configured in Step 1 to start the calculation;

Espressif Systems 196
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

• If this is not the first time to execute this step2, set the SHA_CONTINUE_REG register to 1 to start the

SHA accelerator. In this case, the accelerator uses the hash value stored in the SHA_H_n_REG

register to start calculation.

4. Check the progress of the current message block.

• Poll register SHA_BUSY_REG until the content of this register becomes 0, indicating the accelerator

has completed the calculation for the current message block and now is in the “idle” status 3.

5. Decide if you have more message blocks to process:

• If yes, please go back to Step 2.

• Otherwise, please continue.

6. Obtain the message digest.

• Read the message digest from registers SHA_H_n_REG.

Note:

1. In this step, the software can also write the next message block (to be processed) in registers SHA_M_n_REG, if

any, while the hardware starts SHA calculation, to save time.

2. You are resuming the SHA accelerator with the previously paused calculation.

3. Here you can decide if you want to insert other calculations. If yes, please go to the process for interleaved

calculations for details.

As mentioned above, ESP32-C3 SHA accelerator supports “interleaving” calculation under the Typical SHA

working mode.

The process to implement interleaved calculation is described below.

1. Prepare to hand the SHA accelerator over for an interleaved calculation by storing the following data of the

previous calculation.

• The selected hash algorithm stored in the SHA_MODE_REG register.

• The message digest stored in registers SHA_H_n_REG.

2. Perform the interleaved calculation. For the detailed process of the interleaved calculation, please refer to

Typical SHA process or DMA-SHA process, depending on the working mode of your interleaved calculation.

3. Prepare to hand the SHA accelerator back to the previously paused calculation by restoring the following

data of the previous calculation.

• Write the previously stored hash algorithm back to register SHA_MODE_REG.

• Write the previously stored message digest back to registers SHA_H_n_REG.

4. Write the next message block from the previous paused calculation in registers SHA_M_n_REG, and set the

SHA_CONTINUE_REG register to 1 to restart the SHA accelerator with the previously paused calculation.

9.4.2.2 DMA­SHA Mode Process

ESP32-C3 SHA accelerator does not support “interleaving” message digest calculation at the level of individual

message blocks when using DMA, which means you cannot insert new calculation before a complete DMA-SHA

Espressif Systems 197
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

process (of one or more message blocks) completes. In this case, users who need interleaved operation are

recommended to divide the message blocks and perform several DMA-SHA calculations, instead of trying to

compute all the messages in one go.

Single DMA-SHA calculation supports up to 63 data blocks.

In contrast to the Typical SHA working mode, when the SHA accelerator is working under the DMA-SHA mode,

all data read are completed via DMA. Therefore, users are required to configure the DMA controller following the

description in Chapter 2 GDMA Controller (GDMA).

DMA­SHA process

1. Select a hash algorithm.

• Select a hash algorithm by configuring the SHA_MODE_REG register. For details, please refer to Table

9-2.

2. Configure the SHA_INT_ENA_REG register to enable or disable interrupt (Set 1 to enable).

3. Configure the number of message blocks.

• Write the number of message blocks M to the SHA_DMA_BLOCK_NUM_REG register.

4. Start the DMA-SHA calculation.

• If the current DMA-SHA calculation follows a previous calculation, firstly write the message digest from

the previous calculation to registers SHA_H_n_REG, then write 1 to register

SHA_DMA_CONTINUE_REG to start SHA accelerator;

• Otherwise, write 1 to register SHA_DMA_START_REG to start the accelerator.

5. Wait till the completion of the DMA-SHA calculation, which happens when:

• The content of SHA_BUSY_REG register becomes 0, or

• An SHA interrupt occurs. In this case, please clear interrupt by writing 1 to the SHA_INT_CLEAR_REG

register.

6. Obtain the message digest:

• Read the message digest from registers SHA_H_n_REG.

9.4.3 Message Digest

After the hash task completes, the SHA accelerator writes the message digest from the task to registers

SHA_H_n_REG(n: 0~7). The lengths of the generated message digest are different depending on different hash

algorithms. For details, see Table 9-3 below:

Espressif Systems 198
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Table 9­3. The Storage and Length of Message Digest from Different Algorithms

Hash Algorithm Length of Message Digest (in bits) Storage1

SHA-1 160 SHA_H_0_REG ~ SHA_H_4_REG

SHA-224 224 SHA_H_0_REG ~ SHA_H_6_REG

SHA-256 256 SHA_H_0_REG ~ SHA_H_7_REG

1 The message digest is stored in registers from most significant bits to the least significant bits,

with the first word stored in register SHA_H_0_REG and the second word stored in register

SHA_H_1_REG... For details, please see subsection 9.4.1.2.

9.4.4 Interrupt

SHA accelerator supports interrupt on the completion of message digest calculation when working in the

DMA-SHA mode. To enable this function, write 1 to register SHA_INT_ENA_REG. Note that the interrupt should

be cleared by software after use via setting the SHA_INT_CLEAR_REG register to 1.

9.5 Register Summary

The addresses in this section are relative to the SHA accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Name Description Address Access

Control/Status registers

SHA_CONTINUE_REG
Continues SHA operation (only effective in Typi-

cal SHA mode)
0x0014 WO

SHA_BUSY_REG Indicates if SHA Accelerator is busy or not 0x0018 RO

SHA_DMA_START_REG
Starts the SHA accelerator for DMA-SHA oper-

ation
0x001C WO

SHA_START_REG
Starts the SHA accelerator for Typical SHA op-

eration
0x0010 WO

SHA_DMA_CONTINUE_REG
Continues SHA operation (only effective in DMA-

SHA mode)
0x0020 WO

SHA_INT_CLEAR_REG DMA-SHA interrupt clear register 0x0024 WO

SHA_INT_ENA_REG DMA-SHA interrupt enable register 0x0028 R/W

Version Register

SHA_DATE_REG Version control register 0x002C R/W

Configuration Registers

SHA_MODE_REG Defines the algorithm of SHA accelerator 0x0000 R/W

Data Registers

SHA_DMA_BLOCK_NUM_REG
Block number register (only effective for DMA-

SHA)
0x000C R/W

SHA_H_0_REG Hash value 0x0040 R/W

SHA_H_1_REG Hash value 0x0044 R/W

SHA_H_2_REG Hash value 0x0048 R/W

SHA_H_3_REG Hash value 0x004C R/W

SHA_H_4_REG Hash value 0x0050 R/W

Espressif Systems 199
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Name Description Address Access

SHA_H_5_REG Hash value 0x0054 R/W

SHA_H_6_REG Hash value 0x0058 R/W

SHA_H_7_REG Hash value 0x005C R/W

SHA_M_0_REG Message 0x0080 R/W

SHA_M_1_REG Message 0x0084 R/W

SHA_M_2_REG Message 0x0088 R/W

SHA_M_3_REG Message 0x008C R/W

SHA_M_4_REG Message 0x0090 R/W

SHA_M_5_REG Message 0x0094 R/W

SHA_M_6_REG Message 0x0098 R/W

SHA_M_7_REG Message 0x009C R/W

SHA_M_8_REG Message 0x00A0 R/W

SHA_M_9_REG Message 0x00A4 R/W

SHA_M_10_REG Message 0x00A8 R/W

SHA_M_11_REG Message 0x00AC R/W

SHA_M_12_REG Message 0x00B0 R/W

SHA_M_13_REG Message 0x00B4 R/W

SHA_M_14_REG Message 0x00B8 R/W

SHA_M_15_REG Message 0x00BC R/W

9.6 Registers

The addresses in this section are relative to the SHA accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Register 9.1. SHA_START_REG (0x0010)

(re
se

rve
d)

0 0

31 1

SHA_S
TA

RT

0

0

Reset

SHA_START Write 1 to start Typical SHA calculation. (WO)

Register 9.2. SHA_CONTINUE_REG (0x0014)

(re
se

rve
d)

0 0

31 1

SHA_C
ONTIN

UE

0

0

Reset

SHA_CONTINUE Write 1 to continue Typical SHA calculation. (WO)

Espressif Systems 200
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Register 9.3. SHA_BUSY_REG (0x0018)

(re
se

rve
d)

0 0

31 1

SHA_B
USY_S

TA
TE

0

0

Reset

SHA_BUSY_STATE Indicates the states of SHA accelerator. (RO) 1’h0: idle 1’h1: busy

Register 9.4. SHA_DMA_START_REG (0x001C)

(re
se

rve
d)

0 0

31 1

SHA_D
M

A_S
TA

RT

0

0

Reset

SHA_DMA_START Write 1 to start DMA-SHA calculation. (WO)

Register 9.5. SHA_DMA_CONTINUE_REG (0x0020)

(re
se

rve
d)

0 0

31 1

SHA_D
M

A_C
ONTIN

UE

0

0

Reset

SHA_DMA_CONTINUE Write 1 to continue DMA-SHA calculation. (WO)

Register 9.6. SHA_INT_CLEAR_REG (0x0024)

(re
se

rve
d)

0 0

31 1

SHA_C
LE

AR_IN
TE

RRUPT

0

0

Reset

SHA_CLEAR_INTERRUPT Clears DMA-SHA interrupt. (WO)

Espressif Systems 201
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Register 9.7. SHA_INT_ENA_REG (0x0028)

(re
se

rve
d)

0 0

31 1

SHA_IN
TE

RRUPT_
ENA

0

0

Reset

SHA_INTERRUPT_ENA Enables DMA-SHA interrupt. (R/W)

Register 9.8. SHA_DATE_REG (0x002C)

(re
se

rve
d)

0 0

31 30

SHA_D
AT

E

0x20190402

29 0

Reset

SHA_DATE Version control register. (R/W)

Register 9.9. SHA_MODE_REG (0x0000)

(re
se

rve
d)

0 0

31 3

SHA_M
ODE

0x0

2 0

Reset

SHA_MODE Defines the SHA algorithm. For details, please see Table 9-2. (R/W)

Register 9.10. SHA_DMA_BLOCK_NUM_REG (0x000C)

(re
se

rve
d)

0 0

31 6

SHA_D
M

A_B
LO

CK_N
UM

0x0

5 0

Reset

SHA_DMA_BLOCK_NUM Defines the DMA-SHA block number. (R/W)

Espressif Systems 202
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

9 SHA Accelerator (SHA)

Register 9.11. SHA_H_n_REG (n: 0­7) (0x0040+4*n)

SHA_H
_n

0x000000

31 0

Reset

SHA_H_n Stores the nth 32-bit piece of the Hash value. (R/W)

Register 9.12. SHA_M_n_REG (n: 0­15) (0x0080+4*n)

SHA_M
_n

0x000000

31 0

Reset

SHA_M_n Stores the nth 32-bit piece of the message. (R/W)

Espressif Systems 203
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

10 AES Accelerator (AES)

10 AES Accelerator (AES)

10.1 Introduction

ESP32-C3 integrates an Advanced Encryption Standard (AES) Accelerator, which is a hardware device that

speeds up AES Algorithm significantly, compared to AES algorithms implemented solely in software. The AES

Accelerator integrated in ESP32-C3 has two working modes, which are Typical AES and DMA-AES.

10.2 Features

The following functionality is supported:

• Typical AES working mode

– AES-128/AES-256 encryption and decryption

• DMA-AES working mode

– AES-128/AES-256 encryption and decryption

– Block cipher mode

* ECB (Electronic Codebook)

* CBC (Cipher Block Chaining)

* OFB (Output Feedback)

* CTR (Counter)

* CFB8 (8-bit Cipher Feedback)

* CFB128 (128-bit Cipher Feedback)

– Interrupt on completion of computation

10.3 AES Working Modes

The AES Accelerator integrated in ESP32-C3 has two working modes, which are Typical AES and

DMA-AES.

• Typical AES Working Mode:

– Supports encryption and decryption using cryptographic keys of 128 and 256 bits, specified in NIST

FIPS 197.

In this working mode, the plaintext and ciphertext is written and read via CPU directly.

• DMA-AES Working Mode:

– Supports encryption and decryption using cryptographic keys of 128 and 256 bits, specified in NIST

FIPS 197;

– Supports block cipher modes ECB/CBC/OFB/CTR/CFB8/CFB128 under NIST SP 800-38A.

In this working mode, the plaintext and ciphertext are written and read via DMA. An interrupt will be

generated when operation completes.

Espressif Systems 204
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

10 AES Accelerator (AES)

Users can choose the working mode for AES accelerator by configuring the AES_DMA_ENABLE_REG register

according to Table 10-1 below.

Table 10­1. AES Accelerator Working Mode

AES_DMA_ENABLE_REG Working Mode

0 Typical AES

1 DMA-AES

Users can choose the length of cryptographic keys and encryption / decryption by configuring the

AES_MODE_REG register according to Table 10-2 below.

Table 10­2. Key Length and Encryption/Decryption

AES_MODE_REG[2:0] Key Length and Encryption / Decryption

0 AES-128 encryption

1 reserved

2 AES-256 encryption

3 reserved

4 AES-128 decryption

5 reserved

6 AES-256 decryption

7 reserved

For detailed introduction on these two working modes, please refer to Section 10.4 and Section 10.5

below.

Notice:

ESP32-C3’s Digital Signature (DS) [to be added later] module will call the AES accelerator. Therefore, users

cannot access the AES accelerator when Digital Signature (DS) [to be added later] module is working.

Espressif Systems 205
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

10 AES Accelerator (AES)

10.4 Typical AES Working Mode

In the Typical AES working mode, users can check the working status of the AES accelerator by inquiring the

AES_STATE_REG register and comparing the return value against the Table 10-3 below.

Table 10­3. Working Status under Typical AES Working Mode

AES_STATE_REG Status Description

0 IDLE The AES accelerator is idle or completed operation.

1 WORK The AES accelerator is in the middle of an operation.

10.4.1 Key, Plaintext, and Ciphertext

The encryption or decryption key is stored in AES_KEY_n_REG, which is a set of eight 32-bit registers.

• For AES-128 encryption/decryption, the 128-bit key is stored in AES_KEY_0_REG ~ AES_KEY_3_REG.

• For AES-256 encryption/decryption, the 256-bit key is stored in AES_KEY_0_REG ~ AES_KEY_7_REG.

The plaintext and ciphertext are stored in AES_TEXT_IN_m_REG and AES_TEXT_OUT_m_REG, which are two

sets of four 32-bit registers.

• For AES-128/AES-256 encryption, the AES_TEXT_IN_m_REG registers are initialized with plaintext. Then,

the AES Accelerator stores the ciphertext into AES_TEXT_OUT_m_REG after operation.

• For AES-128/AES-256 decryption, the AES_TEXT_IN_m_REG registers are initialized with ciphertext. Then,

the AES Accelerator stores the plaintext into AES_TEXT_OUT_m_REG after operation.

10.4.2 Endianness

Text Endianness

In Typical AES working mode, the AES Accelerator uses cryptographic keys to encrypt and decrypt data in

blocks of 128 bits. When filling data into AES_TEXT_IN_m_REG register or reading result from

AES_TEXT_OUT_m_REG registers, users should follow the text endianness type specified in Table 10-4.

Table 10­4. Text Endianness Type for Typical AES

Plaintext/Ciphertext

State1
c2

0 1 2 3

r

0 AES_TEXT_x_0_REG[7:0] AES_TEXT_x_1_REG[7:0] AES_TEXT_x_2_REG[7:0] AES_TEXT_x_3_REG[7:0]

1 AES_TEXT_x_0_REG[15:8] AES_TEXT_x_1_REG[15:8] AES_TEXT_x_2_REG[15:8] AES_TEXT_x_3_REG[15:8]

2 AES_TEXT_x_0_REG[23:16] AES_TEXT_x_1_REG[23:16] AES_TEXT_x_2_REG[23:16] AES_TEXT_x_3_REG[23:16]

3 AES_TEXT_x_0_REG[31:24] AES_TEXT_x_1_REG[31:24] AES_TEXT_x_2_REG[31:24] AES_TEXT_x_3_REG[31:24]

1 The definition of “State (including c and r)” is described in Section 3.4 The State in NIST FIPS

197.
2 Where x = IN or OUT.

Espressif Systems 206
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
INARY

10
A

E
S

A
ccelerator

(A
E

S
)

Key Endianness

In Typical AES working mode, when filling key into AES_KEY_m_REG registers, users should follow the key endianness type specified in Table 10-5 and Table 10-6.

Table 10­5. Key Endianness Type for AES­128 Encryption and Decryption

Bit1 w[0] w[1] w[2] w[3]2

[31:24] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0]

[23:16] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8]

[15:8] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16]

[7:0] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24]

1 Column “Bit” specifies the bytes of each word stored in w[0] ~ w[3].
2 w[0] ~ w[3] are “the first Nk words of the expanded key” as specified in Section 5.2 Key Expansion in NIST FIPS 197.

Table 10­6. Key Endianness Type for AES­256 Encryption and Decryption

Bit1 w[0] w[1] w[2] w[3] w[4] w[5] w[6] w[7]2

[31:24] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_5_REG[7:0] AES_KEY_6_REG[7:0] AES_KEY_7_REG[7:0]

[23:16] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_5_REG[15:8] AES_KEY_6_REG[15:8] AES_KEY_7_REG[15:8]

[15:8] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_5_REG[23:16] AES_KEY_6_REG[23:16] AES_KEY_7_REG[23:16]

[7:0] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_5_REG[31:24] AES_KEY_6_REG[31:24] AES_KEY_7_REG[31:24]

1 Column “Bit” specifies the bytes of each word stored in w[0] ~ w[7].
2 w[0] ~ w[7] are “the first Nk words of the expanded key” as specified in Chapter 5.2 Key Expansion in NIST FIPS 197.

E
spressifS

ystem
s

207
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.2)

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

10 AES Accelerator (AES)

10.4.3 Operation Process

Single Operation

1. Write 0 to the AES_DMA_ENABLE_REG register.

2. Initialize registers AES_MODE_REG, AES_KEY_n_REG, AES_TEXT_IN_m_REG.

3. Start operation by writing 1 to the AES_TRIGGER_REG register.

4. Wait till the content of the AES_STATE_REG register becomes 0, which indicates the operation is

completed.

5. Read results from the AES_TEXT_OUT_m_REG register.

Consecutive Operations

In consecutive operations, primarily the input AES_TEXT_IN_m_REG and output AES_TEXT_OUT_m_REG

registers are being written and read, while the content of AES_DMA_ENABLE_REG, AES_MODE_REG,

AES_KEY_n_REG is kept unchanged. Therefore, the initialization can be simplified during the consecutive

operation.

1. Write 0 to the AES_DMA_ENABLE_REG register before starting the first operation.

2. Initialize registers AES_MODE_REG and AES_KEY_n_REG before starting the first operation.

3. Update the content of AES_TEXT_IN_m_REG.

4. Start operation by writing 1 to the AES_TRIGGER_REG register.

5. Wait till the content of the AES_STATE_REG register becomes 0, which indicates the operation completes.

6. Read results from the AES_TEXT_OUT_m_REG register, and return to Step 3 to continue the next

operation.

10.5 DMA­AES Working Mode

In the DMA-AES working mode, the AES accelerator supports six block cipher modes including

ECB/CBC/OFB/CTR/CFB8/CFB128. Users can choose the block cipher mode by configuring the

AES_BLOCK_MODE_REG register according to Table 10-7 below.

Table 10­7. Block Cipher Mode

AES_BLOCK_MODE_REG[2:0] Block Cipher Mode

0 ECB (Electronic Codebook)

1 CBC (Cipher Block Chaining)

2 OFB (Output Feedback)

3 CTR (Counter)

4 CFB8 (8-bit Cipher Feedback)

5 CFB128 (128-bit Cipher Feedback)

6 reserved

7 reserved

Users can check the working status of the AES accelerator by inquiring the AES_STATE_REG register and

comparing the return value against the Table 10-8 below.

Espressif Systems 208
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

10 AES Accelerator (AES)

Table 10­8. Working Status under DMA­AES Working mode

AES_STATE_REG[1:0] Status Description

0 IDLE The AES accelerator is idle.

1 WORK The AES accelerator is in the middle of an operation.

2 DONE The AES accelerator completed operations.

When working in the DMA-AES working mode, the AES accelerator supports interrupt on the completion of

computation. To enable this function, write 1 to the AES_INT_ENA_REG register. By default, the interrupt

function is disabled. Also, note that the interrupt should be cleared by software after use.

10.5.1 Key, Plaintext, and Ciphertext

Block Operation

During the block operations, the AES Accelerator reads source data from DMA, and write result data to DMA

after the computation.

• For encryption, DMA reads plaintext from memory, then passes it to AES as source data. After

computation, AES passes ciphertext as result data back to DMA to write into memory.

• For decryption, DMA reads ciphertext from memory, then passes it to AES as source data. After

computation, AES passes plaintext as result data back to DMA to write into memory.

During block operations, the lengths of the source data and result data are the same. The total computation time

is reduced because the DMA data operation and AES computation can happen concurrently.

The length of source data for AES Accelerator under DMA-AES working mode must be 128 bits or the integral

multiples of 128 bits. Otherwise, trailing zeros will be added to the original source data, so the length of source

data equals to the nearest integral multiples of 128 bits. Please see details in Table 10-9 below.

Table 10­9. TEXT­PADDING

Function : TEXT­PADDING()

Input : X, bit string.

Output : Y = TEXT­PADDING(X), whose length is the nearest integral multiples of 128 bits.

Steps

Let us assume that X is a data-stream that can be split into n parts as following:

X = X1||X2|| · · · ||Xn−1||Xn

Here, the lengths of X1, X2, · · · , Xn−1 all equal to 128 bits, and the length of Xn is t

(0<=t<=127).

If t = 0, then

TEXT­PADDING(X) = X;

If 0 < t <= 127, define a 128-bit block, X∗
n, and let X∗

n = Xn||0128−t, then

TEXT­PADDING(X) = X1||X2|| · · · ||Xn−1||X∗
n = X||0128−t

10.5.2 Endianness

Under the DMA-AES working mode, the transmission of source data and result data for AES Accelerator is solely

controlled by DMA. Therefore, the AES Accelerator cannot control the Endianness of the source data and result

Espressif Systems 209
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

10 AES Accelerator (AES)

data, but does have requirement on how these data should be stored in memory and on the length of the

data.

For example, let us assume DMA needs to write the following data into memory at address 0x0280.

• Data represented in hexadecimal:

– 0102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F20

• Data Length:

– Equals to 2 blocks.

Then, this data will be stored in memory as shown in Table 10-10 below.

Table 10­10. Text Endianness for DMA­AES

Address Byte Address Byte Address Byte Address Byte

0x0280 0x01 0x0281 0x02 0x0282 0x03 0x0283 0x04

0x0284 0x05 0x0285 0x06 0x0286 0x07 0x0287 0x08

0x0288 0x09 0x0289 0x0A 0x028A 0x0B 0x028B 0x0C

0x028C 0x0D 0x028D 0x0E 0x028E 0x0F 0x028F 0x10

0x0290 0x11 0x0291 0x12 0x0292 0x13 0x0293 0x14

0x0294 0x15 0x0295 0x16 0x0296 0x17 0x0297 0x18

0x0298 0x19 0x0299 0x1A 0x029A 0x1B 0x029B 0x1C

0x029C 0x1D 0x029D 0x1E 0x029E 0x1F 0x029F 0x20

10.5.3 Standard Incrementing Function

AES accelerator provides two Standard Incrementing Functions for the CTR block operation, which are INC32

and INC128 Standard Incrementing Functions. By setting the AES_INC_SEL_REG register to 0 or 1, users can

choose the INC32 or INC128 functions respectively. For details on the Standard Incrementing Function, please see

Chapter B.1 The Standard Incrementing Function in NIST SP 800-38A.

10.5.4 Block Number

Register AES_BLOCK_NUM_REG stores the Block Number of plaintext P or ciphertext C. The length of this

register equals to length(TEXT­PADDING(P))/128 or length(TEXT­PADDING(C))/128. The AES Accelerator only

uses this register when working in the DMA-AES mode.

10.5.5 Initialization Vector

AES_IV_MEM is a 16-byte memory, which is only available for AES Accelerator working in block operations. For

CBC/OFB/CFB8/CFB128 operations, the AES_IV_MEM memory stores the Initialization Vector (IV). For the CTR

operation, the AES_IV_MEM memory stores the Initial Counter Block (ICB).

Both IV and ICB are 128-bit strings, which can be divided into Byte0, Byte1, Byte2 · · · Byte15 (from left to right).

AES_IV_MEM stores data following the Endianness pattern presented in Table 10-10, i.e. the most significant

(i.e., left-most) byte Byte0 is stored at the lowest address while the least significant (i.e., right-most) byte Byte15

at the highest address.

For more details on IV and ICB, please refer to NIST SP 800-38A.

Espressif Systems 210
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

10 AES Accelerator (AES)

10.5.6 Block Operation Process

1. Select one of DMA channels to connect with AES, configure the DMA chained list, and then start DMA. For

details, please refer to Chapter 2 GDMA Controller (GDMA).

2. Initialize the AES accelerator-related registers:

• Write 1 to the AES_DMA_ENABLE_REG register.

• Configure the AES_INT_ENA_REG register to enable or disable the interrupt function.

• Initialize registers AES_MODE_REG and AES_KEY_n_REG.

• Select block cipher mode by configuring the AES_BLOCK_MODE_REG register. For details, see Table

10-7.

• Initialize the AES_BLOCK_NUM_REG register. For details, see Section 10.5.4.

• Initialize the AES_INC_SEL_REG register (only needed when AES Accelerator is working under CTR

block operation).

• Initialize the AES_IV_MEM memory (This is always needed except for ECB block operation).

3. Start operation by writing 1 to the AES_TRIGGER_REG register.

4. Wait for the completion of computation, which happens when the content of AES_STATE_REG becomes 2

or the AES interrupt occurs.

5. Check if DMA completes data transmission from AES to memory. At this time, DMA had already written the

result data in memory, which can be accessed directly. For details on DMA, please refer to Chapter 2

GDMA Controller (GDMA).

6. Clear interrupt by writing 1 to the AES_INT_CLR_REG register, if any AES interrupt occurred during the

computation.

7. Release the AES Accelerator by writing 0 to the AES_DMA_EXIT_REG register. After this, the content of the

AES_STATE_REG register becomes 0. Note that, you can release DMA earlier, but only after Step 4 is

completed.

10.6 Memory Summary

The addresses in this section are relative to the AES accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Name Description Size (byte) Starting Address Ending Address Access

AES_IV_MEM Memory IV 16 bytes 0x0050 0x005F R/W

Espressif Systems 211
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

10 AES Accelerator (AES)

10.7 Register Summary

The addresses in this section are relative to the AES accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Name Description Address Access

Key Registers

AES_KEY_0_REG AES key data register 0 0x0000 R/W

AES_KEY_1_REG AES key data register 1 0x0004 R/W

AES_KEY_2_REG AES key data register 2 0x0008 R/W

AES_KEY_3_REG AES key data register 3 0x000C R/W

AES_KEY_4_REG AES key data register 4 0x0010 R/W

AES_KEY_5_REG AES key data register 5 0x0014 R/W

AES_KEY_6_REG AES key data register 6 0x0018 R/W

AES_KEY_7_REG AES key data register 7 0x001C R/W

TEXT_IN Registers

AES_TEXT_IN_0_REG Source text data register 0 0x0020 R/W

AES_TEXT_IN_1_REG Source text data register 1 0x0024 R/W

AES_TEXT_IN_2_REG Source text data register 2 0x0028 R/W

AES_TEXT_IN_3_REG Source text data register 3 0x002C R/W

TEXT_OUT Registers

AES_TEXT_OUT_0_REG Result text data register 0 0x0030 RO

AES_TEXT_OUT_1_REG Result text data register 1 0x0034 RO

AES_TEXT_OUT_2_REG Result text data register 2 0x0038 RO

AES_TEXT_OUT_3_REG Result text data register 3 0x003C RO

Configuration Registers

AES_MODE_REG Defines key length and encryption / decryp-

tion

0x0040 R/W

AES_DMA_ENABLE_REG Selects the working mode of the AES accel-

erator

0x0090 R/W

AES_BLOCK_MODE_REG Defines the block cipher mode 0x0094 R/W

AES_BLOCK_NUM_REG Block number configuration register 0x0098 R/W

AES_INC_SEL_REG Standard incrementing function register 0x009C R/W

Controlling / Status Registers

AES_TRIGGER_REG Operation start controlling register 0x0048 WO

AES_STATE_REG Operation status register 0x004C RO

AES_DMA_EXIT_REG Operation exit controlling register 0x00B8 WO

Interruption Registers

AES_INT_CLR_REG DMA-AES interrupt clear register 0x00AC WO

AES_INT_ENA_REG DMA-AES interrupt enable register 0x00B0 R/W

Espressif Systems 212
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

10 AES Accelerator (AES)

10.8 Registers

The addresses in this section are relative to the AES accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Register 10.1. AES_KEY_n_REG (n: 0­7) (0x0000+4*n)

0x000000000

31 0

Reset

AES_KEY_n_REG (n: 0­7) Stores AES key data. (R/W)

Register 10.2. AES_TEXT_IN_m_REG (m: 0­3) (0x0020+4*m)

0x000000000

31 0

Reset

AES_TEXT_IN_m_REG (m: 0­3) Stores the source text data when the AES Accelerator operates in

the Typical AES working mode. (R/W)

Register 10.3. AES_TEXT_OUT_m_REG (m: 0­3) (0x0030+4*m)

0x000000000

31 0

Reset

AES_TEXT_OUT_m_REG (m: 0­3) Stores the result text data when the AES Accelerator operates in

the Typical AES working mode. (RO)

Register 10.4. AES_MODE_REG (0x0040)

(re
se

rve
d)

0x00000000

31 3

AES_M
ODE

0

2 0

Reset

AES_MODE Defines the key length and encryption / decryption of the AES Accelerator. For details,

see Table 10-2. (R/W)

Espressif Systems 213
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

10 AES Accelerator (AES)

Register 10.5. AES_DMA_ENABLE_REG (0x0090)

(re
se

rve
d)

0x00000000

31 1

AES_D
M

A_E
NABLE

0

0

Reset

AES_DMA_ENABLE Defines the working mode of the AES Accelerator. 0: Typical AES, 1: DMA-AES.

For details, see Table 10-1. (R/W)

Register 10.6. AES_BLOCK_MODE_REG (0x0094)

(re
se

rve
d)

0x00000000

31 3

AES_B
LO

CK_M
ODE

0

2 0

Reset

AES_BLOCK_MODE Defines the block cipher mode of the AES Accelerator operating under the

DMA-AES working mode. For details, see Table 10-7. (R/W)

Register 10.7. AES_BLOCK_NUM_REG (0x0098)

0x00000000

31 0

Reset

AES_BLOCK_NUM Stores the Block Number of plaintext or ciphertext when the AES Accelerator

operates under the DMA-AES working mode. For details, see Section 10.5.4. (R/W)

Register 10.8. AES_INC_SEL_REG (0x009C)

(re
se

rve
d)

0x00000000

31 1

AES_IN
C_S

EL

0

0

Reset

AES_INC_SEL Defines the Standard Incrementing Function for CTR block operation. Set this bit to

0 or 1 to choose INC32 or INC128. (R/W)

Espressif Systems 214
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

10 AES Accelerator (AES)

Register 10.9. AES_TRIGGER_REG (0x0048)

(re
se

rve
d)

0x00000000

31 1

AES_T
RIG

GER

x

0

Reset

AES_TRIGGER Set this bit to 1 to start AES operation. (WO)

Register 10.10. AES_STATE_REG (0x004C)

(re
se

rve
d)

0x00000000

31 2

AES_S
TA

TE

0x0

1 0

Reset

AES_STATE Stores the working status of the AES Accelerator. For details, see Table 10-3 for Typical

AES working mode and Table 10-8 for DMA AES working mode. (RO)

Register 10.11. AES_DMA_EXIT_REG (0x00B8)

(re
se

rve
d)

0x00000000

31 1

AES_D
M

A_E
XIT

x

0

Reset

AES_DMA_EXIT Set this bit to 1 to exit AES operation. This register is only effective for DMA-AES

operation. (WO)

Register 10.12. AES_INT_CLR_REG (0x00AC)

(re
se

rve
d)

0x00000000

31 1

AES_IN
T_

CLR

x

0

Reset

AES_INT_CLR Set this bit to 1 to clear AES interrupt. (WO)

Espressif Systems 215
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

10 AES Accelerator (AES)

Register 10.13. AES_INT_ENA_REG (0x00B0)

(re
se

rve
d)

0x00000000

31 1

AES_IN
T_

ENA

0

0

Reset

AES_INT_ENA Set this bit to 1 to enable AES interrupt and 0 to disable interrupt. (R/W)

Espressif Systems 216
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

11 RSA Accelerator (RSA)

11.1 Introduction

The RSA Accelerator provides hardware support for high precision computation used in various RSA asymmetric

cipher algorithms by significantly reducing their software complexity. Compared with RSA algorithms

implemented solely in software, this hardware accelerator can speed up RSA algorithms significantly. Besides,

the RSA Accelerator also supports operands of different lengths, which provides more flexibility during the

computation.

11.2 Features

The following functionality is supported:

• Large-number modular exponentiation with two optional acceleration options

• Large-number modular multiplication

• Large-number multiplication

• Operands of different lengths

• Interrupt on completion of computation

11.3 Functional Description

The RSA Accelerator is activated by setting the SYSTEM_CRYPTO_RSA_CLK_EN bit in the

SYSTEM_PERIP_CLK

_EN1_REG register and clearing the SYSTEM_RSA_MEM_PD bit in the SYSTEM_RSA_PD_CTRL_REG register.

This releases the RSA Accelerator from reset.

The RSA Accelerator is only available after the RSA-related memories are initialized. The content of the

RSA_CLEAN

_REG register is 0 during initialization and will become 1 after the initialization is done. Therefore, it is advised to

wait until RSA_CLEAN_REG becomes 1 before using the RSA Accelerator.

The RSA_INTERRUPT_ENA_REG register is used to control the interrupt triggered on completion of

computation. Write 1 or 0 to this register to enable or disable interrupt. By default, the interrupt function of the

RSA Accelerator is enabled.

Notice:

ESP32-C3’s Digital Signature (DS) [to be added later] module also calls the RSA accelerator. Therefore, users

cannot access the RSA accelerator when Digital Signature (DS) [to be added later] is working.

11.3.1 Large Number Modular Exponentiation

Large-number modular exponentiation performs Z = XY mod M . The computation is based on Montgomery

multiplication. Therefore, aside from the X, Y , and M arguments, two additional ones are needed — r and M ′,

which need to be calculated in advance by software.

Espressif Systems 217
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

RSA Accelerator supports operands of length N = 32× x, where x ∈ {1, 2, 3, . . . , 96}. The bit lengths of

arguments Z, X, Y , M , and r can be arbitrary N , but all numbers in a calculation must be of the same length.

The bit length of M ′ must be 32.

To represent the numbers used as operands, let us define a base-b positional notation, as follows:

b = 232

Using this notation, each number is represented by a sequence of base-b digits:

n =
N

32

Z = (Zn−1Zn−2 · · ·Z0)b

X = (Xn−1Xn−2 · · ·X0)b

Y = (Yn−1Yn−2 · · ·Y0)b

M = (Mn−1Mn−2 · · ·M0)b

r = (rn−1rn−2 · · · r0)b

Each of the n values in Zn−1 · · ·Z0, Xn−1 · · ·X0, Yn−1 · · ·Y0, Mn−1 · · ·M0, rn−1 · · · r0 represents one base-b

digit (a 32-bit word).

Zn−1, Xn−1, Yn−1, Mn−1 and rn−1 are the most significant bits of Z, X, Y , M , while Z0, X0, Y0, M0 and r0 are

the least significant bits.

If we define R = bn, the additional arguments can be calculated as r = R2 mod M .

The following equation in the form compatible with the extended binary GCD algorithm can be written as�

M−1 ×M + 1 = R×R−1

M ′ = M−1 mod b

Large-number modular exponentiation can be implemented as follows:

1. Write 1 or 0 to the RSA_INTERRUPT_ENA_REG register to enable or disable the interrupt function.

2. Configure relevant registers:

(a) Write (N32 − 1) to the RSA_MODE_REG register.

(b) Write M ′ to the RSA_M_PRIME_REG register.

(c) Configure registers related to the acceleration options, which are described later in Section 11.3.4.

3. Write Xi, Yi, Mi and ri for i ∈ {0, 1, . . . , n− 1} to memory blocks RSA_X_MEM, RSA_Y_MEM,

RSA_M_MEM and RSA_Z_MEM. The capacity of each memory block is 96 words. Each word of each

memory block can store one base-b digit. The memory blocks use the little endian format for storage, i.e.

the least significant digit of each number is in the lowest address.

Users need to write data to each memory block only according to the length of the number; data beyond

this length are ignored.

4. Write 1 to the RSA_MODEXP_START_REG register to start computation.

Espressif Systems 218
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

5. Wait for the completion of computation, which happens when the content of RSA_IDLE_REG becomes 1

or the RSA interrupt occurs.

6. Read the result Zi for i ∈ {0, 1, . . . , n− 1} from RSA_Z_MEM.

7. Write 1 to RSA_CLEAR_INTERRUPT_REG to clear the interrupt, if you have enabled the interrupt function.

After the computation, the RSA_MODE_REG register, memory blocks RSA_Y_MEM and RSA_M_MEM, as well

as the RSA_M_PRIME_REG remain unchanged. However, Xi in RSA_X_MEM and ri in RSA_Z_MEM

computation are overwritten, and only these overwritten memory blocks need to be re-initialized before starting

another computation.

11.3.2 Large Number Modular Multiplication

Large-number modular multiplication performs Z = X × Y mod M . This computation is based on Montgomery

multiplication. Therefore, similar to the large number modular exponentiation, two additional arguments are

needed – r and M ′, which need to be calculated in advance by software.

The RSA Accelerator supports large-number modular multiplication with operands of 96 different lengths.

The computation can be executed as follows:

1. Write 1 or 0 to the RSA_INTERRUPT_ENA_REG register to enable or disable the interrupt function.

2. Configure relevant registers:

(a) Write (N32 − 1) to the RSA_MODE_REG register.

(b) Write M ′ to the RSA_M_PRIME_REG register.

3. Write Xi, Yi, Mi, and ri for i ∈ {0, 1, . . . , n− 1} to memory blocks RSA_X_MEM, RSA_Y_MEM,

RSA_M_MEM and RSA_Z_MEM. The capacity of each memory block is 96 words. Each word of each

memory block can store one base-b digit. The memory blocks use the little endian format for storage, i.e.

the least significant digit of each number is in the lowest address.

Users need to write data to each memory block only according to the length of the number; data beyond

this length are ignored.

4. Write 1 to the RSA_MODMULT_START_REG register.

5. Wait for the completion of computation, which happens when the content of RSA_IDLE_REG becomes 1

or the RSA interrupt occurs.

6. Read the result Zi for i ∈ {0, 1, . . . , n− 1} from RSA_Z_MEM.

7. Write 1 to RSA_CLEAR_INTERRUPT_REG to clear the interrupt, if you have enabled the interrupt function.

After the computation, the length of operands in RSA_MODE_REG, the Xi in memory RSA_X_MEM, the Yi in

memory RSA_Y_MEM, the Mi in memory RSA_M_MEM, and the M ′ in memory RSA_M_PRIME_REG remain

unchanged. However, the ri in memory RSA_Z_MEM has already been overwritten, and only this overwritten

memory block needs to be re-initialized before starting another computation.

11.3.3 Large Number Multiplication

Large-number multiplication performs Z = X × Y . The length of result Z is twice that of operand X and operand

Y . Therefore, the RSA Accelerator only supports Large Number Multiplication with operand length N = 32× x,

where x ∈ {1, 2, 3, . . . , 48}. The length N̂ of result Z is 2×N .

Espressif Systems 219
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

The computation can be executed as follows:

1. Write 1 or 0 to the RSA_INTERRUPT_ENA_REG register to enable or disable the interrupt function.

2. Write (N̂32 − 1), i.e. (N16 − 1) to the RSA_MODE_REG register.

3. Write Xi and Yi for ∈ {0, 1, . . . , n− 1} to memory blocks RSA_X_MEM and RSA_Z_MEM. Each word of

each memory block can store one base-b digit. The memory blocks use the little endian format for storage,

i.e. the least significant digit of each number is in the lowest address. n is N
32 .

Write Xi for i ∈ {0, 1, . . . , n− 1} to the address of the i words of the RSA_X_MEM memory block. Note

that Yi for i ∈ {0, 1, . . . , n− 1} will not be written to the address of the i words of the RSA_Z_MEM register,

but the address of the n+ i words, i.e. the base address of the RSA_Z_MEM memory plus the address

offset 4× (n+ i).

Users need to write data to each memory block only according to the length of the number; data beyond

this length are ignored.

4. Write 1 to the RSA_MULT_START_REG register.

5. Wait for the completion of computation, which happens when the content of RSA_IDLE_REG becomes 1

or the RSA interrupt occurs.

6. Read the result Zi for i ∈ {0, 1, . . . , n̂− 1} from the RSA_Z_MEM register. n̂ is 2× n.

7. Write 1 to RSA_CLEAR_INTERRUPT_REG to clear the interrupt, if you have enabled the interrupt function.

After the computation, the length of operands in RSA_MODE_REG and the Xi in memory RSA_X_MEM remain

unchanged. However, the Yi in memory RSA_Z_MEM has already been overwritten, and only this overwritten

memory block needs to be re-initialized before starting another computation.

11.3.4 Options for Acceleration

The ESP32-C3 RSA accelerator also provides SEARCH and CONSTANT_TIME options that can be configured to

accelerate the large-number modular exponentiation. By default, both options are configured for no acceleration.

Users can choose to use one or two of these options to accelerate the computation.

To be more specific, when neither of these two options are configured for acceleration, the time required to

calculate Z = XY mod M is solely determined by the lengths of operands. When either or both of these two

options are configured for acceleration, the time required is also correlated with the 0/1 distribution of Y .

To better illustrate how these two options work, first assume Y is represented in binaries as

Y = (ỸN−1ỸN−2 · · · Ỹt+1ỸtỸt−1 · · · Ỹ0)2

where,

• N is the length of Y ,

• Ỹt is 1,

• ỸN−1, ỸN−2, …, Ỹt+1 are all equal to 0,

• and Ỹt−1, Ỹt−2, …, Ỹ0 are either 0 or 1 but exactly m bits should be equal to 0 and t-m bits 1, i.e. the

Hamming weight of Ỹt−1Ỹt−2, · · · , Ỹ0 is t−m.

Espressif Systems 220
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

When either of these two options is configured for acceleration:

• SEARCH Option (Configuring RSA_SEARCH_ENABLE to 1 for acceleration)

– The accelerator ignores the bit positions of Ỹi, where i > α. Search position α is set by configuring

the RSA_SEARCH_POS_REG register. The maximum value of α is N-1, which leads to the same

result when this option is not used for acceleration. The best acceleration performance can be

achieved by setting α to t, in which case, all the ỸN−1, ỸN−2, …, Ỹt+1 of 0s are ignored during the

calculation. Note that if you set α to be less than t, then the result of the modular exponentiation

Z = XY mod M will be incorrect.

• CONSTANT_TIME Option (Configuring RSA_CONSTANT_TIME_REG to 0 for acceleration)

– The accelerator speeds up the calculation by simplifying the calculation concerning the 0 bits of Y .

Therefore, the higher the proportion of bits 0 against bits 1, the better the acceleration performance is.

We provide an example to demonstrate the performance of the RSA Accelerator under different combinations of

SEARCH and CONSTANT_TIME configuration. Here we perform Z = XY mod M with N = 3072 and Y =

65537. Table 11-1 below demonstrates the time costs under different combinations of SEARCH and

CONSTANT_TIME configuration. Here, we should also mention that, α is set to 16 when the SEARCH option is

enabled.

Table 11­1. Acceleration Performance

SEARCH Option CONSTANT_TIME Option Time Cost

No acceleration No acceleration 376.405 ms

Accelerated No acceleration 2.260 ms

No acceleration Acceleration 1.203 ms

Acceleration Acceleration 1.165 ms

It’s obvious that:

• The time cost is the biggest when none of these two options is configured for acceleration.

• The time cost is the smallest when both of these two options are configured for acceleration.

• The time cost can be dramatically reduced when either or both option(s) are configured for acceleration.

11.4 Memory Summary

The addresses in this section are relative to the RSA accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Table 11­2. RSA Accelerator Memory Blocks

Name Description Size (byte) Starting Address Ending Address Access

RSA_M_MEM Memory M 384 0x0000 0x017F R/W

RSA_Z_MEM Memory Z 384 0x0200 0x037F R/W

RSA_Y_MEM Memory Y 384 0x0400 0x057F R/W

RSA_X_MEM Memory X 384 0x0600 0x077F R/W

Espressif Systems 221
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

11.5 Register Summary

The addresses in this section are relative to the RSA accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Name Description Address Access

Configuration Registers

RSA_M_PRIME_REG Register to store M’ 0x0800 R/W

RSA_MODE_REG RSA length mode 0x0804 R/W

RSA_CONSTANT_TIME_REG The constant_time option 0x0820 R/W

RSA_SEARCH_ENABLE_REG The search option 0x0824 R/W

RSA_SEARCH_POS_REG The search position 0x0828 R/W

Status/Control Registers

RSA_CLEAN_REG RSA clean register 0x0808 RO

RSA_MODEXP_START_REG Modular exponentiation starting bit 0x080C WO

RSA_MODMULT_START_REG Modular multiplication starting bit 0x0810 WO

RSA_MULT_START_REG Normal multiplication starting bit 0x0814 WO

RSA_IDLE_REG RSA idle register 0x0818 RO

Interrupt Registers

RSA_CLEAR_INTERRUPT_REG RSA clear interrupt register 0x081C WO

RSA_INTERRUPT_ENA_REG RSA interrupt enable register 0x082C R/W

Version Register

RSA_DATE_REG Version control register 0x0830 R/W

Espressif Systems 222
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

11.6 Registers

The addresses in this section are relative to the RSA accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Register 11.1. RSA_M_PRIME_REG (0x0800)

0x000000000

31 0

Reset

RSA_M_PRIME_REG Stores M’.(R/W)

Register 11.2. RSA_MODE_REG (0x0804)

(re
se

rve
d)

0 0

31 7

RSA_M
ODE

0 0 0 0 0 0 0

6 0

Reset

RSA_MODE Stores the mode of modular exponentiation. (R/W)

Register 11.3. RSA_CLEAN_REG (0x0808)

(re
se

rve
d)

0 0

31 1

RSA_C
LE

AN

0

0

Reset

RSA_CLEAN The content of this bit is 1 when memories complete initialization. (RO)

Register 11.4. RSA_MODEXP_START_REG (0x080C)

(re
se

rve
d)

0 0

31 1

RSA_M
ODEXP

_S
TA

RT

0

0

Reset

RSA_MODEXP_START Set this bit to 1 to start the modular exponentiation. (WO)

Espressif Systems 223
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

Register 11.5. RSA_MODMULT_START_REG (0x0810)

(re
se

rve
d)

0 0

31 1

RSA_M
ODM

ULT
_S

TA
RT

0

0

Reset

RSA_MODMULT_START Set this bit to 1 to start the modular multiplication. (WO)

Register 11.6. RSA_MULT_START_REG (0x0814)

(re
se

rve
d)

0 0

31 1

RSA_M
ULT

_S
TA

RT

0

0

Reset

RSA_MULT_START Set this bit to 1 to start the multiplication. (WO)

Register 11.7. RSA_IDLE_REG (0x0818)

(re
se

rve
d)

0 0

31 1

RSA_ID
LE

0

0

Reset

RSA_IDLE The content of this bit is 1 when the RSA accelerator is idle. (RO)

Register 11.8. RSA_CLEAR_INTERRUPT_REG (0x081C)

(re
se

rve
d)

0 0

31 1

RSA_C
LE

AR_IN
TE

RRUPT

0

0

Reset

RSA_CLEAR_INTERRUPT Set this bit to 1 to clear the RSA interrupts. (WO)

Espressif Systems 224
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

Register 11.9. RSA_CONSTANT_TIME_REG (0x0820)

(re
se

rve
d)

0 0

31 1

RSA_C
ONSTA

NT_
TIM

E

1

0

Reset

RSA_CONSTANT_TIME_REG Controls the constant_time option. 0: acceleration. 1: no accelera-

tion (by default). (R/W)

Register 11.10. RSA_SEARCH_ENABLE_REG (0x0824)

(re
se

rve
d)

0 0

31 1

RSA_S
EARCH_E

NABLE

0

0

Reset

RSA_SEARCH_ENABLE Controls the search option. 0: no acceleration (by default). 1: acceleration.

(R/W)

Register 11.11. RSA_SEARCH_POS_REG (0x0828)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

RSA_S
EARCH_P

OS

0x000

11 0

Reset

RSA_SEARCH_POS Is used to configure the starting address when the acceleration option of search

is used. (R/W)

Espressif Systems 225
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

11 RSA Accelerator (RSA)

Register 11.12. RSA_INTERRUPT_ENA_REG (0x082C)

(re
se

rve
d)

0 0

31 1

RSA_IN
TE

RRUPT_
ENA

1

0

Reset

RSA_INTERRUPT_ENA Set this bit to 1 to enable the RSA interrupt. This option is enabled by default.

(R/W)

Register 11.13. RSA_DATE_REG (0x0830)

(re
se

rve
d)

0 0

31 30

RSA_D
AT

E

0x20200618

29 0

Reset

RSA_DATE Version control register. (R/W)

Espressif Systems 226
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

12 Random Number Generator (RNG)

12 Random Number Generator (RNG)

12.1 Introduction

The ESP32-C3 contains a true random number generator, which generates 32-bit random numbers that can be

used for cryptographical operations, among other things.

12.2 Features

The random number generator in ESP32-C3 generates true random numbers, which means random number

generated from a physical process, rather than by means of an algorithm. No number generated within the

specified range is more or less likely to appear than any other number.

12.3 Functional Description

Every 32-bit value that the system reads from the RNG_DATA_REG register of the random number generator is a

true random number. These true random numbers are generated based on the thermal noise in the system and

the asynchronous clock mismatch.

• Thermal noise comes from the high-speed ADC or SAR ADC or both. Whenever the high-speed ADC or

SAR ADC is enabled, bit streams will be generated and fed into the random number generator through an

XOR logic gate as random seeds.

• RTC20M_CLK is an asynchronous clock source and it increases the RNG entropy by introducing circuit

metastability.

SAR ADC

Random
Number

Generator
High Speed

ADC

 Random bit
 seeds

 Random bit
 seeds

RNG_DATA_REG

XOR
XOR

RTC20M_CLK Random bit
seeds

Figure 12­1. Noise Source

When there is noise coming from the SAR ADC, the random number generator is fed with a 2-bit entropy in one

clock cycle of RTC20M_CLK (20 MHz), which is generated from an internal RC oscillator (see Chapter 6 Reset

and Clock for details). Thus, it is advisable to read the RNG_DATA_REG register at a maximum rate of 1 MHz to

obtain the maximum entropy.

When there is noise coming from the high-speed ADC, the random number generator is fed with a 2-bit entropy

in one APB clock cycle, which is normally 80 MHz. Thus, it is advisable to read the RNG_DATA_REG register at a

maximum rate of 5 MHz to obtain the maximum entropy.

A data sample of 2 GB, which is read from the random number generator at a rate of 5 MHz with only the

high-speed ADC being enabled, has been tested using the Dieharder Random Number Testsuite (version 3.31.1).

The sample passed all tests.

Espressif Systems 227
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

12 Random Number Generator (RNG)

12.4 Programming Procedure

When using the random number generator, make sure at least either the SAR ADC, high-speed ADC1, or

RTC20M_CLK2 is enabled. Otherwise, pseudo-random numbers will be returned.

• SAR ADC can be enabled by using the DIG ADC controller. For details, please refer to Chapter 11 On-Chip

Sensors and Analog Signal Processing [to be added later].

• High-speed ADC is enabled automatically when the Wi-Fi or Bluetooth modules is enabled.

• RTC20M_CLK is enabled by setting the RTC_CNTL_DIG_CLK20M_EN bit in the

RTC_CNTL_CLK_CONF_REG register.

Note:

1. Note that, when the Wi-Fi module is enabled, the value read from the high-speed ADC can be saturated in some

extreme cases, which lowers the entropy. Thus, it is advisable to also enable the SAR ADC as the noise source for

the random number generator for such cases.

2. Enabling RTC20M_CLK increases the RNG entropy. However, to ensure maximum entropy, it’s recommended to

always enable an ADC source as well.

When using the random number generator, read the RNG_DATA_REG register multiple times until sufficient

random numbers have been generated. Ensure the rate at which the register is read does not exceed the

frequencies described in section 12.3 above.

12.5 Register Summary

The address in the following table is relative to the random number generator base address provided in Table 3-4

in Chapter 3 System and Memory.

Name Description Address Access

RNG_DATA_REG Random number data 0x00B0 RO

12.6 Register

The address in this section is relative to the random number generator base address provided in Table 3-4 in

Chapter 3 System and Memory.

Register 12.1. RNG_DATA_REG (0x00B0)

0x00000000

31 0

Reset

RNG_DATA Random number source. (RO)

Espressif Systems 228
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

13 UART Controller (UART)

13.1 Overview

In embedded system applications, data is required to be transferred in a simple way with minimal system

resources. This can be achieved by a Universal Asynchronous Receiver/Transmitter (UART), which flexibly

exchanges data with other peripheral devices in full-duplex mode. ESP32-C3 has two UART controllers

compatible with various UART devices. They support Infrared Data Association (IrDA) and RS485

transmission.

Each of the two UART controllers has a group of registers that function identically. In this chapter, the two UART

controllers are referred to as UARTn, in which n denotes 0 or 1.

A UART is a character-oriented data link for asynchronous communication between devices. Such

communication does not add clock signals to data sent. Therefore, in order to communicate successfully, the

transmitter and the receiver must operate at the same baud rate with the same stop bit and parity bit.

A UART data frame usually begins with one start bit, followed by data bits, one parity bit (optional) and one or

more stop bits. UART controllers on ESP32-C3 support various lengths of data bits and stop bits. These

controllers also support software and hardware flow control as well as GDMA for seamless high-speed data

transfer. This allows developers to use multiple UART ports at minimal software cost.

13.2 Features

Each UART controller has the following features:

• Three clock sources that can be divided

• Programmable baud rate

• 512 x 8-bit RAM shared by TX FIFOs and RX FIFOs of the two UART controllers

• Full-duplex asynchronous communication

• Automatic baud rate detection of input signals

• Data bits ranging from 5 to 8

• Stop bits whose length can be 1, 1.5, 2 or 3 bits

• Parity bit

• Special character AT_CMD detection

• RS485 protocol

• IrDA protocol

• High-speed data communication using GDMA

• UART as wake-up source

• Software and hardware flow control

Espressif Systems 229
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

13.3 UART Structure

Figure 13­1. UART Structure

Figure 13-1 shows the basic structure of a UART controller. A UART controller works in two clock domains,

namely APB_CLK domain and Core Clock domain (the UART Core’s clock domain). The UART Core has three

clock sources: a 80 MHz APB_CLK, RTC20M_CLK and external crystal clock XTAL_CLK (for details, please refer

to Chapter 6 Reset and Clock), which are selected by configuring UART_SCLK_SEL. The selected clock source is

divided by a divider to generate clock signals that drive the UART Core. The divisor is configured by

UART_CLKDIV_REG: UART_CLKDIV for the integral part, and UART_CLKDIV_FRAG for the fractional

part.

A UART controller is broken down into two parts according to functions: a transmitter and a receiver.

The transmitter contains a TX FIFO, which buffers data to be sent. Software can write data to Tx_FIFO via the

APB bus, or move data to Tx_FIFO using GDMA. Tx_FIFO_Ctrl controls writing and reading Tx_FIFO. When

Tx_FIFO is not empty, Tx_FSM reads data bits in the data frame via Tx_FIFO_Ctrl, and converts them into a

bitstream. The levels of output signal txd_out can be inverted by configuring UART_TXD_INV field.

The receiver contains a RX FIFO, which buffers data to be processed. The levels of input signal rxd_in can be

inverted by configuring UART_RXD_INV field. Baudrate_Detect measures the baud rate of input signal rxd_in by

detecting its minimum pulse width. Start_Detect detects the start bit in a data frame. If the start bit is detected,

Rx_FSM stores data bits in the data frame into Rx_FIFO by Rx_FIFO_Ctrl. Software can read data from Rx_FIFO

via the APB bus, or receive data using GDMA.

HW_Flow_Ctrl controls rxd_in and txd_out data flows by standard UART RTS and CTS flow control signals

Espressif Systems 230
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

(rtsn_out and ctsn_in). SW_Flow_Ctrl controls data flows by automatically adding special characters to outgoing

data and detecting special characters in incoming data. When a UART controller is Light-sleep mode (see

Chapter 12 Low-Power Management (RTC_CNTL) [to be added later] for more details), Wakeup_Ctrl counts up

rising edges of rxd_in. When the number reaches (UART_ACTIVE_THRESHOLD + 2), a wake_up signal is

generated and sent to RTC, which then wakes up the ESP32-C3 chip.

13.4 Functional Description

13.4.1 Clock and Reset

UART controllers are asynchronous. Their register configuration module, TX FIFO and RX FIFO are in APB_CLK

domain, while the UART Core that controls transmission and reception is in Core Clock domain. The three clock

sources of the UART core, namely APB_CLK, RTC20M_CLK and external crystal clock XTAL_CLK, are selected

by configuring UART_SCLK_SEL. The selected clock source is divided by a divider. This divider supports

fractional frequency division: UART_SCLK_DIV_NUM field is the integral part, UART_SCLK_DIV_B field is the

numerator of the fractional part, and UART_SCLK_DIV_A is the denominator of the fractional part. The divisor

ranges from 1 ~ 256.

In cases when UART baud rate meet the needs, the UART Core can work at a lower clock frequency by division,

to reduce power consumption. Usually the frequency of the UART Core’s clock is lower than that of APB_CLK,

and the UART Core’s clock divisor can be configured to the maximum when baud rate can meet the needs. The

frequency of the UART Core’s clock can also be higher than that of APB_CLK, at most three times that of

APB_CLK. The clock for the UART transmitter and the UART receiver can be controlled independently. To enable

the clock for the UART transmitter, please set UART_TX_SCLK_EN; to enable the clock for the UART receiver,

set UART_RX_SCLK_EN.

To ensure that the configured register values are synchronized from APB_CLK domain to Core Clock domain,

please follow procedures in Section13.5.

To reset the whole UART, please:

• enable the clock for UART RAM by setting SYSTEM_UART_MEM_CLK_EN to 1;

• enable APB_CLK for UARTn by setting SYSTEM_UARTn_CLK_EN to 1

• clear SYSTEM_UARTn_RST to 0;

• write 1 to UART_RST_CORE;

• write 1 to SYSTEM_UARTn_RST;

• clear SYSTEM_UARTn_RST to 0;

• clear UART_RST_CORE to 0.

Note that it is not recommended to reset the APB clock domain module or UART Core only.

Espressif Systems 231
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

13.4.2 UART RAM

Figure 13­2. UART Controllers Sharing RAM

The two UART controllers on ESP32-C3 share 512 × 8 bits of FIFO RAM. As Figure 13-2 illustrates, RAM is

divided into 4 blocks, each has 128 × 8 bits. Figure 13-2 shows how many RAM blocks are allocated to TX

FIFOs and RX FIFOs of the two UART controllers by default. UARTn Tx_FIFO can be expanded by configuring

UART_TX_SIZE, while UARTn Rx_FIFO can be expanded by configuring UART_RX_SIZE. The size of UART0

Tx_FIFO can be increased to 4 blocks (the whole RAM), the size of UART1 Tx_FIFO can be increased to 3 blocks

(from offset 128 to the end address), the size of UART0 Rx_FIFO can be increased to 2 blocks (from offset 256 to

the end address), but the size of UART1 Rx_FIFO cannot be increased. Please note that expanding one FIFO

may take up the default space of other FIFOs. For example, by setting UART_TX_SIZE of UART0 to 2, the size of

UART0 Tx_FIFO is increased by 128 bytes (from offset 0 to offset 255). In this case, UART0 Tx_FIFO takes up

the default space for UART1 Tx_FIFO, and UART1’s transmitting function cannot be used as a result.

When neither of the two UART controllers is active, RAM could enter low-power mode by setting

UART_MEM_FORCE_PD.

UART0 Tx_FIFO and UART1 Tx_FIFO are reset by setting UART_TXFIFO_RST. UART0 Rx_FIFO and UART1

Rx_FIFO are reset by setting UART_RXFIFO_RST.

Data to be sent is written to TX FIFO via the APB bus or using GDMA, read automatically and converted from a

frame into a bitstream by hardware Tx_FSM; data received is converted from a bitstream into a frame by

hardware Rx_FSM, written into RX FIFO, and then stored into RAM via the APB bus or using GDMA. The two

UART controllers share one GDMA channel.

The empty signal threshold for Tx_FIFO is configured by setting UART_TXFIFO_EMPTY_THRHD. When data

stored in Tx_FIFO is less than UART_TXFIFO_EMPTY_THRHD, a UART_TXFIFO_EMPTY_INT interrupt is

generated. The full signal threshold for Rx_FIFO is configured by setting UART_RXFIFO_FULL_THRHD. When

data stored in Rx_FIFO is greater than UART_RXFIFO_FULL_THRHD, a UART_RXFIFO_FULL_INT interrupt is

generated. In addition, when Rx_FIFO receives more data than its capacity, a UART_RXFIFO_OVF_INT interrupt

is generated.

UARTn can access FIFO via register UART_FIFO_REG. You can put data into TX FIFO by writing

UART_RXFIFO_RD_BYTE, and get data in RX FIFO by reading UART_RXFIFO_RD_BYTE.

Espressif Systems 232
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

13.4.3 Baud Rate Generation and Detection

13.4.3.1 Baud Rate Generation

Before a UART controller sends or receives data, the baud rate should be configured by setting corresponding

registers. The baud rate generator of a UART controller functions by dividing the input clock source. It can divide

the clock source by a fractional amount. The divisor is configured by UART_CLKDIV_REG: UART_CLKDIV for the

integral part, and UART_CLKDIV_FRAG for the fractional part. When using the 80 MHz input clock, the UART

controller supports a maximum baud rate of 5 Mbaud.

The divisor of the baud rate divider is equal to UART_CLKDIV + (UART_CLKDIV_FRAG/16), meaning that the

final baud rate is equal to INPUT_FREQ/(UART_CLKDIV + (UART_CLKDIV_FRAG/16)). For example, if

UART_CLKDIV = 694 and UART_CLKDIV_FRAG = 7 then the divisor value is (694 + 7/16) = 694.4375. Note:

INPUT_FREQ is the frequency of UART Cores’ clock.

When UART_CLKDIV_FRAG is 0, the baud rate generator is an integer clock divider where an output pulse is

generated every UART_CLKDIV input pulses.

When UART_CLKDIV_FRAG is not 0, the divider is fractional and the output baud rate clock pulses are not

strictly uniform. As shown in Figure 13-3, for every 16 output pulses, the generator divides either (UART_CLKDIV

+ 1) input pulses or UART_CLKDIV input pulses per output pulse. A total of UART_CLKDIV_FRAG output pulses

are generated by dividing (UART_CLKDIV + 1) input pulses, and the remaining (16 - UART_CLKDIV_FRAG)

output pulses are generated by dividing UART_CLKDIV input pulses.

The output pulses are interleaved as shown in Figure 13-3 below, to make the output timing more uniform:

Figure 13­3. UART Controllers Division

To support IrDA (see Section 13.4.6 for details), the fractional clock divider for IrDA data transmission generates

clock signals divided by 16 × UART_CLKDIV_REG. This divider works similarly as the one elaborated above: it

takes UART_CLKDIV/16 as the integer value and the lowest four bits of UART_CLKDIV as the fractional

value.

13.4.3.2 Baud Rate Detection

Automatic baud rate detection (Autobaud) on UARTs is enabled by setting UART_AUTOBAUD_EN. The

Baudrate_Detect module shown in Figure 13-1 filters any noise whose pulse width is shorter than

UART_GLITCH_FILT.

Before communication starts, the transmitter could send random data to the receiver for baud rate detection.

UART_LOWPULSE_MIN_CNT stores the minimum low pulse width, UART_HIGHPULSE_MIN_CNT stores the

Espressif Systems 233
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

minimum high pulse width, UART_POSEDGE_MIN_CNT stores the minimum pulse width between two rising

edges, and UART_NEGEDGE_MIN_CNT stores the minimum pulse width between two falling edges. These four

fields are read by software to determine the transmitter’s baud rate.

Figure 13­4. The Timing Diagram of Weak UART Signals Along Falling Edges

Baud rate can be determined in the following three ways:

1. Normally, to avoid sampling erroneous data along rising or falling edges in semi-stable state, which results

in inaccuracy of UART_LOWPULSE_MIN_CNT or UART_HIGHPULSE_MIN_CNT, use a weighted average

of these two values to eliminate errors. In this case, baud rate is calculated as follows:

Buart =
fclk

(UART_LOWPULSE_MIN_CNT + UART_HIGHPULSE_MIN_CNT + 2)/2

2. If UART signals are weak along falling edges as shown in Figure 13-4, which leads to inaccurate average of

UART_LOWPULSE_MIN_CNT and UART_HIGHPULSE_MIN_CNT, use UART_POSEDGE_MIN_CNT to

determine the transmitter’s baud rate as follows:

Buart =
fclk

(UART_POSEDGE_MIN_CNT + 1)/2

3. If UART signals are weak along rising edges, use UART_NEGEDGE_MIN_CNT to determine the

transmitter’s baud rate as follows:

Buart =
fclk

(UART_NEGEDGE_MIN_CNT + 1)/2

13.4.4 UART Data Frame

Figure 13­5. Structure of UART Data Frame

Figure 13-5 shows the basic structure of a data frame. A frame starts with one START bit, and ends with STOP

bits which can be 1, 1.5, 2 or 3 bits long, configured by UART_STOP_BIT_NUM, UART_DL1_EN and

UART_DL0_EN. The START bit is logical low, whereas STOP bits are logical high.

Espressif Systems 234
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

The actual data length can be anywhere between 5 ~ 8 bit, configured by UART_BIT_NUM. When

UART_PARITY_EN is set, a parity bit is added after data bits. UART_PARITY is used to choose even parity or

odd parity. When the receiver detects a parity bit error in data received, a UART_PARITY_ERR_INT interrupt is

generated, and the data received is still stored into RX FIFO. When the receiver detects a data frame error, a

UART_FRM_ERR_INT interrupt is generated, and the data received by default is stored into RX FIFO.

If all data in Tx_FIFO has been sent, a UART_TX_DONE_INT interrupt is generated. After this, if the

UART_TXD_BRK bit is set then the transmitter will send several NULL characters in which the TX data line is

logical low. The number of NULL characters is configured by UART_TX_BRK_NUM. Once the transmitter has

sent all NULL characters, a UART_TX_BRK_DONE_INT interrupt is generated. The minimum interval between

data frames can be configured using UART_TX_IDLE_NUM. If the transmitter stays idle for UART_TX_IDLE_NUM

or more time, a UART_TX_BRK_IDLE_DONE_INT interrupt is generated.

Figure 13­6. AT_CMD Character Structure

Figure 13-6 is the structure of a special character AT_CMD. If the receiver constantly receives AT_CMD_CHAR

and the following conditions are met, a UART_AT_CMD_CHAR_DET_INT interrupt is generated.

• The interval between the first AT_CMD_CHAR and the last non-AT_CMD_CHAR character is at least UART

_PRE_IDLE_NUM cycles.

• The interval between two AT_CMD_CHAR characters is less than UART_RX_GAP_TOUT cycles.

• The number of AT_CMD_CHAR characters is equal to or greater than UART_CHAR_NUM.

• The interval between the last AT_CMD_CHAR character and next non-AT_CMD_CHAR character is at least

UART_POST_IDLE_NUM cycles.

13.4.5 RS485

The two UART controllers support RS485 protocol. This protocol uses differential signals to transmit data, so it

can communicate over longer distances at higher bit rates than RS232. RS485 has two-wire half-duplex mode

and four-wire full-duplex mode. UART controllers support two-wire half-duplex transmission and bus snooping.

In a two-wire RS485 multidrop network, there can be 32 slaves at most.

13.4.5.1 Driver Control

As shown in Figure 13-7, in a two-wire multidrop network, an external RS485 transceiver is needed for differential

to single-ended conversion. A RS485 transceiver contains a driver and a receiver. When a UART controller is not

in transmitter mode, the connection to the differential line can be broken by disabling the driver. When DE is 1,

the driver is enabled; when DE is 0, the driver is disabled.

The UART receiver converts differential signals to single-ended signals via an external receiver. RE is the enable

control signal for the receiver. When RE is 0, the receiver is enabled; when RE is 1, the receiver is disabled. If RE

is configured as 0, the UART controller is allowed to snoop data on the bus, including data sent by itself.

Espressif Systems 235
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

DE can be controlled by either software or hardware. To reduce the cost of software, in our design DE is

controlled by hardware. As shown in Figure 13-7, DE is connected to dtrn_out of UART (please refer to Section

13.4.8.1 for more details).

Figure 13­7. Driver Control Diagram in RS485 Mode

13.4.5.2 Turnaround Delay

By default, the two UART controllers work in receiver mode. When a UART controller is switched from transmitter

mode to receiver mode, the RS485 protocol requires a turnaround delay of one cycle after the stop bit. The

UART transmitter supports adding a turnaround delay of one cycle before the start bit or after the stop bit. When

UART_DL0_EN is set, a turnaround delay of one cycle is added before the start bit; when UART_DL1_EN is set,

a turnaround delay of one cycle is added after the stop bit.

13.4.5.3 Bus Snooping

In a two-wire multidrop network, UART controllers support bus snooping if RE of the external RS485 transceiver

is 0. By default, a UART controller is not allowed to transmit and receive data simultaneously. If

UART_RS485TX_RX_EN is set and the external RS485 transceiver is configured as in Figure 13-7, a UART

controller may receive data in transmitter mode and snoop the bus. If UART_RS485RXBY_TX_EN is set, a UART

controller may transmit data in receiver mode.

The two UART controllers can snoop data sent by themselves. In transmitter mode, when a UART controller

monitors a collision between data sent and data received, a UART_RS485_CLASH_INT is generated; when a

UART controller monitor a data frame error, a UART_RS485_FRM_ERR_INT interrupt is generated; when a UART

controller monitors a polarity error, a UART_RS485_PARITY_ERR_INT is generated.

13.4.6 IrDA

IrDA protocol consists of three layers, namely the physical layer, the link access protocol, and the link

management protocol. The two UART controllers implement IrDA’s physical layer. In IrDA encoding, a UART

controller supports data rates up to 115.2 kbit/s (SIR, or serial infrared mode). As shown in Figure 13-8, the IrDA

encoder converts a NRZ (non-return to zero code) signal to a RZI (return to zero code) signal and sends it to the

external driver and infrared LED. This encoder uses modulated signals whose pulse width is 3/16 bits to indicate

logic “0”, and low levels to indicate logic “1”. The IrDA decoder receives signals from the infrared receiver and

converts them to NRZ signals. In most cases, the receiver is high when it is idle, and the encoder output polarity

is the opposite of the decoder input polarity. If a low pulse is detected, it indicates that a start bit has been

received.

When IrDA function is enabled, one bit is divided into 16 clock cycles. If the bit to be sent is zero, then the 9th,

10th and 11th clock cycle is high.

Espressif Systems 236
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Figure 13­8. The Timing Diagram of Encoding and Decoding in SIR mode

The IrDA transceiver is half-duplex, meaning that it cannot send and receive data simultaneously. As shown in

Figure 13-9, IrDA function is enabled by setting UART_IRDA_EN. When UART_IRDA_TX_EN is set (high), the

IrDA transceiver is enabled to send data and not allowed to receive data; when UART_IRDA_TX_EN is reset (low),

the IrDA transceiver is enabled to receive data and not allowed to send data.

Figure 13­9. IrDA Encoding and Decoding Diagram

13.4.7 Wake­up

UART0 and UART1 can be set as wake-up source. When a UART controller is in Light-sleep mode, Wakeup_Ctrl

counts up the rising edges of rxd_in. When the number of rising edges is greater than

(UART_ACTIVE_THRESHOLD + 2), a wake_up signal is generated and sent to RTC, which then wakes up

ESP32-C3.

13.4.8 Flow Control

UART controllers have two ways to control data flow, namely hardware flow control and software flow control.

Hardware flow control is achieved using output signal rtsn_out and input signal dsrn_in. Software flow control is

achieved by inserting special characters in data flow sent and detecting special characters in data flow

received.

Espressif Systems 237
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

13.4.8.1 Hardware Flow Control

Figure 13­10. Hardware Flow Control Diagram

Figure 13-10 shows hardware flow control of a UART controller. Hardware flow control uses output signal

rtsn_out and input signal dsrn_in. Figure 13-11 illustrates how these signals are connected between UART on

ESP32-C3 (hereinafter referred to as IU0) and the external UART (hereinafter referred to as EU0).

When rtsn_out of IU0 is low, EU0 is allowed to send data; when rtsn_out of IU0 is high, EU0 is notified to stop

sending data until rtsn_out of IU0 returns to low. The output signal rtsn_out can be controlled in two ways.

• Software control: Enter this mode by clearing UART_RX_FLOW_EN to 0. In this mode, the level of rtsn_out

is changed by configuring UART_SW_RTS.

• Hardware control: Enter this mode by setting UART_RX_FLOW_EN to 1. In this mode, rtsn_out is pulled

high when data in Rx_FIFO exceeds UART_RX_FLOW_THRHD.

ES P32-C3 UART

TX
Transmitter

Receiver RX

rtsn out
-

ctsn in
-

rtsn out

ctsn in

External UART

RX

Receiver

TX Transmitter

Figure 13­11. Connection between Hardware Flow Control Signals

When ctsn_in of IU0 is low, IU0 is allowed to send data; when ctsn_in is high, IU0 is not allowed to send data.

Espressif Systems 238
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

When IU0 detects an edge change of ctsn_in, a UART_CTS_CHG_INT interrupt is generated.

If dtrn_out of IU0 is high, it indicates that IU0 is ready to transmit data. dtrn_out is generated by configuring the

UART_SW_DTR field. When the IU0 transmitter detects a edge change of dsrn_in, a UART_DSR_CHG_INT

interrupt is generated. After this interrupt is detected, software can obtain the level of input signal dsrn_in by

reading UART_DSRN. If dsrn_in is high, it indicates that EU0 is ready to transmit data.

In a two-wire RS485 multidrop network enabled by setting UART_RS485_EN, dtrn_out is generated by hardware

and used for transmit/receive turnaround. When data transmission starts, dtrn_out is pulled high and the external

driver is enabled; when data transmission completes, dtrn_out is pulled low and the external driver is disabled.

Please note that when there is turnaround delay of one cycle added after the stop bit, dtrn_out is pulled low after

the delay.

UART loopback test is enabled by setting UART_LOOPBACK. In the test, UART output signal txd_out is

connected to its input signal rxd_in, rtsn_out is connected to ctsn_in, and dtrn_out is connected to dsrn_out. If

data sent matches data received, it indicates that UART controllers are working properly.

13.4.8.2 Software Flow Control

Instead of CTS/RTS lines, software flow control uses XON/XOFF characters to start or stop data transmission.

Such flow control is enabled by setting UART_SW_FLOW_CON_EN to 1.

When using software flow control, hardware automatically detects if there are XON/XOFF characters in data flow

received, and generate a UART_SW_XOFF_INT or a UART_SW_XON_INT interrupt accordingly. If an XOFF

character is detected, the transmitter stops data transmission once the current byte has been transmitted; if an

XON character is detected, the transmitter starts data transmission. In addition, software can force the

transmitter to stop sending data by setting UART_FORCE_XOFF, or to start sending data by setting

UART_FORCE_XON.

Software determines whether to insert flow control characters according to the remaining room in RX FIFO. When

UART_SEND_XOFF is set, the transmitter sends an XOFF character configured by UART_XOFF_CHAR after the

current byte in transmission; when UART_SEND_XON is set, the transmitter sends an XON character configured

by UART_XON_CHAR after the current byte in transmission. If the RX FIFO of a UART controller stores more data

than UART_XOFF_THRESHOLD, UART_SEND_XOFF is set by hardware. As a result, the transmitter sends an

XOFF character configured by UART_XOFF_CHAR after the current byte in transmission. If the RX FIFO of a

UART controller stores less data than UART_XON_THRESHOLD, UART_SEND_XON is set by hardware. As a

result, the transmitter sends an XON character configured by UART_XON_CHAR after the current byte in

transmission.

13.4.9 GDMA Mode

The two UART controllers on ESP32-C3 share one TX/RX GDMA (general direct memory access) channel via

UHCI. In GDMA mode, UART controllers support the decoding and encoding of HCI data packets. The

UHCI_UARTn_CE field determines which UART controller occupies the GDMA TX/RX channel.

Espressif Systems 239
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Figure 13­12. Data Transfer in GDMA Mode

Figure 13-12 shows how data is transferred using GDMA. Before GDMA receives data, software prepares an

inlink. GDMA_INLINK_ADDR_CHn points to the first receive descriptor in the inlink. After

GDMA_INLINK_START_CHn is set, UHCI sends data that UART has received to the decoder. The decoded data

is then stored into the RAM pointed by the inlink under the control of GDMA.

Before GDMA sends data, software prepares an outlink and data to be sent. GDMA_OUTLINK_ADDR_CHn

points to the first transmit descriptor in the outlink. After GDMA_OUTLINK_START_CHn is set, GDMA reads data

from the RAM pointed by outlink. The data is then encoded by the encoder, and sent sequentially by the UART

transmitter.

HCI data packets have separators at the beginning and the end, with data bits in the middle (separators + data

bits + separators). The encoder inserts separators in front of and after data bits, and replaces data bits identical

to separators with special characters. The decoder removes separators in front of and after data bits, and

replaces special characters with separators. There can be more than one continuous separator at the beginning

and the end of a data packet. The separator is configured by UHCI_SEPER_CHAR, 0xC0 by default. The special

character is configured by UHCI_ESC_SEQ0_CHAR0 (0xDB by default) and UHCI_ESC_SEQ0_CHAR1 (0xDD by

default). When all data has been sent, a GDMA_OUT_TOTAL_EOF_CHn_INT interrupt is generated. When all

data has been received, a GDMA_IN_SUC_EOF_CHn_INT is generated.

13.4.10 UART Interrupts

• UART_AT_CMD_CHAR_DET_INT: Triggered when the receiver detects an AT_CMD character.

• UART_RS485_CLASH_INT: Triggered when a collision is detected between the transmitter and the receiver

in RS485 mode.

• UART_RS485_FRM_ERR_INT: Triggered when an error is detected in the data frame sent by the

transmitter in RS485 mode.

• UART_RS485_PARITY_ERR_INT: Triggered when an error is detected in the parity bit sent by the

transmitter in RS485 mode.

• UART_TX_DONE_INT: Triggered when all data in the transmitter’s TX FIFO has been sent.

• UART_TX_BRK_IDLE_DONE_INT: Triggered when the transmitter stays idle for the minimum interval

(threshold) after sending the last data bit.

• UART_TX_BRK_DONE_INT: Triggered when the transmitter has sent all NULL characters after all data in TX

FIFO had been sent.

• UART_GLITCH_DET_INT: Triggered when the receiver detects a glitch in the middle of the start bit.

Espressif Systems 240
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

• UART_SW_XOFF_INT: Triggered when UART_SW_FLOW_CON_EN is set and the receiver receives a XOFF

character.

• UART_SW_XON_INT: Triggered when UART_SW_FLOW_CON_EN is set and the receiver receives a XON

character.

• UART_RXFIFO_TOUT_INT: Triggered when the receiver takes more time than UART_RX_TOUT_THRHD to

receive one byte.

• UART_BRK_DET_INT: Triggered when the receiver detects a NULL character after stop bits.

• UART_CTS_CHG_INT: Triggered when the receiver detects an edge change of CTSn signals.

• UART_DSR_CHG_INT: Triggered when the receiver detects an edge change of DSRn signals.

• UART_RXFIFO_OVF_INT: Triggered when the receiver receives more data than the capacity of RX FIFO.

• UART_FRM_ERR_INT: Triggered when the receiver detects a data frame error.

• UART_PARITY_ERR_INT: Triggered when the receiver detects a parity error.

• UART_TXFIFO_EMPTY_INT: Triggered when TX FIFO stores less data than what

UART_TXFIFO_EMPTY_THRHD specifies.

• UART_RXFIFO_FULL_INT: Triggered when the receiver receives more data than what

UART_RXFIFO_FULL_THRHD specifies.

• UART_WAKEUP_INT: Triggered when UART is woken up.

13.4.11 UHCI Interrupts

• UHCI_APP_CTRL1_INT: Triggered when software sets UHCI_APP_CTRL1_INT_RAW.

• UHCI_APP_CTRL0_INT: Triggered when software sets UHCI_APP_CTRL0_INT_RAW.

• UHCI_OUTLINK_EOF_ERR_INT: Triggered when an EOF error is detected in a transmit descriptor.

• UHCI_SEND_A_REG_Q_INT: Triggered when UHCI has sent a series of short packets using always_send.

• UHCI_SEND_S_REG_Q_INT: Triggered when UHCI has sent a series of short packets using single_send.

• UHCI_TX_HUNG_INT: Triggered when UHCI takes too long to read RAM using a GDMA transmit channel.

• UHCI_RX_HUNG_INT: Triggered when UHCI takes too long to receive data using a GDMA receive channel.

• UHCI_TX_START_INT: Triggered when GDMA detects a separator character.

• UHCI_RX_START_INT: Triggered when a separator character has been sent.

13.5 Programming Procedures

13.5.1 Register Type

All UART registers are in APB_CLK domain. According to whether clock domain crossing and synchronization

are required, UART registers that can be configured by software are classified into three types, namely immediate

registers, synchronous registers, and static registers. Immediate registers are read in APB_CLK domain, and take

effect after configured via the APB bus. Synchronous registers are read in Core Clock domain, and take effect

after synchronization. Static registers are also read in Core Clock domain, but would not change dynamically.

Espressif Systems 241
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Therefore, for static registers clock domain crossing is not required, and software can turn on and off the clock for

the UART transmitter or receiver to ensure that the configuration sampled in Core Clock domain is correct.

13.5.1.1 Synchronous Registers

Read in Core Clock domain, synchronous registers implement the clock domain crossing design to ensure that

their values sampled in Core Clock domain are correct. These registers as listed in Table 13-1 are configured as

follows:

• Enable register synchronization by clearing UART_UPDATE_CTRL to 0;

• Wait for UART_REG_UPDATE to become 0, which indicates the completion of last synchronization;

• Configure synchronous registers;

• Synchronize the configured values to Core Clock domain by writting 1 to UART_REG_UPDATE.

Table 13­1. UARTn Synchronous Registers

Register Field

UART_CLKDIV_REG UART_CLKDIV_FRAG[3:0]

UART_CLKDIV[11:0]

UART_CONF0_REG UART_AUTOBAUD_EN

UART_ERR_WR_MASK

UART_TXD_INV

UART_RXD_INV

UART_IRDA_EN

UART_TX_FLOW_EN

UART_LOOPBACK

UART_IRDA_RX_INV

UART_IRDA_TX_EN

UART_IRDA_WCTL

UART_IRDA_TX_EN

UART_IRDA_DPLX

UART_STOP_BIT_NUM

UART_BIT_NUM

UART_PARITY_EN

UART_PARITY

UART_FLOW_CONF_REG UART_SEND_XOFF

UART_SEND_XON

UART_FORCE_XOFF

UART_FORCE_XON

UART_XONOFF_DEL

UART_SW_FLOW_CON_EN

UART_TXBRK_CONF_REG UART_RS485_TX_DLY_NUM[3:0]

UART_RS485_RX_DLY_NUM

UART_RS485RXBY_TX_EN

UART_RS485TX_RX_EN

UART_DL1_EN

Espressif Systems 242
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

UART_DL0_EN

UART_RS485_EN

13.5.1.2 Static Registers

Static registers, though also read in Core Clock domain, would not change dynamically when UART controllers

are at work, so they do not implement the clock domain crossing design. These registers must be configured

when the UART transmitter or receiver is not at work. In this case, software can turn off the clock for the UART

transmitter or receiver, so that static registers are not sampled in their semi-stable state. When software turns on

the clock, the configured values are stable to be correctly sampled. Static registers as listed in Table 13-2 are

configured as follows:

• Turn off the clock for the UART transmitter by clearing UART_TX_SCLK_EN, or the clock for the UART

receiver by clearing UART_RX_SCLK_EN, depending on which one (transmitter or receiver) is not at work;

• Configure static registers;

• Turn on the clock for the UART transmitter by writing 1 to UART_TX_SCLK_EN, or the clock for the UART

receiver by writing 1 to UART_RX_SCLK_EN.

Table 13­2. UARTn Static Registers

Register Field

UART_RX_FILT_REG UART_GLITCH_FILT_EN

UART_GLITCH_FILT[7:0]

UART_SLEEP_CONF_REG UART_ACTIVE_THRESHOLD[9:0]

UART_SWFC_CONF0_REG UART_XOFF_CHAR[7:0]

UART_SWFC_CONF1_REG UART_XON_CHAR[7:0]

UART_IDLE_CONF_REG UART_TX_IDLE_NUM[9:0]

UART_AT_CMD_PRECNT_REG UART_PRE_IDLE_NUM[15:0]

UART_AT_CMD_POSTCNT_REG UART_POST_IDLE_NUM[15:0]

UART_AT_CMD_GAPTOUT_REG UART_RX_GAP_TOUT[15:0]

UART_AT_CMD_CHAR_REG UART_CHAR_NUM[7:0]

UART_AT_CMD_CHAR[7:0]

13.5.1.3 Immediate Registers

Except those listed in Table 13-1 and Table 13-2, registers that can be configured by software are immediate

registers read in APB_CLK domain, such as interrupt and FIFO configuration registers.

13.5.2 Detailed Steps

Figure 13-13 illustrates the process to program UART controllers, namely initialize UART, configure registers,

enable the UART transmitter or receiver, and finish data transmission.

Espressif Systems 243
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Figure 13­13. UART Programming Procedures

13.5.2.1 Initializing URATn

To initialize URATn:

• enable the clock for UART RAM by setting SYSTEM_UART_MEM_CLK_EN to 1;

• enable APB_CLK for UARTn by setting SYSTEM_UARTn_CLK_EN to 1;

• clear SYSTEM_UARTn_RST;

Espressif Systems 244
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

• write 1 to UART_RST_CORE;

• write 1 to SYSTEM_UARTn_RST;

• clear SYSTEM_UARTn_RST;

• clear UART_RST_CORE;

• enable register synchronization by clearing UART_UPDATE_CTRL.

13.5.2.2 Configuring URATn Communication

To configure URATn communication:

• wait for UART_REG_UPDATE to become 0, which indicates the completion of last synchronization;

• configure static registers (if any) following Section 13.5.1.2;

• select the clock source via UART_SCLK_SEL;

• configure divisor of the divider via UART_SCLK_DIV_NUM, UART_SCLK_DIV_A, and UART_SCLK_DIV_B;

• configure the baud rate for transmission via UART_CLKDIV and UART_CLKDIV_FRAG;

• configure data length via UART_BIT_NUM;

• configure odd or even parity check via UART_PARITY_EN and UART_PARITY;

• optional steps depending on application ...

• synchronize the configured values to Core Clock domain by writing 1 to UART_REG_UPDATE.

13.5.2.3 Enabling UARTn Transmitter and Sending Data

To enable UARTn transmitter:

• configure TXFIFO’s empty threshold via UART_TXFIFO_EMPTY_THRHD;

• disable UART_TXFIFO_EMPTY_INT interrupt by clearing UART_TXFIFO_EMPTY_INT_ENA;

• write data to be sent to UART_RXFIFO_RD_BYTE;

• clear UART_TXFIFO_EMPTY_INT interrupt by setting UART_TXFIFO_EMPTY_INT_CLR;

• enable UART_TXFIFO_EMPTY_INT interrupt by setting UART_TXFIFO_EMPTY_INT_ENA;

• detect UART_TXFIFO_EMPTY_INT and wait for the completion of data transmission.

13.5.2.4 Enabling UARTn Receiver and Retrieving Data

To enable UARTn receiver:

• configure RXFIFO’s full threshold via UART_RXFIFO_FULL_THRHD;

• enable UART_RXFIFO_FULL_INT interrupt by setting UART_RXFIFO_FULL_INT_ENA;

• detect UART_TXFIFO_FULL_INT and wait until the RXFIFO is full;

• read data from RXFIFO via UART_RXFIFO_RD_BYTE, and obtain the number of bytes received in RXFIFO

via UART_RXFIFO_CNT.

Espressif Systems 245
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

13.6 Register Summary

The addresses in this section are relative to UART Controller base address provided in Table 3-4 in Chapter 3

System and Memory.

Name Description Address Access

FIFO Configuration

UART_FIFO_REG FIFO data register 0x0000 RO

UART_MEM_CONF_REG UART threshold and allocation configuration 0x0060 R/W

Interrupt Register

UART_INT_RAW_REG Raw interrupt status 0x0004 R/WTC/SS

UART_INT_ST_REG Masked interrupt status 0x0008 RO

UART_INT_ENA_REG Interrupt enable bits 0x000C R/W

UART_INT_CLR_REG Interrupt clear bits 0x0010 WT

Configuration Register

UART_CLKDIV_REG Clock divider configuration 0x0014 R/W

UART_RX_FILT_REG RX Filter configuration 0x0018 R/W

UART_CONF0_REG Configuration register 0 0x0020 R/W

UART_CONF1_REG Configuration register 1 0x0024 R/W

UART_FLOW_CONF_REG Software flow control configuration 0x0034 varies

UART_SLEEP_CONF_REG Sleep mode configuration 0x0038 R/W

UART_SWFC_CONF0_REG Software flow control character configuration 0x003C R/W

UART_SWFC_CONF1_REG Software flow-control character configuration 0x0040 R/W

UART_TXBRK_CONF_REG TX break character configuration 0x0044 R/W

UART_IDLE_CONF_REG Frame-end idle configuration 0x0048 R/W

UART_RS485_CONF_REG RS485 mode configuration 0x004C R/W

UART_CLK_CONF_REG UART core clock configuration 0x0078 R/W

Status Register

UART_STATUS_REG UART status register 0x001C RO

UART_MEM_TX_STATUS_REG TX FIFO write and read offset address 0x0064 RO

UART_MEM_RX_STATUS_REG RX FIFO write and read offset address 0x0068 RO

UART_FSM_STATUS_REG UART transmit and receive status. 0x006C RO

Autobaud Register

UART_LOWPULSE_REG Autobaud minimum low pulse duration register 0x0028 RO

UART_HIGHPULSE_REG Autobaud minimum high pulse duration register 0x002C RO

UART_RXD_CNT_REG Autobaud edge change count register 0x0030 RO

UART_POSPULSE_REG Autobaud high pulse register 0x0070 RO

UART_NEGPULSE_REG Autobaud low pulse register 0x0074 RO

AT Escape Sequence Selection Configuration

UART_AT_CMD_PRECNT_REG Pre-sequence timing configuration 0x0050 R/W

UART_AT_CMD_POSTCNT_REG Post-sequence timing configuration 0x0054 R/W

UART_AT_CMD_GAPTOUT_REG Timeout configuration 0x0058 R/W

UART_AT_CMD_CHAR_REG AT escape sequence detection configuration 0x005C R/W

Version Register

UART_DATE_REG UART version control register 0x007C R/W

Espressif Systems 246
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Name Description Address Access

UART_ID_REG UART ID register 0x0080 varies

Name Description Address Access

Configuration Register

UHCI_CONF0_REG UHCI configuration register 0x0000 R/W

UHCI_CONF1_REG UHCI configuration register 0x0014 varies

UHCI_ESCAPE_CONF_REG Escape character configuration 0x0020 R/W

UHCI_HUNG_CONF_REG Timeout configuration 0x0024 R/W

UHCI_ACK_NUM_REG UHCI ACK number configuration 0x0028 varies

UHCI_QUICK_SENT_REG UHCI quick send configuration register 0x0030 varies

UHCI_REG_Q0_WORD0_REG Q0_WORD0 quick_sent register 0x0034 R/W

UHCI_REG_Q0_WORD1_REG Q0_WORD1 quick_sent register 0x0038 R/W

UHCI_REG_Q1_WORD0_REG Q1_WORD0 quick_sent register 0x003C R/W

UHCI_REG_Q1_WORD1_REG Q1_WORD1 quick_sent register 0x0040 R/W

UHCI_REG_Q2_WORD0_REG Q2_WORD0 quick_sent register 0x0044 R/W

UHCI_REG_Q2_WORD1_REG Q2_WORD1 quick_sent register 0x0048 R/W

UHCI_REG_Q3_WORD0_REG Q3_WORD0 quick_sent register 0x004C R/W

UHCI_REG_Q3_WORD1_REG Q3_WORD1 quick_sent register 0x0050 R/W

UHCI_REG_Q4_WORD0_REG Q4_WORD0 quick_sent register 0x0054 R/W

UHCI_REG_Q4_WORD1_REG Q4_WORD1 quick_sent register 0x0058 R/W

UHCI_REG_Q5_WORD0_REG Q5_WORD0 quick_sent register 0x005C R/W

UHCI_REG_Q5_WORD1_REG Q5_WORD1 quick_sent register 0x0060 R/W

UHCI_REG_Q6_WORD0_REG Q6_WORD0 quick_sent register 0x0064 R/W

UHCI_REG_Q6_WORD1_REG Q6_WORD1 quick_sent register 0x0068 R/W

UHCI_ESC_CONF0_REG Escape sequence configuration register 0 0x006C R/W

UHCI_ESC_CONF1_REG Escape sequence configuration register 1 0x0070 R/W

UHCI_ESC_CONF2_REG Escape sequence configuration register 2 0x0074 R/W

UHCI_ESC_CONF3_REG Escape sequence configuration register 3 0x0078 R/W

UHCI_PKT_THRES_REG Configure register for packet length 0x007C R/W

Interrupt Register

UHCI_INT_RAW_REG Raw interrupt status 0x0004 varies

UHCI_INT_ST_REG Masked interrupt status 0x0008 RO

UHCI_INT_ENA_REG Interrupt enable bits 0x000C R/W

UHCI_INT_CLR_REG Interrupt clear bits 0x0010 WT

UHCI Status Register

UHCI_STATE0_REG UHCI receive status 0x0018 RO

UHCI_STATE1_REG UHCI transmit status 0x001C RO

UHCI_RX_HEAD_REG UHCI packet header register 0x002C RO

Version Register

UHCI_DATE_REG UHCI version control register 0x0080 R/W

Espressif Systems 247
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

13.7 Registers

The addresses in this section are relative to UART Controller base address provided in Table 3-4 in Chapter 3

System and Memory.

Register 13.1. UART_FIFO_REG (0x0000)

(re
se

rve
d)

0 0

31 8

UART_
RXF

IFO
_R

D_B
YTE

0

7 0

Reset

UART_RXFIFO_RD_BYTE UARTn accesses FIFO via this register. (RO)

Register 13.2. UART_MEM_CONF_REG (0x0060)

(re
se

rve
d)

0 0 0 0

31 28

UART_
M

EM
_F

ORCE_P
U

0

27

UART_
M

EM
_F

ORCE_P
D

0

26

UART_
RX_

TO
UT_

TH
RHD

0xa

25 16

UART_
RX_

FL
OW

_T
HRHD

0x0

15 7

UART_
TX

_S
IZE

0x1

6 4

UART_
RX_

SIZE

1

3 1

(re
se

rve
d)

0

0

Reset

UART_RX_SIZE This register is used to configure the amount of mem allocated for RX FIFO. The

default number is 128 bytes. (R/W)

UART_TX_SIZE This register is used to configure the amount of mem allocated for TX FIFO. The

default number is 128 bytes. (R/W)

UART_RX_FLOW_THRHD This register is used to configure the maximum amount of data that can

be received when hardware flow control works. (R/W)

UART_RX_TOUT_THRHD This register is used to configure the threshold time that receiver takes

to receive one byte, in the unit of bit time (the time it takes to transfer one bit). The

UART_RXFIFO_TOUT_INT interrupt will be triggered when the receiver takes more time to receive

one byte with UART RX_TOUT_EN set to 1. (R/W)

UART_MEM_FORCE_PD Set this bit to force power down UART memory. (R/W)

UART_MEM_FORCE_PU Set this bit to force power up UART memory. (R/W)

Espressif Systems 248
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.3. UART_INT_RAW_REG (0x0004)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
W

AKEUP_IN
T_

RAW

0

19

UART_
AT

_C
M

D_C
HAR_D

ET_
IN

T_
RAW

0

18

UART_
RS48

5_
CLA

SH_IN
T_

RAW

0

17

UART_
RS48

5_
FR

M
_E

RR_IN
T_

RAW

0

16

UART_
RS48

5_
PA

RITY
_E

RR_IN
T_

RAW

0

15

UART_
TX

_D
ONE_IN

T_
RAW

0

14

UART_
TX

_B
RK_ID

LE
_D

ONE_IN
T_

RAW

0

13

UART_
TX

_B
RK_D

ONE_IN
T_

RAW

0

12

UART_
GLIT

CH_D
ET_

IN
T_

RAW

0

11

UART_
SW

_X
OFF

_IN
T_

RAW

0

10

UART_
SW

_X
ON_IN

T_
RAW

0

9

UART_
RXF

IFO
_T

OUT_
IN

T_
RAW

0

8

UART_
BRK_D

ET_
IN

T_
RAW

0

7

UART_
CTS

_C
HG_IN

T_
RAW

0

6

UART_
DSR_C

HG_IN
T_

RAW

0

5

UART_
RXF

IFO
_O

VF_
IN

T_
RAW

0

4

UART_
FR

M
_E

RR_IN
T_

RAW

0

3

UART_
PA

RITY
_E

RR_IN
T_

RAW

0

2

UART_
TX

FIF
O_E

M
PTY

_IN
T_

RAW

1

1

UART_
RXF

IFO
_F

ULL
_IN

T_
RAW

0

0

Reset

UART_RXFIFO_FULL_INT_RAW This interrupt raw bit turns to high level when receiver receives more

data than what UART_RXFIFO_FULL_THRHD specifies. (R/WTC/SS)

UART_TXFIFO_EMPTY_INT_RAW This interrupt raw bit turns to high level when the amount of data

in TX FIFO is less than what UART_TXFIFO_EMPTY_THRHD specifies. (R/WTC/SS)

UART_PARITY_ERR_INT_RAW This interrupt raw bit turns to high level when receiver detects a parity

error in the data. (R/WTC/SS)

UART_FRM_ERR_INT_RAW This interrupt raw bit turns to high level when receiver detects a data

frame error. (R/WTC/SS)

UART_RXFIFO_OVF_INT_RAW This interrupt raw bit turns to high level when receiver receives more

data than the FIFO can store. (R/WTC/SS)

UART_DSR_CHG_INT_RAW This interrupt raw bit turns to high level when receiver detects the edge

change of DSRn signal. (R/WTC/SS)

UART_CTS_CHG_INT_RAW This interrupt raw bit turns to high level when receiver detects the edge

change of CTSn signal. (R/WTC/SS)

UART_BRK_DET_INT_RAW This interrupt raw bit turns to high level when receiver detects a 0 after

the stop bit. (R/WTC/SS)

UART_RXFIFO_TOUT_INT_RAW This interrupt raw bit turns to high level when receiver takes more

time than UART_RX_TOUT_THRHD to receive a byte. (R/WTC/SS)

UART_SW_XON_INT_RAW This interrupt raw bit turns to high level when receiver receives XON char-

acter when UART_SW_FLOW_CON_EN is set to 1. (R/WTC/SS)

UART_SW_XOFF_INT_RAW This interrupt raw bit turns to high level when receiver receives XOFF

character when UART_SW_FLOW_CON_EN is set to 1. (R/WTC/SS)

UART_GLITCH_DET_INT_RAW This interrupt raw bit turns to high level when receiver detects a

glitch in the middle of a start bit. (R/WTC/SS)

Continued on the next page...

Espressif Systems 249
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.3. UART_INT_RAW_REG (0x0004)

Continued from the previous page...

UART_TX_BRK_DONE_INT_RAW This interrupt raw bit turns to high level when transmitter com-

pletes sending NULL characters, after all data in TX FIFO are sent. (R/WTC/SS)

UART_TX_BRK_IDLE_DONE_INT_RAW This interrupt raw bit turns to high level when transmitter

has kept the shortest duration after sending the last data. (R/WTC/SS)

UART_TX_DONE_INT_RAW This interrupt raw bit turns to high level when transmitter has sent out

all data in FIFO. (R/WTC/SS)

UART_RS485_PARITY_ERR_INT_RAW This interrupt raw bit turns to high level when receiver de-

tects a parity error from the echo of transmitter in RS485 mode. (R/WTC/SS)

UART_RS485_FRM_ERR_INT_RAW This interrupt raw bit turns to high level when receiver detects

a data frame error from the echo of transmitter in RS485 mode. (R/WTC/SS)

UART_RS485_CLASH_INT_RAW This interrupt raw bit turns to high level when detects a clash be-

tween transmitter and receiver in RS485 mode. (R/WTC/SS)

UART_AT_CMD_CHAR_DET_INT_RAW This interrupt raw bit turns to high level when receiver de-

tects the configured UART_AT_CMD CHAR. (R/WTC/SS)

UART_WAKEUP_INT_RAW This interrupt raw bit turns to high level when input RXD edge changes

more times than what UART_ACTIVE_THRESHOLD specifies in Light-sleep mode. (R/WTC/SS)

Espressif Systems 250
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.4. UART_INT_ST_REG (0x0008)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
W

AKEUP_IN
T_

ST

0

19

UART_
AT

_C
M

D_C
HAR_D

ET_
IN

T_
ST

0

18

UART_
RS48

5_
CLA

SH_IN
T_

ST

0

17

UART_
RS48

5_
FR

M
_E

RR_IN
T_

ST

0

16

UART_
RS48

5_
PA

RITY
_E

RR_IN
T_

ST

0

15

UART_
TX

_D
ONE_IN

T_
ST

0

14

UART_
TX

_B
RK_ID

LE
_D

ONE_IN
T_

ST

0

13

UART_
TX

_B
RK_D

ONE_IN
T_

ST

0

12

UART_
GLIT

CH_D
ET_

IN
T_

ST

0

11

UART_
SW

_X
OFF

_IN
T_

ST

0

10

UART_
SW

_X
ON_IN

T_
ST

0

9

UART_
RXF

IFO
_T

OUT_
IN

T_
ST

0

8

UART_
BRK_D

ET_
IN

T_
ST

0

7

UART_
CTS

_C
HG_IN

T_
ST

0

6

UART_
DSR_C

HG_IN
T_

ST

0

5

UART_
RXF

IFO
_O

VF_
IN

T_
ST

0

4

UART_
FR

M
_E

RR_IN
T_

ST

0

3

UART_
PA

RITY
_E

RR_IN
T_

ST

0

2

UART_
TX

FIF
O_E

M
PTY

_IN
T_

ST

0

1

UART_
RXF

IFO
_F

ULL
_IN

T_
ST

0

0

Reset

UART_RXFIFO_FULL_INT_ST This is the status bit for UART_RXFIFO_FULL_INT_RAW when

UART_RXFIFO_FULL_INT_ENA is set to 1. (RO)

UART_TXFIFO_EMPTY_INT_ST This is the status bit for UART_TXFIFO_EMPTY_INT_RAW when

UART_TXFIFO_EMPTY_INT_ENA is set to 1. (RO)

UART_PARITY_ERR_INT_ST This is the status bit for UART_PARITY_ERR_INT_RAW when

UART_PARITY_ERR_INT_ENA is set to 1. (RO)

UART_FRM_ERR_INT_ST This is the status bit for UART_FRM_ERR_INT_RAW when

UART_FRM_ERR_INT_ENA is set to 1. (RO)

UART_RXFIFO_OVF_INT_ST This is the status bit for UART_RXFIFO_OVF_INT_RAW when

UART_RXFIFO_OVF_INT_ENA is set to 1. (RO)

UART_DSR_CHG_INT_ST This is the status bit for UART_DSR_CHG_INT_RAW when

UART_DSR_CHG_INT_ENA is set to 1. (RO)

UART_CTS_CHG_INT_ST This is the status bit for UART_CTS_CHG_INT_RAW when

UART_CTS_CHG_INT_ENA is set to 1. (RO)

UART_BRK_DET_INT_ST This is the status bit for UART_BRK_DET_INT_RAW when

UART_BRK_DET_INT_ENA is set to 1. (RO)

UART_RXFIFO_TOUT_INT_ST This is the status bit for UART_RXFIFO_TOUT_INT_RAW when

UART_RXFIFO_TOUT_INT_ENA is set to 1. (RO)

UART_SW_XON_INT_ST This is the status bit for UART_SW_XON_INT_RAW when

UART_SW_XON_INT_ENA is set to 1. (RO)

UART_SW_XOFF_INT_ST This is the status bit for UART_SW_XOFF_INT_RAW when

UART_SW_XOFF_INT_ENA is set to 1. (RO)

UART_GLITCH_DET_INT_ST This is the status bit for UART_GLITCH_DET_INT_RAW when

UART_GLITCH_DET_INT_ENA is set to 1. (RO)

UART_TX_BRK_DONE_INT_ST This is the status bit for UART_TX_BRK_DONE_INT_RAW when

UART_TX_BRK_DONE_INT_ENA is set to 1. (RO)

Continued on the next page...

Espressif Systems 251
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.4. UART_INT_ST_REG (0x0008)

Continued from the previous page...

UART_TX_BRK_IDLE_DONE_INT_ST This is the status bit for

UART_TX_BRK_IDLE_DONE_INT_RAW when UART_TX_BRK_IDLE_DONE_INT_ENA is set

to 1. (RO)

UART_TX_DONE_INT_ST This is the status bit for UART_TX_DONE_INT_RAW when

UART_TX_DONE_INT_ENA is set to 1. (RO)

UART_RS485_PARITY_ERR_INT_ST This is the status bit for UART_RS485_PARITY_ERR_INT_RAW

when UART_RS485_PARITY_INT_ENA is set to 1. (RO)

UART_RS485_FRM_ERR_INT_ST This is the status bit for UART_RS485_FRM_ERR_INT_RAW

when UART_RS485_FM_ERR_INT_ENA is set to 1. (RO)

UART_RS485_CLASH_INT_ST This is the status bit for UART_RS485_CLASH_INT_RAW when

UART_RS485_CLASH_INT_ENA is set to 1. (RO)

UART_AT_CMD_CHAR_DET_INT_ST This is the status bit for UART_AT_CMD_DET_INT_RAW

when UART_AT_CMD_CHAR_DET_INT_ENA is set to 1. (RO)

UART_WAKEUP_INT_ST This is the status bit for UART_WAKEUP_INT_RAW when

UART_WAKEUP_INT_ENA is set to 1. (RO)

Espressif Systems 252
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.5. UART_INT_ENA_REG (0x000C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
W

AKEUP_IN
T_

ENA

0

19

UART_
AT

_C
M

D_C
HAR_D

ET_
IN

T_
ENA

0

18

UART_
RS48

5_
CLA

SH_IN
T_

ENA

0

17

UART_
RS48

5_
FR

M
_E

RR_IN
T_

ENA

0

16

UART_
RS48

5_
PA

RITY
_E

RR_IN
T_

ENA

0

15

UART_
TX

_D
ONE_IN

T_
ENA

0

14

UART_
TX

_B
RK_ID

LE
_D

ONE_IN
T_

ENA

0

13

UART_
TX

_B
RK_D

ONE_IN
T_

ENA

0

12

UART_
GLIT

CH_D
ET_

IN
T_

ENA

0

11

UART_
SW

_X
OFF

_IN
T_

ENA

0

10

UART_
SW

_X
ON_IN

T_
ENA

0

9

UART_
RXF

IFO
_T

OUT_
IN

T_
ENA

0

8

UART_
BRK_D

ET_
IN

T_
ENA

0

7

UART_
CTS

_C
HG_IN

T_
ENA

0

6

UART_
DSR_C

HG_IN
T_

ENA

0

5

UART_
RXF

IFO
_O

VF_
IN

T_
ENA

0

4

UART_
FR

M
_E

RR_IN
T_

ENA

0

3

UART_
PA

RITY
_E

RR_IN
T_

ENA

0

2

UART_
TX

FIF
O_E

M
PTY

_IN
T_

ENA

0

1

UART_
RXF

IFO
_F

ULL
_IN

T_
ENA

0

0

Reset

UART_RXFIFO_FULL_INT_ENA This is the enable bit for UART_RXFIFO_FULL_INT_ST register.

(R/W)

UART_TXFIFO_EMPTY_INT_ENA This is the enable bit for UART_TXFIFO_EMPTY_INT_ST register.

(R/W)

UART_PARITY_ERR_INT_ENA This is the enable bit for UART_PARITY_ERR_INT_ST register. (R/W)

UART_FRM_ERR_INT_ENA This is the enable bit for UART_FRM_ERR_INT_ST register. (R/W)

UART_RXFIFO_OVF_INT_ENA This is the enable bit for UART_RXFIFO_OVF_INT_ST register. (R/W)

UART_DSR_CHG_INT_ENA This is the enable bit for UART_DSR_CHG_INT_ST register. (R/W)

UART_CTS_CHG_INT_ENA This is the enable bit for UART_CTS_CHG_INT_ST register. (R/W)

UART_BRK_DET_INT_ENA This is the enable bit for UART_BRK_DET_INT_ST register. (R/W)

UART_RXFIFO_TOUT_INT_ENA This is the enable bit for UART_RXFIFO_TOUT_INT_ST register.

(R/W)

UART_SW_XON_INT_ENA This is the enable bit for UART_SW_XON_INT_ST register. (R/W)

UART_SW_XOFF_INT_ENA This is the enable bit for UART_SW_XOFF_INT_ST register. (R/W)

UART_GLITCH_DET_INT_ENA This is the enable bit for UART_GLITCH_DET_INT_ST register. (R/W)

UART_TX_BRK_DONE_INT_ENA This is the enable bit for UART_TX_BRK_DONE_INT_ST register.

(R/W)

UART_TX_BRK_IDLE_DONE_INT_ENA This is the enable bit for

UART_TX_BRK_IDLE_DONE_INT_ST register. (R/W)

UART_TX_DONE_INT_ENA This is the enable bit for UART_TX_DONE_INT_ST register. (R/W)

Continued on the next page...

Espressif Systems 253
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.5. UART_INT_ENA_REG (0x000C)

Continued from the previous page...

UART_RS485_PARITY_ERR_INT_ENA This is the enable bit for

UART_RS485_PARITY_ERR_INT_ST register. (R/W)

UART_RS485_FRM_ERR_INT_ENA This is the enable bit for UART_RS485_PARITY_ERR_INT_ST

register. (R/W)

UART_RS485_CLASH_INT_ENA This is the enable bit for UART_RS485_CLASH_INT_ST register.

(R/W)

UART_AT_CMD_CHAR_DET_INT_ENA This is the enable bit for

UART_AT_CMD_CHAR_DET_INT_ST register. (R/W)

UART_WAKEUP_INT_ENA This is the enable bit for UART_WAKEUP_INT_ST register. (R/W)

Espressif Systems 254
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.6. UART_INT_CLR_REG (0x0010)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
W

AKEUP_IN
T_

CLR

0

19

UART_
AT

_C
M

D_C
HAR_D

ET_
IN

T_
CLR

0

18

UART_
RS48

5_
CLA

SH_IN
T_

CLR

0

17

UART_
RS48

5_
FR

M
_E

RR_IN
T_

CLR

0

16

UART_
RS48

5_
PA

RITY
_E

RR_IN
T_

CLR

0

15

UART_
TX

_D
ONE_IN

T_
CLR

0

14

UART_
TX

_B
RK_ID

LE
_D

ONE_IN
T_

CLR

0

13

UART_
TX

_B
RK_D

ONE_IN
T_

CLR

0

12

UART_
GLIT

CH_D
ET_

IN
T_

CLR

0

11

UART_
SW

_X
OFF

_IN
T_

CLR

0

10

UART_
SW

_X
ON_IN

T_
CLR

0

9

UART_
RXF

IFO
_T

OUT_
IN

T_
CLR

0

8

UART_
BRK_D

ET_
IN

T_
CLR

0

7

UART_
CTS

_C
HG_IN

T_
CLR

0

6

UART_
DSR_C

HG_IN
T_

CLR

0

5

UART_
RXF

IFO
_O

VF_
IN

T_
CLR

0

4

UART_
FR

M
_E

RR_IN
T_

CLR

0

3

UART_
PA

RITY
_E

RR_IN
T_

CLR

0

2

UART_
TX

FIF
O_E

M
PTY

_IN
T_

CLR

0

1

UART_
RXF

IFO
_F

ULL
_IN

T_
CLR

0

0

Reset

UART_RXFIFO_FULL_INT_CLR Set this bit to clear UART_THE RXFIFO_FULL_INT_RAW interrupt.

(WT)

UART_TXFIFO_EMPTY_INT_CLR Set this bit to clear UART_TXFIFO_EMPTY_INT_RAW interrupt.

(WT)

UART_PARITY_ERR_INT_CLR Set this bit to clear UART_PARITY_ERR_INT_RAW interrupt. (WT)

UART_FRM_ERR_INT_CLR Set this bit to clear UART_FRM_ERR_INT_RAW interrupt. (WT)

UART_RXFIFO_OVF_INT_CLR Set this bit to clear UART_UART_RXFIFO_OVF_INT_RAW interrupt.

(WT)

UART_DSR_CHG_INT_CLR Set this bit to clear UART_DSR_CHG_INT_RAW interrupt. (WT)

UART_CTS_CHG_INT_CLR Set this bit to clear UART_CTS_CHG_INT_RAW interrupt. (WT)

UART_BRK_DET_INT_CLR Set this bit to clear UART_BRK_DET_INT_RAW interrupt. (WT)

UART_RXFIFO_TOUT_INT_CLR Set this bit to clear UART_RXFIFO_TOUT_INT_RAW interrupt. (WT)

UART_SW_XON_INT_CLR Set this bit to clear UART_SW_XON_INT_RAW interrupt. (WT)

UART_SW_XOFF_INT_CLR Set this bit to clear UART_SW_XOFF_INT_RAW interrupt. (WT)

UART_GLITCH_DET_INT_CLR Set this bit to clear UART_GLITCH_DET_INT_RAW interrupt. (WT)

UART_TX_BRK_DONE_INT_CLR Set this bit to clear UART_TX_BRK_DONE_INT_RAW interrupt.

(WT)

UART_TX_BRK_IDLE_DONE_INT_CLR Set this bit to clear UART_TX_BRK_IDLE_DONE_INT_RAW

interrupt. (WT)

UART_TX_DONE_INT_CLR Set this bit to clear UART_TX_DONE_INT_RAW interrupt. (WT)

UART_RS485_PARITY_ERR_INT_CLR Set this bit to clear UART_RS485_PARITY_ERR_INT_RAW

interrupt. (WT)

Continued on the next page...

Espressif Systems 255
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.6. UART_INT_CLR_REG (0x0010)

Continued from the previous page...

UART_RS485_FRM_ERR_INT_CLR Set this bit to clear UART_RS485_FRM_ERR_INT_RAW inter-

rupt. (WT)

UART_RS485_CLASH_INT_CLR Set this bit to clear UART_RS485_CLASH_INT_RAW interrupt.

(WT)

UART_AT_CMD_CHAR_DET_INT_CLR Set this bit to clear UART_AT_CMD_CHAR_DET_INT_RAW

interrupt. (WT)

UART_WAKEUP_INT_CLR Set this bit to clear UART_WAKEUP_INT_RAW interrupt. (WT)

Register 13.7. UART_CLKDIV_REG (0x0014)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UART_
CLK

DIV_F
RAG

0x0

23 20

(re
se

rve
d)

0 0 0 0 0 0 0 0

19 12

UART_
CLK

DIV

0x2b6

11 0

Reset

UART_CLKDIV The integral part of the frequency divisor. (R/W)

UART_CLKDIV_FRAG The decimal part of the frequency divisor. (R/W)

Register 13.8. UART_RX_FILT_REG (0x0018)

(re
se

rve
d)

0 0

31 9

UART_
GLIT

CH_F
ILT

_E
N

0

8

UART_
GLIT

CH_F
ILT

0x8

7 0

Reset

UART_GLITCH_FILT When input pulse width is lower than this value, the pulse is ignored. (R/W)

UART_GLITCH_FILT_EN Set this bit to enable RX signal filter. (R/W)

Espressif Systems 256
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.9. UART_CONF0_REG (0x0020)

(re
se

rve
d)

0 0 0

31 29

UART_
M

EM
_C

LK
_E

N

1

28

UART_
AUTO

BAUD_E
N

0

27

UART_
ERR_W

R_M
ASK

0

26

UART_
CLK

_E
N

0

25

UART_
DTR

_IN
V

0

24

UART_
RTS

_IN
V

0

23

UART_
TX

D_IN
V

0

22

UART_
DSR_IN

V

0

21

UART_
CTS

_IN
V

0

20

UART_
RXD

_IN
V

0

19

UART_
TX

FIF
O_R

ST

0

18

UART_
RXF

IFO
_R

ST

0

17

UART_
IR

DA_E
N

0

16

UART_
TX

_F
LO

W
_E

N

0

15

UART_
LO

OPBACK

0

14

UART_
IR

DA_R
X_

IN
V

0

13

UART_
IR

DA_T
X_

IN
V

0

12

UART_
IR

DA_W
CTL

0

11

UART_
IR

DA_T
X_

EN

0

10

UART_
IR

DA_D
PLX

0

9

UART_
TX

D_B
RK

0

8

UART_
SW

_D
TR

0

7

UART_
SW

_R
TS

0

6

UART_
STO

P_B
IT_

NUM

1

5 4

UART_
BIT_

NUM

3

3 2

UART_
PA

RITY
_E

N

0

1

UART_
PA

RITY

0

0

Reset

UART_PARITY This register is used to configure the parity check mode. (R/W)

UART_PARITY_EN Set this bit to enable UART parity check. (R/W)

UART_BIT_NUM This register is used to set the length of data. (R/W)

UART_STOP_BIT_NUM This register is used to set the length of stop bit. (R/W)

UART_SW_RTS This register is used to configure the software RTS signal which is used in software

flow control. (R/W)

UART_SW_DTR This register is used to configure the software DTR signal which is used in software

flow control. (R/W)

UART_TXD_BRK Set this bit to enbale transmitter to send NULL when the process of sending data

is done. (R/W)

UART_IRDA_DPLX Set this bit to enable IrDA loopback mode. (R/W)

UART_IRDA_TX_EN This is the start enable bit for IrDA transmitter. (R/W)

UART_IRDA_WCTL 1’h1: The IrDA transmitter’s 11th bit is the same as 10th bit. 1’h0: Set IrDA

transmitter’s 11th bit to 0. (R/W)

UART_IRDA_TX_INV Set this bit to invert the level of IrDA transmitter. (R/W)

UART_IRDA_RX_INV Set this bit to invert the level of IrDA receiver. (R/W)

UART_LOOPBACK Set this bit to enable UART loopback test mode. (R/W)

UART_TX_FLOW_EN Set this bit to enable flow control function for transmitter. (R/W)

UART_IRDA_EN Set this bit to enable IrDA protocol. (R/W)

UART_RXFIFO_RST Set this bit to reset the UART RX FIFO. (R/W)

UART_TXFIFO_RST Set this bit to reset the UART TX FIFO. (R/W)

UART_RXD_INV Set this bit to inverse the level value of UART RXD signal. (R/W)

UART_CTS_INV Set this bit to inverse the level value of UART CTS signal. (R/W)

UART_DSR_INV Set this bit to inverse the level value of UART DSR signal. (R/W)

Continued on the next page...

Espressif Systems 257
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.9. UART_CONF0_REG (0x0020)

Continued from the previous page...

UART_TXD_INV Set this bit to inverse the level value of UART TXD signal. (R/W)

UART_RTS_INV Set this bit to inverse the level value of UART RTS signal. (R/W)

UART_DTR_INV Set this bit to inverse the level value of UART DTR signal. (R/W)

UART_CLK_EN 1’h1: Force clock on for register. 1’h0: Support clock only when application writes

registers. (R/W)

UART_ERR_WR_MASK 1’h1: Receiver stops storing data into FIFO when data is wrong. 1’h0:

Receiver stores the data even if the received data is wrong. (R/W)

UART_AUTOBAUD_EN This is the enable bit for detecting baud rate. (R/W)

UART_MEM_CLK_EN UART memory clock gate enable signal. (R/W)

Register 13.10. UART_CONF1_REG (0x0024)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

UART_
RX_

TO
UT_

EN

0

21

UART_
RX_

FL
OW

_E
N

0

20

UART_
RX_

TO
UT_

FL
OW

_D
IS

0

19

UART_
DIS

_R
X_

DAT
_O

VF

0

18

UART_
TX

FIF
O_E

M
PTY

_T
HRHD

0x60

17 9

UART_
RXF

IFO
_F

ULL
_T

HRHD

0x60

8 0

Reset

UART_RXFIFO_FULL_THRHD It will produce UART_RXFIFO_FULL_INT interrupt when receiver re-

ceives more data than this register value. (R/W)

UART_TXFIFO_EMPTY_THRHD It will produce UART_TXFIFO_EMPTY_INT interrupt when the data

amount in TX FIFO is less than this register value. (R/W)

UART_DIS_RX_DAT_OVF Disable UART RX data overflow detection. (R/W)

UART_RX_TOUT_FLOW_DIS Set this bit to stop accumulating idle_cnt when hardware flow control

works. (R/W)

UART_RX_FLOW_EN This is the flow enable bit for UART receiver. (R/W)

UART_RX_TOUT_EN This is the enable bit for UART receiver’s timeout function. (R/W)

Espressif Systems 258
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.11. UART_FLOW_CONF_REG (0x0034)

(re
se

rve
d)

0 0

31 6

UART_
SEND_X

OFF

0

5

UART_
SEND_X

ON

0

4

UART_
FO

RCE_X
OFF

0

3

UART_
FO

RCE_X
ON

0

2

UART_
XO

NOFF
_D

EL

0

1

UART_
SW

_F
LO

W
_C

ON_E
N

0

0

Reset

UART_SW_FLOW_CON_EN Set this bit to enable software flow control. It is used with register

SW_XON or SW_XOFF. (R/W)

UART_XONOFF_DEL Set this bit to remove flow control char from the received data. (R/W)

UART_FORCE_XON Set this bit to enable the transmitter to go on sending data. (R/W)

UART_FORCE_XOFF Set this bit to stop the transmitter from sending data. (R/W)

UART_SEND_XON Set this bit to send XON character. It is cleared by hardware automatically.

(R/W/SS/SC)

UART_SEND_XOFF Set this bit to send XOFF character. It is cleared by hardware automatically.

(R/W/SS/SC)

Register 13.12. UART_SLEEP_CONF_REG (0x0038)

(re
se

rve
d)

0 0

31 10

UART_
ACTIV

E_T
HRESHOLD

0xf0

9 0

Reset

UART_ACTIVE_THRESHOLD The UART is activated from light-sleep mode when the input RXD edge

changes more times than this register value. (R/W)

Espressif Systems 259
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.13. UART_SWFC_CONF0_REG (0x003C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UART_
XO

FF
_C

HAR

0x13

16 9

UART_
XO

FF
_T

HRESHOLD

0xe0

8 0

Reset

UART_XOFF_THRESHOLD When the data amount in RX FIFO is more than this register value with

UART_SW_FLOW_CON_EN set to 1, it will send a XOFF character. (R/W)

UART_XOFF_CHAR This register stores the XOFF flow control character. (R/W)

Register 13.14. UART_SWFC_CONF1_REG (0x0040)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UART_
XO

N_C
HAR

0x11

16 9

UART_
XO

N_T
HRESHOLD

0x0

8 0

Reset

UART_XON_THRESHOLD When the data amount in RX FIFO is less than this register value with

UART_SW_FLOW_CON_EN set to 1, it will send a XON character. (R/W)

UART_XON_CHAR This register stores the XON flow control character. (R/W)

Register 13.15. UART_TXBRK_CONF_REG (0x0044)

(re
se

rve
d)

0 0

31 8

UART_
TX

_B
RK_N

UM

0xa

7 0

Reset

UART_TX_BRK_NUM This register is used to configure the number of 0 to be sent after the process

of sending data is done. It is active when txd_brk is set to 1. (R/W)

Espressif Systems 260
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.16. UART_IDLE_CONF_REG (0x0048)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
TX

_ID
LE

_N
UM

0x100

19 10

UART_
RX_

ID
LE

_T
HRHD

0x100

9 0

Reset

UART_RX_IDLE_THRHD It will produce frame end signal when receiver takes more time to receive

one byte data than this register value, in the unit of bit time (the time it takes to transfer one bit).

(R/W)

UART_TX_IDLE_NUM This register is used to configure the duration time between transfers, in the

unit of bit time (the time it takes to transfer one bit). (R/W)

Register 13.17. UART_RS485_CONF_REG (0x004C)

(re
se

rve
d)

0 0

31 10

UART_
RS48

5_
TX

_D
LY

_N
UM

0

9 6

UART_
RS48

5_
RX_

DLY
_N

UM

0

5

UART_
RS48

5R
XB

Y_T
X_

EN

0

4

UART_
RS48

5T
X_

RX_
EN

0

3

UART_
DL1

_E
N

0

2

UART_
DL0

_E
N

0

1

UART_
RS48

5_
EN

0

0

Reset

UART_RS485_EN Set this bit to choose the RS485 mode. (R/W)

UART_DL0_EN Set this bit to delay the stop bit by 1 bit. (R/W)

UART_DL1_EN Set this bit to delay the stop bit by 1 bit. (R/W)

UART_RS485TX_RX_EN Set this bit to enable receiver could receive data when the transmitter is

transmitting data in RS485 mode. (R/W)

UART_RS485RXBY_TX_EN 1’h1: enable RS485 transmitter to send data when RS485 receiver line

is busy. (R/W)

UART_RS485_RX_DLY_NUM This register is used to delay the receiver’s internal data signal. (R/W)

UART_RS485_TX_DLY_NUM This register is used to delay the transmitter’s internal data signal.

(R/W)

Espressif Systems 261
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.18. UART_CLK_CONF_REG (0x0078)

(re
se

rve
d)

0 0 0 0 0 0

31 26

UART_
RX_

SCLK
_E

N

1

25

UART_
TX

_S
CLK

_E
N

1

24

UART_
RST_

CORE

0

23

UART_
SCLK

_E
N

1

22

UART_
SCLK

_S
EL

3

21 20

UART_
SCLK

_D
IV_N

UM

0x1

19 12

UART_
SCLK

_D
IV_A

0x0

11 6

UART_
SCLK

_D
IV_B

0x0

5 0

Reset

UART_SCLK_DIV_B The denominator of the frequency divisor. (R/W)

UART_SCLK_DIV_A The numerator of the frequency divisor. (R/W)

UART_SCLK_DIV_NUM The integral part of the frequency divisor. (R/W)

UART_SCLK_SEL UART clock source select. 1: APB_CLK; 2: RTC20M_CLK; 3: XTAL_CLK. (R/W)

UART_SCLK_EN Set this bit to enable UART TX/RX clock. (R/W)

UART_RST_CORE Write 1 then write 0 to this bit, reset UART TX/RX/ (R/W)

UART_TX_SCLK_EN Set this bit to enable UART TX clock. (R/W)

UART_RX_SCLK_EN Set this bit to enable UART RX clock. (R/W)

Register 13.19. UART_STATUS_REG (0x001C)

UART_
TX

D

1

31

UART_
RTS

N

1

30

UART_
DTR

N

1

29

(re
se

rve
d)

0 0 0

28 26

UART_
TX

FIF
O_C

NT

0

25 16

UART_
RXD

1

15

UART_
CTS

N

1

14

UART_
DSRN

0

13

(re
se

rve
d)

0 0 0

12 10

UART_
RXF

IFO
_C

NT

0

9 0

Reset

UART_RXFIFO_CNT Stores the byte number of valid data in RX FIFO. (RO)

UART_DSRN The register represent the level value of the internal UART DSR signal. (RO)

UART_CTSN This register represent the level value of the internal UART CTS signal. (RO)

UART_RXD This register represent the level value of the internal UART RXD signal. (RO)

UART_TXFIFO_CNT Stores the byte number of data in TX FIFO. (RO)

UART_DTRN This bit represents the level of the internal UART DTR signal. (RO)

UART_RTSN This bit represents the level of the internal UART RTS signal. (RO)

UART_TXD This bit represents the level of the internal UART TXD signal. (RO)

Espressif Systems 262
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.20. UART_MEM_TX_STATUS_REG (0x0064)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

UART_
TX

_R
ADDR

0x0

20 11

(re
se

rve
d)

0

10

UART_
APB_T

X_
W

ADDR

0x0

9 0

Reset

UART_APB_TX_WADDR This register stores the offset address in TX FIFO when software writes TX

FIFO via APB. (RO)

UART_TX_RADDR This register stores the offset address in TX FIFO when TX FSM reads data via

Tx_FIFO_Ctrl. (RO)

Register 13.21. UART_MEM_RX_STATUS_REG (0x0068)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

UART_
RX_

W
ADDR

0x100

20 11

(re
se

rve
d)

0

10

UART_
APB_R

X_
RADDR

0x100

9 0

Reset

UART_APB_RX_RADDR This register stores the offset address in RX FIFO when software reads data

from RX FIFO via APB. UART0 is 10’h100. UART1 is 10’h180. (RO)

UART_RX_WADDR This register stores the offset address in RX FIFO when Rx_FIFO_Ctrl writes RX

FIFO. (RO)

Register 13.22. UART_FSM_STATUS_REG (0x006C)

(re
se

rve
d)

0 0

31 8

UART_
ST_

UTX
_O

UT

0

7 4

UART_
ST_

URX_
OUT

0

3 0

Reset

UART_ST_URX_OUT This is the status register of receiver. (RO)

UART_ST_UTX_OUT This is the status register of transmitter. (RO)

Espressif Systems 263
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.23. UART_LOWPULSE_REG (0x0028)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

UART_
LO

W
PULS

E_M
IN

_C
NT

0xfff

11 0

Reset

UART_LOWPULSE_MIN_CNT This register stores the value of the minimum duration time of the low

level pulse, in the unit of APB_CLK cycles. It is used in baud rate detection. (RO)

Register 13.24. UART_HIGHPULSE_REG (0x002C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

UART_
HIG

HPULS
E_M

IN
_C

NT

0xfff

11 0

Reset

UART_HIGHPULSE_MIN_CNT This register stores the value of the maximum duration time for the

high level pulse, in the unit of APB_CLK cycles. It is used in baud rate detection. (RO)

Register 13.25. UART_RXD_CNT_REG (0x0030)

(re
se

rve
d)

0 0

31 10

UART_
RXD

_E
DGE_C

NT

0x0

9 0

Reset

UART_RXD_EDGE_CNT This register stores the count of RXD edge change. It is used in baud rate

detection. (RO)

Espressif Systems 264
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.26. UART_POSPULSE_REG (0x0070)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

UART_
POSEDGE_M

IN
_C

NT

0xfff

11 0

Reset

UART_POSEDGE_MIN_CNT This register stores the minimal input clock count between two positive

edges. It is used in baud rate detection. (RO)

Register 13.27. UART_NEGPULSE_REG (0x0074)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

UART_
NEGEDGE_M

IN
_C

NT

0xfff

11 0

Reset

UART_NEGEDGE_MIN_CNT This register stores the minimal input clock count between two negative

edges. It is used in baud rate detection. (RO)

Register 13.28. UART_AT_CMD_PRECNT_REG (0x0050)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

UART_
PRE_ID

LE
_N

UM

0x901

15 0

Reset

UART_PRE_IDLE_NUM This register is used to configure the idle duration time before the first

AT_CMD is received by receiver, in the unit of bit time (the time it takes to transfer one bit). (R/W)

Espressif Systems 265
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.29. UART_AT_CMD_POSTCNT_REG (0x0054)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

UART_
POST_

ID
LE

_N
UM

0x901

15 0

Reset

UART_POST_IDLE_NUM This register is used to configure the duration time between the last

AT_CMD and the next data, in the unit of bit time (the time it takes to transfer one bit). (R/W)

Register 13.30. UART_AT_CMD_GAPTOUT_REG (0x0058)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

UART_
RX_

GAP_T
OUT

11

15 0

Reset

UART_RX_GAP_TOUT This register is used to configure the duration time between the AT_CMD

chars, in the unit of bit time (the time it takes to transfer one bit). (R/W)

Register 13.31. UART_AT_CMD_CHAR_REG (0x005C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

UART_
CHAR_N

UM

0x3

15 8

UART_
AT

_C
M

D_C
HAR

0x2b

7 0

Reset

UART_AT_CMD_CHAR This register is used to configure the content of AT_CMD character. (R/W)

UART_CHAR_NUM This register is used to configure the number of continuous AT_CMD chars re-

ceived by receiver. (R/W)

Espressif Systems 266
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.32. UART_DATE_REG (0x007C)

UART_
DAT

E

0x2008270

31 0

Reset

UART_DATE This is the version control register. (R/W)

Register 13.33. UART_ID_REG (0x0080)

UART_
REG_U

PDAT
E

0

31

UART_
UPDAT

E_C
TR

L

1

30

UART_
ID

0x000500

29 0

Reset

UART_ID This register is used to configure the UART_ID. (R/W)

UART_UPDATE_CTRL This bit used to control register synchronize mode. This register must be

cleared before write 1 to UART_REG_UPDATE to synchronize configure value to UART core clock.

(R/W)

UART_REG_UPDATE Software write 1 would synchronize registers into UART Core clock domain

and would be cleared by hardware after synchronization is done. (R/W/SC)

Espressif Systems 267
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.34. UHCI_CONF0_REG (0x0000)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

UHCI_U
ART_

RX_
BRK_E

OF_
EN

0

12

UHCI_C
LK

_E
N

0

11

UHCI_E
NCODE_C

RC_E
N

1

10

UHCI_L
EN_E

OF_
EN

1

9

UHCI_U
ART_

ID
LE

_E
OF_

EN

0

8

UHCI_C
RC_R

EC_E
N

1

7

UHCI_H
EAD_E

N

1

6

UHCI_S
EPER_E

N

1

5

(re
se

rve
d)

0

4

UHCI_U
ART1

_C
E

0

3

UHCI_U
ART0

_C
E

0

2

UHCI_R
X_

RST

0

1

UHCI_T
X_

RST

0

0

Reset

UHCI_TX_RST Write 1, then write 0 to this bit to reset decode state machine. (R/W)

UHCI_RX_RST Write 1, then write 0 to this bit to reset encode state machine. (R/W)

UHCI_UART0_CE Set this bit to link up HCI and UART0. (R/W)

UHCI_UART1_CE Set this bit to link up HCI and UART1. (R/W)

UHCI_SEPER_EN Set this bit to separate the data frame using a special char. (R/W)

UHCI_HEAD_EN Set this bit to encode the data packet with a formatting header. (R/W)

UHCI_CRC_REC_EN Set this bit to enable UHCI to receive the 16 bit CRC. (R/W)

UHCI_UART_IDLE_EOF_EN If this bit is set to 1, UHCI will end the payload receiving process when

UART has been in idle state. (R/W)

UHCI_LEN_EOF_EN If this bit is set to 1, UHCI decoder receiving payload data is end when the

receiving byte count has reached the specified value. The value is payload length indicated by UHCI

packet header when UHCI_HEAD_EN is 1 or the value is configuration value when UHCI_HEAD_EN

is 0. If this bit is set to 0, UHCI decoder receiving payload data is end when 0xc0 is received. (R/W)

UHCI_ENCODE_CRC_EN Set this bit to enable data integrity checking by appending a 16 bit CCITT-

CRC to end of the payload. (R/W)

UHCI_CLK_EN 1’b1: Force clock on for register. 1’b0: Support clock only when application writes

registers. (R/W)

UHCI_UART_RX_BRK_EOF_EN If this bit is set to 1, UHCI will end payload receive process when

NULL frame is received by UART. (R/W)

Espressif Systems 268
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.35. UHCI_CONF1_REG (0x0014)

(re
se

rve
d)

0 0

31 9

UHCI_S
W

_S
TA

RT

0

8

UHCI_W
AIT_

SW
_S

TA
RT

0

7

(re
se

rve
d)

0

6

UHCI_T
X_

ACK_N
UM

_R
E

1

5

UHCI_T
X_

CHECK_S
UM

_R
E

1

4

UHCI_S
AV

E_H
EAD

0

3

UHCI_C
RC_D

IS
ABLE

0

2

UHCI_C
HECK_S

EQ_E
N

1

1

UHCI_C
HECK_S

UM
_E

N

1

0

Reset

UHCI_CHECK_SUM_EN This is the enable bit to check header checksum when UHCI receives a

data packet. (R/W)

UHCI_CHECK_SEQ_EN This is the enable bit to check sequence number when UHCI receives a data

packet. (R/W)

UHCI_CRC_DISABLE Set this bit to support CRC calculation. Data Integrity Check Present bit in

UHCI packet frame should be 1. (R/W)

UHCI_SAVE_HEAD Set this bit to save the packet header when HCI receives a data packet. (R/W)

UHCI_TX_CHECK_SUM_RE Set this bit to encode the data packet with a checksum. (R/W)

UHCI_TX_ACK_NUM_RE Set this bit to encode the data packet with an acknowledgment when a

reliable packet is to be transmit. (R/W)

UHCI_WAIT_SW_START The uhci-encoder will jump to ST_SW_WAIT status if this register is set to

1. (R/W)

UHCI_SW_START If current UHCI_ENCODE_STATE is ST_SW_WAIT, the UHCI will start to send data

packet out when this bit is set to 1. (R/W/SC)

Espressif Systems 269
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.36. UHCI_ESCAPE_CONF_REG (0x0020)

(re
se

rve
d)

0 0

31 8

UHCI_R
X_

13
_E

SC_E
N

0

7

UHCI_R
X_

11
_E

SC_E
N

0

6

UHCI_R
X_

DB_E
SC_E

N

1

5

UHCI_R
X_

C0_
ESC_E

N

1

4

UHCI_T
X_

13
_E

SC_E
N

0

3

UHCI_T
X_

11
_E

SC_E
N

0

2

UHCI_T
X_

DB_E
SC_E

N

1

1

UHCI_T
X_

C0_
ESC_E

N

1

0

Reset

UHCI_TX_C0_ESC_EN Set this bit to enable decoding char 0xc0 when DMA receives data. (R/W)

UHCI_TX_DB_ESC_EN Set this bit to enable decoding char 0xdb when DMA receives data. (R/W)

UHCI_TX_11_ESC_EN Set this bit to enable decoding flow control char 0x11 when DMA receives

data. (R/W)

UHCI_TX_13_ESC_EN Set this bit to enable decoding flow control char 0x13 when DMA receives

data. (R/W)

UHCI_RX_C0_ESC_EN Set this bit to enable replacing 0xc0 by special char when DMA sends data.

(R/W)

UHCI_RX_DB_ESC_EN Set this bit to enable replacing 0xdb by special char when DMA sends data.

(R/W)

UHCI_RX_11_ESC_EN Set this bit to enable replacing flow control char 0x11 by special char when

DMA sends data. (R/W)

UHCI_RX_13_ESC_EN Set this bit to enable replacing flow control char 0x13 by special char when

DMA sends data. (R/W)

Espressif Systems 270
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.37. UHCI_HUNG_CONF_REG (0x0024)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UHCI_R
XF

IFO
_T

IM
EOUT_

ENA

1

23

UHCI_R
XF

IFO
_T

IM
EOUT_

SHIFT

0

22 20

UHCI_R
XF

IFO
_T

IM
EOUT

0x10

19 12

UHCI_T
XF

IFO
_T

IM
EOUT_

ENA

1

11

UHCI_T
XF

IFO
_T

IM
EOUT_

SHIFT

0

10 8

UHCI_T
XF

IFO
_T

IM
EOUT

0x10

7 0

Reset

UHCI_TXFIFO_TIMEOUT This register stores the timeout value. It will produce the

UHCI_TX_HUNG_INT interrupt when DMA takes more time to receive data. (R/W)

UHCI_TXFIFO_TIMEOUT_SHIFT This register is used to configure the tick count maximum value.

(R/W)

UHCI_TXFIFO_TIMEOUT_ENA This is the enable bit for Tx-FIFO receive-data timeout. (R/W)

UHCI_RXFIFO_TIMEOUT This register stores the timeout value. It will produce the

UHCI_RX_HUNG_INT interrupt when DMA takes more time to read data from RAM. (R/W)

UHCI_RXFIFO_TIMEOUT_SHIFT This register is used to configure the tick count maximum value.

(R/W)

UHCI_RXFIFO_TIMEOUT_ENA This is the enable bit for DMA send-data timeout. (R/W)

Register 13.38. UHCI_ACK_NUM_REG (0x0028)

(re
se

rve
d)

0 0

31 4

UHCI_A
CK_N

UM
_L

OAD

1

3

UHCI_A
CK_N

UM

0x0

2 0

Reset

UHCI_ACK_NUM This ACK number used in software flow control. (R/W)

UHCI_ACK_NUM_LOAD Set this bit to 1, the value configured by UHCI_ACK_NUM would be loaded.

(WT)

Espressif Systems 271
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.39. UHCI_QUICK_SENT_REG (0x0030)

(re
se

rve
d)

0 0

31 8

UHCI_A
LW

AY
S_S

END_E
N

0

7

UHCI_A
LW

AY
S_S

END_N
UM

0x0

6 4

UHCI_S
IN

GLE
_S

END_E
N

0

3

UHCI_S
IN

GLE
_S

END_N
UM

0x0

2 0

Reset

UHCI_SINGLE_SEND_NUM This register is used to specify the single_send register. (R/W)

UHCI_SINGLE_SEND_EN Set this bit to enable single_send mode to send short packet. (R/W/SC)

UHCI_ALWAYS_SEND_NUM This register is used to specify the always_send register. (R/W)

UHCI_ALWAYS_SEND_EN Set this bit to enable always_send mode to send short packet. (R/W)

Register 13.40. UHCI_REG_Q0_WORD0_REG (0x0034)

UHCI_S
END_Q

0_
W

ORD0

0x000000

31 0

Reset

UHCI_SEND_Q0_WORD0 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Register 13.41. UHCI_REG_Q0_WORD1_REG (0x0038)

UHCI_S
END_Q

0_
W

ORD1

0x000000

31 0

Reset

UHCI_SEND_Q0_WORD1 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Espressif Systems 272
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.42. UHCI_REG_Q1_WORD0_REG (0x003C)

UHCI_S
END_Q

1_
W

ORD0

0x000000

31 0

Reset

UHCI_SEND_Q1_WORD0 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Register 13.43. UHCI_REG_Q1_WORD1_REG (0x0040)

UHCI_S
END_Q

1_
W

ORD1

0x000000

31 0

Reset

UHCI_SEND_Q1_WORD1 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Register 13.44. UHCI_REG_Q2_WORD0_REG (0x0044)

UHCI_S
END_Q

2_
W

ORD0

0x000000

31 0

Reset

UHCI_SEND_Q2_WORD0 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Espressif Systems 273
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.45. UHCI_REG_Q2_WORD1_REG (0x0048)

UHCI_S
END_Q

2_
W

ORD1

0x000000

31 0

Reset

UHCI_SEND_Q2_WORD1 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Register 13.46. UHCI_REG_Q3_WORD0_REG (0x004C)

UHCI_S
END_Q

3_
W

ORD0

0x000000

31 0

Reset

UHCI_SEND_Q3_WORD0 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Register 13.47. UHCI_REG_Q3_WORD1_REG (0x0050)

UHCI_S
END_Q

3_
W

ORD1

0x000000

31 0

Reset

UHCI_SEND_Q3_WORD1 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Espressif Systems 274
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.48. UHCI_REG_Q4_WORD0_REG (0x0054)

UHCI_S
END_Q

4_
W

ORD0

0x000000

31 0

Reset

UHCI_SEND_Q4_WORD0 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Register 13.49. UHCI_REG_Q4_WORD1_REG (0x0058)

UHCI_S
END_Q

4_
W

ORD1

0x000000

31 0

Reset

UHCI_SEND_Q4_WORD1 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Register 13.50. UHCI_REG_Q5_WORD0_REG (0x005C)

UHCI_S
END_Q

5_
W

ORD0

0x000000

31 0

Reset

UHCI_SEND_Q5_WORD0 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Espressif Systems 275
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.51. UHCI_REG_Q5_WORD1_REG (0x0060)

UHCI_S
END_Q

5_
W

ORD1

0x000000

31 0

Reset

UHCI_SEND_Q5_WORD1 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Register 13.52. UHCI_REG_Q6_WORD0_REG (0x0064)

UHCI_S
END_Q

6_
W

ORD0

0x000000

31 0

Reset

UHCI_SEND_Q6_WORD0 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Register 13.53. UHCI_REG_Q6_WORD1_REG (0x0068)

UHCI_S
END_Q

6_
W

ORD1

0x000000

31 0

Reset

UHCI_SEND_Q6_WORD1 This register is used as a quick_sent register when specified by

UHCI_ALWAYS_SEND_NUM or UHCI_SINGLE_SEND_NUM. (R/W)

Espressif Systems 276
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.54. UHCI_ESC_CONF0_REG (0x006C)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UHCI_S
EPER_E

SC_C
HAR1

0xdc

23 16

UHCI_S
EPER_E

SC_C
HAR0

0xdb

15 8

UHCI_S
EPER_C

HAR

0xc0

7 0

Reset

UHCI_SEPER_CHAR This register is used to define the separate char that need to be encoded,

default is 0xc0. (R/W)

UHCI_SEPER_ESC_CHAR0 This register is used to define the first char of slip escape sequence

when encoding the separate char, default is 0xdb. (R/W)

UHCI_SEPER_ESC_CHAR1 This register is used to define the second char of slip escape sequence

when encoding the separate char, default is 0xdc. (R/W)

Register 13.55. UHCI_ESC_CONF1_REG (0x0070)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UHCI_E
SC_S

EQ0_
CHAR1

0xdd

23 16

UHCI_E
SC_S

EQ0_
CHAR0

0xdb

15 8

UHCI_E
SC_S

EQ0

0xdb

7 0

Reset

UHCI_ESC_SEQ0 This register is used to define a char that need to be encoded, default is 0xdb that

used as the first char of slip escape sequence. (R/W)

UHCI_ESC_SEQ0_CHAR0 This register is used to define the first char of slip escape sequence when

encoding the UHCI_ESC_SEQ0, default is 0xdb. (R/W)

UHCI_ESC_SEQ0_CHAR1 This register is used to define the second char of slip escape sequence

when encoding the UHCI_ESC_SEQ0, default is 0xdd. (R/W)

Espressif Systems 277
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.56. UHCI_ESC_CONF2_REG (0x0074)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UHCI_E
SC_S

EQ1_
CHAR1

0xde

23 16

UHCI_E
SC_S

EQ1_
CHAR0

0xdb

15 8

UHCI_E
SC_S

EQ1

0x11

7 0

Reset

UHCI_ESC_SEQ1 This register is used to define a char that need to be encoded, default is 0x11 that

used as flow control char. (R/W)

UHCI_ESC_SEQ1_CHAR0 This register is used to define the first char of slip escape sequence when

encoding the UHCI_ESC_SEQ1, default is 0xdb. (R/W)

UHCI_ESC_SEQ1_CHAR1 This register is used to define the second char of slip escape sequence

when encoding the UHCI_ESC_SEQ1, default is 0xde. (R/W)

Register 13.57. UHCI_ESC_CONF3_REG (0x0078)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UHCI_E
SC_S

EQ2_
CHAR1

0xdf

23 16

UHCI_E
SC_S

EQ2_
CHAR0

0xdb

15 8

UHCI_E
SC_S

EQ2

0x13

7 0

Reset

UHCI_ESC_SEQ2 This register is used to define a char that need to be decoded, default is 0x13 that

used as flow control char. (R/W)

UHCI_ESC_SEQ2_CHAR0 This register is used to define the first char of slip escape sequence when

encoding the UHCI_ESC_SEQ2, default is 0xdb. (R/W)

UHCI_ESC_SEQ2_CHAR1 This register is used to define the second char of slip escape sequence

when encoding the UHCI_ESC_SEQ2, default is 0xdf. (R/W)

Espressif Systems 278
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.58. UHCI_PKT_THRES_REG (0x007C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

UHCI_P
KT_

TH
RS

0x80

12 0

Reset

UHCI_PKT_THRS This register is used to configure the maximum value of the packet length when

UHCI_HEAD_EN is 0. (R/W)

Register 13.59. UHCI_INT_RAW_REG (0x0004)

(re
se

rve
d)

0 0

31 9

UHCI_A
PP_C

TR
L1

_IN
T_

RAW

0

8

UHCI_A
PP_C

TR
L0

_IN
T_

RAW

0

7

UHCI_O
UT_

EOF_
IN

T_
RAW

0

6

UHCI_S
END_A

_R
EG_Q

_IN
T_

RAW

0

5

UHCI_S
END_S

_R
EG_Q

_IN
T_

RAW

0

4

UHCI_T
X_

HUNG_IN
T_

RAW

0

3

UHCI_R
X_

HUNG_IN
T_

RAW

0

2

UHCI_T
X_

STA
RT_

IN
T_

RAW

0

1

UHCI_R
X_

STA
RT_

IN
T_

RAW

0

0

Reset

UHCI_RX_START_INT_RAW This is the interrupt raw bit. Triggered when a separator char has been

sent. (R/WTC/SS)

UHCI_TX_START_INT_RAW This is the interrupt raw bit. Triggered when UHCI detects a separator

char. (R/WTC/SS)

UHCI_RX_HUNG_INT_RAW This is the interrupt raw bit. Triggered when UHCI takes more time to

receive data than configure value. (R/WTC/SS)

UHCI_TX_HUNG_INT_RAW This is the interrupt raw bit. Triggered when UHCI takes more time to

read data from RAM than the configured value. (R/WTC/SS)

UHCI_SEND_S_REG_Q_INT_RAW This is the interrupt raw bit. Triggered when UHCI has sent out

a short packet using single_send registers. (R/WTC/SS)

UHCI_SEND_A_REG_Q_INT_RAW This is the interrupt raw bit. Triggered when UHCI has sent out

a short packet using always_send registers. (R/WTC/SS)

UHCI_OUT_EOF_INT_RAW This is the interrupt raw bit. Triggered when there are some errors in

EOF in the transmit data. (R/WTC/SS)

UHCI_APP_CTRL0_INT_RAW This is the interrupt raw bit. Triggered when set this bit to 1. Clear it

when write 0 to this bit. (R/W)

UHCI_APP_CTRL1_INT_RAW This is the interrupt raw bit. Triggered when set this bit to 1. Clear it

when write 0 to this bit. (R/W)

Espressif Systems 279
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.60. UHCI_INT_ST_REG (0x0008)

(re
se

rve
d)

0 0

31 9

UHCI_A
PP_C

TR
L1

_IN
T_

ST

0

8

UHCI_A
PP_C

TR
L0

_IN
T_

ST

0

7

UHCI_O
UTL

IN
K_E

OF_
ERR_IN

T_
ST

0

6

UHCI_S
END_A

_R
EG_Q

_IN
T_

ST

0

5

UHCI_S
END_S

_R
EG_Q

_IN
T_

ST

0

4

UHCI_T
X_

HUNG_IN
T_

ST

0

3

UHCI_R
X_

HUNG_IN
T_

ST

0

2

UHCI_T
X_

STA
RT_

IN
T_

ST

0

1

UHCI_R
X_

STA
RT_

IN
T_

ST

0

0

Reset

UHCI_RX_START_INT_ST This is the masked interrupt bit for UHCI_RX_START_INT interrupt when

UHCI_RX_START_INT_ENA is set to 1. (RO)

UHCI_TX_START_INT_ST This is the masked interrupt bit for UHCI_TX_START_INT interrupt when

UHCI_TX_START_INT_ENA is set to 1. (RO)

UHCI_RX_HUNG_INT_ST This is the masked interrupt bit for UHCI_RX_HUNG_INT interrupt when

UHCI_RX_HUNG_INT_ENA is set to 1. (RO)

UHCI_TX_HUNG_INT_ST This is the masked interrupt bit for UHCI_TX_HUNG_INT interrupt when

UHCI_TX_HUNG_INT_ENA is set to 1. (RO)

UHCI_SEND_S_REG_Q_INT_ST This is the masked interrupt bit for UHCI_SEND_S_REQ_Q_INT in-

terrupt when UHCI_SEND_S_REQ_Q_INT_ENA is set to 1. (RO)

UHCI_SEND_A_REG_Q_INT_ST This is the masked interrupt bit for UHCI_SEND_A_REQ_Q_INT in-

terrupt when UHCI_SEND_A_REQ_Q_INT_ENA is set to 1. (RO)

UHCI_OUTLINK_EOF_ERR_INT_ST This is the masked interrupt bit for

UHCI_OUTLINK_EOF_ERR_INT interrupt when UHCI_OUTLINK_EOF_ERR_INT_ENA is set

to 1. (RO)

UHCI_APP_CTRL0_INT_ST This is the masked interrupt bit for UHCI_APP_CTRL0_INT interrupt

when UHCI_APP_CTRL0_INT_ENA is set to 1. (RO)

UHCI_APP_CTRL1_INT_ST This is the masked interrupt bit for UHCI_APP_CTRL1_INT interrupt

when UHCI_APP_CTRL1_INT_ENA is set to 1. (RO)

Espressif Systems 280
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.61. UHCI_INT_ENA_REG (0x000C)

(re
se

rve
d)

0 0

31 9

UHCI_A
PP_C

TR
L1

_IN
T_

ENA

0

8

UHCI_A
PP_C

TR
L0

_IN
T_

ENA

0

7

UHCI_O
UTL

IN
K_E

OF_
ERR_IN

T_
ENA

0

6

UHCI_S
END_A

_R
EG_Q

_IN
T_

ENA

0

5

UHCI_S
END_S

_R
EG_Q

_IN
T_

ENA

0

4

UHCI_T
X_

HUNG_IN
T_

ENA

0

3

UHCI_R
X_

HUNG_IN
T_

ENA

0

2

UHCI_T
X_

STA
RT_

IN
T_

ENA

0

1

UHCI_R
X_

STA
RT_

IN
T_

ENA

0

0

Reset

UHCI_RX_START_INT_ENA This is the interrupt enable bit for UHCI_RX_START_INT interrupt. (R/W)

UHCI_TX_START_INT_ENA This is the interrupt enable bit for UHCI_TX_START_INT interrupt. (R/W)

UHCI_RX_HUNG_INT_ENA This is the interrupt enable bit for UHCI_RX_HUNG_INT interrupt. (R/W)

UHCI_TX_HUNG_INT_ENA This is the interrupt enable bit for UHCI_TX_HUNG_INT interrupt. (R/W)

UHCI_SEND_S_REG_Q_INT_ENA This is the interrupt enable bit for UHCI_SEND_S_REQ_Q_INT

interrupt. (R/W)

UHCI_SEND_A_REG_Q_INT_ENA This is the interrupt enable bit for UHCI_SEND_A_REQ_Q_INT

interrupt. (R/W)

UHCI_OUTLINK_EOF_ERR_INT_ENA This is the interrupt enable bit for

UHCI_OUTLINK_EOF_ERR_INT interrupt. (R/W)

UHCI_APP_CTRL0_INT_ENA This is the interrupt enable bit for UHCI_APP_CTRL0_INT interrupt.

(R/W)

UHCI_APP_CTRL1_INT_ENA This is the interrupt enable bit for UHCI_APP_CTRL1_INT interrupt.

(R/W)

Espressif Systems 281
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.62. UHCI_INT_CLR_REG (0x0010)

(re
se

rve
d)

0 0

31 9

UHCI_A
PP_C

TR
L1

_IN
T_

CLR

0

8

UHCI_A
PP_C

TR
L0

_IN
T_

CLR

0

7

UHCI_O
UTL

IN
K_E

OF_
ERR_IN

T_
CLR

0

6

UHCI_S
END_A

_R
EG_Q

_IN
T_

CLR

0

5

UHCI_S
END_S

_R
EG_Q

_IN
T_

CLR

0

4

UHCI_T
X_

HUNG_IN
T_

CLR

0

3

UHCI_R
X_

HUNG_IN
T_

CLR

0

2

UHCI_T
X_

STA
RT_

IN
T_

CLR

0

1

UHCI_R
X_

STA
RT_

IN
T_

CLR

0

0

Reset

UHCI_RX_START_INT_CLR Set this bit to clear UHCI_RX_START_INT interrupt. (WT)

UHCI_TX_START_INT_CLR Set this bit to clear UHCI_TX_START_INT interrupt. (WT)

UHCI_RX_HUNG_INT_CLR Set this bit to clear UHCI_RX_HUNG_INT interrupt. (WT)

UHCI_TX_HUNG_INT_CLR Set this bit to clear UHCI_TX_HUNG_INT interrupt. (WT)

UHCI_SEND_S_REG_Q_INT_CLR Set this bit to clear UHCI_SEND_S_REQ_Q_INT interrupt. (WT)

UHCI_SEND_A_REG_Q_INT_CLR Set this bit to clear UHCI_SEND_A_REQ_Q_INT interrupt. (WT)

UHCI_OUTLINK_EOF_ERR_INT_CLR Set this bit to clear UHCI_OUTLINK_EOF_ERR_INT interrupt.

(WT)

UHCI_APP_CTRL0_INT_CLR Set this bit to clear UHCI_APP_CTRL0_INT interrupt. (WT)

UHCI_APP_CTRL1_INT_CLR Set this bit to clear UHCI_APP_CTRL1_INT interrupt. (WT)

Register 13.63. UHCI_STATE0_REG (0x0018)

(re
se

rve
d)

0 0

31 6

UHCI_D
ECODE_S

TA
TE

0

5 3

UHCI_R
X_

ERR_C
AUSE

0

2 0

Reset

UHCI_RX_ERR_CAUSE This register indicates the error type when DMA has received a packet with

error. 3’b001: Checksum error in HCI packet; 3’b010: Sequence number error in HCI packet;

3’b011: CRC bit error in HCI packet; 3’b100: 0xc0 is found but received HCI packet is not end;

3’b101: 0xc0 is not found when receiving HCI packet is end; 3’b110: CRC check error. (RO)

UHCI_DECODE_STATE UHCI decoder status. (RO)

Espressif Systems 282
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

13 UART Controller (UART)

Register 13.64. UHCI_STATE1_REG (0x001C)

(re
se

rve
d)

0 0

31 3

UHCI_E
NCODE_S

TA
TE

0

2 0

Reset

UHCI_ENCODE_STATE UHCI encoder status. (RO)

Register 13.65. UHCI_RX_HEAD_REG (0x002C)

UHCI_R
X_

HEAD

0x000000

31 0

Reset

UHCI_RX_HEAD This register stores the header of the current received packet. (RO)

Register 13.66. UHCI_DATE_REG (0x0080)

UHCI_D
AT

E

0x2007170

31 0

Reset

UHCI_DATE This is the version control register. (R/W)

Espressif Systems 283
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

14 Two­wire Automotive Interface (TWAI)

The Two-wire Automotive Interface (TWAI®) is a multi-master, multi-cast communication protocol with functions

such as error detection and signaling and inbuilt message priorities and arbitration. The TWAI protocol is suited

for automotive and industrial applications (see Section 14.2 for more details).

ESP32-C3 contains a TWAI controller that can be connected to the TWAI bus via an external transceiver. The

TWAI controller contains numerous advanced features, and can be utilized in a wide range of use cases such as

automotive products, industrial automation controls, building automation, etc.

14.1 Features

The TWAI controller on ESP32-C3 supports the following features:

• Compatible with ISO 11898-1 protocol

• Supports Standard Frame Format (11-bit ID) and Extended Frame Format (29-bit ID)

• Bit rates from 1 Kbit/s to 1 Mbit/s

• Multiple modes of operation

– Normal

– Listen-only (no influence on bus)

– Self-test (no acknowledgment required during data transmission)

• 64-byte Receive FIFO

• Special transmissions

– Single-shot transmissions (does not automatically re-transmit upon error)

– Self Reception (the TWAI controller transmits and receives messages simultaneously)

• Acceptance Filter (supports single and dual filter modes)

• Error detection and handling

– Error Counters

– Configurable Error Warning Limit

– Error Code Capture

– Arbitration Lost Capture

14.2 Functional Protocol

14.2.1 TWAI Properties

The TWAI protocol connects two or more nodes in a bus network, and allows nodes to exchange messages in a

latency bounded manner. A TWAI bus has the following properties.

Single Channel and Non­Return­to­Zero: The bus consists of a single channel to carry bits, and thus

communication is half-duplex. Synchronization is also implemented in this channel, so extra channels (e.g., clock

Espressif Systems 284
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

or enable) are not required. The bit stream of a TWAI message is encoded using the Non-Return-to-Zero (NRZ)

method.

Bit Values: The single channel can either be in a dominant or recessive state, representing a logical 0 and a

logical 1 respectively. A node transmitting data in a dominant state always overrides the other node transmitting

data in a recessive state. The physical implementation on the bus is left to the application level to decide (e.g.,

differential pair or a single wire).

Bit Stuffing: Certain fields of TWAI messages are bit-stuffed. A transmitter that transmits five consecutive bits of

the same value (e.g., dominant value or recessive value) should automatically insert a complementary bit.

Likewise, a receiver that receives five consecutive bits should treat the next bit as a stuffed bit. Bit stuffing is

applied to the following fields: SOF, arbitration field, control field, data field, and CRC sequence (see Section

14.2.2 for more details).

Multi­cast: All nodes receive the same bits as they are connected to the same bus. Data is consistent across all

nodes unless there is a bus error (see Section 14.2.3 for more details).

Multi­master: Any node can initiate a transmission. If a transmission is already ongoing, a node will wait until the

current transmission is over before initiating a new transmission.

Message Priority and Arbitration: If two or more nodes simultaneously initiate a transmission, the TWAI

protocol ensures that one node will win arbitration of the bus. The arbitration field of the message transmitted by

each node is used to determine which node will win arbitration.

Error Detection and Signaling: Each node actively monitors the bus for errors, and signals the detected errors

by transmitting an error frame.

Fault Confinement: Each node maintains a set of error counters that are incremented/decremented according

to a set of rules. When the error counters surpass a certain threshold, the node will automatically eliminate itself

from the network by switching itself off.

Configurable Bit Rate: The bit rate for a single TWAI bus is configurable. However, all nodes on the same bus

must operate at the same bit rate.

Transmitters and Receivers: At any point in time, a TWAI node can either be a transmitter or a receiver.

• A node generating a message is a transmitter. The node remains a transmitter until the bus is idle or until

the node loses arbitration. Please note that nodes that have not lost arbitration can all be transmitters.

• All nodes that are not transmitters are receivers.

14.2.2 TWAI Messages

TWAI nodes use messages to transmit data, and signal errors to other nodes when detecting errors on the bus.

Messages are split into various frame types, and some frame types will have different frame formats.

The TWAI protocol has of the following frame types:

• Data frame

• Remote frame

• Error frame

• Overload frame

• Interframe space

Espressif Systems 285
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

The TWAI protocol has the following frame formats:

• Standard Frame Format (SFF) that uses a 11-bit identifier

• Extended Frame Format (EFF) that uses a 29-bit identifier

14.2.2.1 Data Frames and Remote Frames

Data frames are used by nodes to send data to other nodes, and can have a payload of 0 to 8 data bytes.

Remote frames are used for nodes to request a data frame with the same identifier from other nodes, and thus

they do not contain any data bytes. However, data frames and remote frames share many fields. Figure 14-1

illustrates the fields and sub-fields of different frames and formats.

Figure 14­1. Bit Fields in Data Frames and Remote Frames

Arbitration Field

When two or more nodes transmits a data or remote frame simultaneously, the arbitration field is used to

determine which node will win arbitration of the bus. In the arbitration field, if a node transmits a recessive bit

while detects a dominant bit, this indicates that another node has overridden its recessive bit. Therefore, the node

transmitting the recessive bit has lost arbitration of the bus and should immediately switch to be a receiver.

The arbitration field primarily consists of a frame identifier that is transmitted from the most significant bit first.

Given that a dominant bit represents a logical 0, and a recessive bit represents a logical 1:

• A frame with the smallest ID value always wins arbitration.

• Given the same ID and format, data frames always prevail over remote frames due to their RTR bits being

dominant.

Espressif Systems 286
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

• Given the same first 11 bits of ID, a Standard Format Data Frame always prevails over an Extended Format

Data Frame due to its SRR bits being recessive.

Control Field

The control field primarily consists of the DLC (Data Length Code) which indicates the number of payload data

bytes for a data frame, or the number of requested data bytes for a remote frame. The DLC is transmitted from

the most significant bit first.

Data Field

The data field contains the actual payload data bytes of a data frame. Remote frames do not contain any data

field.

CRC Field

The CRC field primarily consists of a CRC sequence. The CRC sequence is a 15-bit cyclic redundancy code

calculated form the de-stuffed contents (everything from the SOF to the end of the data field) of a data or remote

frame.

ACK Field

The ACK field primarily consists of an ACK Slot and an ACK Delim. The ACK field indicates that the receiver has

received an effective message from the transmitter.

Table 14­1. Data Frames and Remote Frames in SFF and EFF

Data/Remote Frames Description

SOF The SOF (Start of Frame) is a single dominant bit used to synchronize nodes on

the bus.

Base ID The Base ID (ID.28 to ID.18) is the 11-bit identifier for SFF, or the first 11 bits of

the 29-bit identifier for EFF.

RTR The RTR (Remote Transmission Request) bit indicates whether the message is a

data frame (dominant) or a remote frame (recessive). This means that a remote

frame will always lose arbitration to a data frame if they have the same ID.

SRR The SRR (Substitute Remote Request) bit is transmitted in EFF to substitute for

the RTR bit at the same position in SFF.

IDE The IDE (Identifier Extension) bit indicates whether the message is SFF (dominant)

or EFF (recessive). This means that a SFF frame will always win arbitration over

an EFF frame if they have the same Base ID.

Extd ID The Extended ID (ID.17 to ID.0) is the remaining 18 bits of the 29-bit identifier for

EFF.

r1 The r1 bit (reserved bit 1) is always dominant.

r0 The r0 bit (reserved bit 0) is always dominant.

DLC The DLC (Data Length Code) is 4-bit long and should contain any value from 0

to 8. Data frames use the DLC to indicate the number of data bytes in the data

frame. Remote frames used the DLC to indicate the number of data bytes to

request from another node.

Data Bytes The data payload of data frames. The number of bytes should match the value

of DLC. Data byte 0 is transmitted first, and each data byte is transmitted from

the most significant bit first.

CRC Sequence The CRC sequence is a 15-bit cyclic redundancy code.

Espressif Systems 287
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Data/Remote Frames Description

CRC Delim The CRC Delim (CRC Delimiter) is a single recessive bit that follows the CRC

sequence.

ACK Slot The ACK Slot (Acknowledgment Slot) is intended for receiver nodes to indicate

that the data or remote frame was received without any issue. The transmitter

node will send a recessive bit in the ACK Slot and receiver nodes should override

the ACK Slot with a dominant bit if the frame was received without errors.

ACK Delim The ACK Delim (Acknowledgment Delimiter) is a single recessive bit.

EOF The EOF (End of Frame) marks the end of a data or remote frame, and consists

of seven recessive bits.

14.2.2.2 Error and Overload Frames

Error Frames

Error frames are transmitted when a node detects a bus error. Error frames notably consist of an Error Flag which

is made up of six consecutive bits of the same value, thus violating the bit-stuffing rule. Therefore, when a

particular node detects a bus error and transmits an error frame, all other nodes will then detect a stuff error and

transmit their own error frames in response. This has the effect of propagating the detection of a bus error across

all nodes on the bus.

When a node detects a bus error, it will transmit an error frame starting from the next bit. However, if the type of

bus error was a CRC error, then the error frame will start at the bit following the ACK Delim (see Section 14.2.3

for more details). The following Figure 14-2 shows different fields of an error frame:

Figure 14­2. Fields of an Error Frame

Table 14­2. Error Frame

Error Frame Description

Error Flag The Error Flag has two forms, the Active Error Flag consisting of 6 domi-

nant bits and the Passive Error Flag consisting of 6 recessive bits (unless

overridden by dominant bits of other nodes). Active Error Flags are sent

by error active nodes, whilst Passive Error Flags are sent by error passive

nodes.

Error Flag Superposition The Error Flag Superposition field meant to allow for other nodes on the

bus to transmit their respective Active Error Flags. The superposition field

can range from 0 to 6 bits, and ends when the first recessive bit is detected

(i.e., the first it of the Delimiter).

Error Delimeter The Delimiter field marks the end of the error/overload frame, and consists

of 8 recessive bits.

Overload Frames

Espressif Systems 288
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

An overload frame has the same bit fields as an error frame containing an Active Error Flag. The key difference is

in the cases that can trigger the transmission of an overload frame. Figure 14-3 below shows the bit fields of an

overload frame.

Figure 14­3. Fields of an Overload Frame

Table 14­3. Overload Frame

Overload Flag Description

Overload Flag Consists of 6 dominant bits. Same as an Active Error Flag.

Overload Flag Superposition Allows for the superposition of Overload Flags from other nodes, similar to an

Error Flag Superposition.

Overload Delimiter Consists of 8 recessive bits. Same as an Error Delimiter.

Overload frames will be transmitted under the following cases:

1. A receiver requires a delay of the next data or remote frame.

2. A dominant bit is detected at the first and second bit of intermission.

3. A dominant bit is detected at the eighth (last) bit of an Error Delimiter. Note that in this case, TEC and REC

will not be incremented (see Section 14.2.3 for more details).

Transmitting an overload frame due to one of the above cases must also satisfy the following rules:

• The start of an overload frame due to case 1 is only allowed to be started at the first bit time of an expected

intermission.

• The start of an overload frame due to case 2 and 3 is only allowed to be started one bit after detecting the

dominant bit.

• A maximum of two overload frames may be generated in order to delay the transmission of the next data or

remote frame.

14.2.2.3 Interframe Space

The Interframe Space acts as a separator between frames. Data frames and remote frames must be separated

from preceding frames by an Interframe Space, regardless of the preceding frame’s type (data frame, remote

frame, error frame, or overload frame). However, error frames and overload frames do not need to be separated

from preceding frames.

Figure 14-4 shows the fields within an Interframe Space:

Table 14­4. Interframe Space

Interframe Space Description

Intermission The Intermission consists of 3 recessive bits.

Espressif Systems 289
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Interframe Space Description

Suspend Transmission An Error Passive node that has just transmitted a message must include

a Suspend Transmission field. This field consists of 8 recessive bits. Error

Active nodes should not include this field.

Bus Idle The Bus Idle field is of arbitrary length. Bus Idle ends when an SOF is

transmitted. If a node has a pending transmission, the SOF should be

transmitted at the first bit following Intermission.

14.2.3 TWAI Errors

14.2.3.1 Error Types

Bus Errors in TWAI are categorized into the following types:

Bit Error

A Bit Error occurs when a node transmits a bit value (i.e., dominant or recessive) but the opposite bit is detected

(e.g., a dominant bit is transmitted but a recessive is detected). However, if the transmitted bit is recessive and is

located in the Arbitration Field or ACK Slot or Passive Error Flag, then detecting a dominant bit will not be

considered a Bit Error.

Stuff Error

A stuff error is detected when six consecutive bits of the same value are detected (which violats the bit-stuffing

encoding rules).

CRC Error

A receiver of a data or remote frame will calculate CRC based on the bits it has received. A CRC error occurs

when the CRC calculated by the receiver does not match the CRC sequence in the received data or remote

Frame.

Format Error

A Format Error is detected when a format-fixed bit field of a message contains an illegal bit. For example, the r1

and r0 fields must be dominant.

ACK Error

An ACK Error occurs when a transmitter does not detect a dominant bit at the ACK Slot.

14.2.3.2 Error States

TWAI nodes implement fault confinement by each maintaining two error counters, where the counter values

determine the error state. The two error counters are known as the Transmit Error Counter (TEC) and Receive

Error Counter (REC). TWAI has the following error states.

Espressif Systems 290
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Figure 14­4. The Fields within an Interframe Space

Error Active

An Error Active node is able to participate in bus communication and transmit an Active Error Flag when it

detects an error.

Error Passive

An Error Passive node is able to participate in bus communication, but can only transmit an Passive Error Flag

when it detects an error. Error Passive nodes that have transmitted a data or remote frame must also include the

Suspend Transmission field in the subsequent Interframe Space.

Bus Off

A Bus Off node is not permitted to influence the bus in any way (i.e., is not allowed to transmit data).

14.2.3.3 Error Counters

The TEC and REC are incremented/decremented according to the following rules. Note that more than one

rule can apply to a given message transfer.

1. When a receiver detects an error, the REC is increased by 1, except when the detected error was a Bit

Error during the transmission of an Active Error Flag or an Overload Flag.

2. When a receiver detects a dominant bit as the first bit after sending an Error Flag, the REC is increased by 8.

3. When a transmitter sends an Error Flag, the TEC is increased by 8. However, the following scenarios are

exempt from this rule:

• A transmitter is Error Passive since the transmitter generates an Acknowledgment Error because of

not detecting a dominant bit in the ACK Slot, while detecting a dominant bit when sending a passive

error flag. In this case, the TEC should not be increased.

• A transmitter transmits an Error Flag due to a Stuff Error during Arbitration. If the stuffed bit should

have been recessive but was monitored as dominant, then the TEC should not be increased.

4. If a transmitter detects a Bit Error whilst sending an Active Error Flag or Overload Flag, the TEC is increased

by 8.

5. If a receiver detects a Bit Error while sending an Active Error Flag or Overload Flag, the REC is increased by

8.

6. A node can tolerate up to 7 consecutive dominant bits after sending an Active/Passive Error Flag, or

Overload Flag. After detecting the 14th consecutive dominant bit (when sending an Active Error Flag or

Overload Flag), or the 8th consecutive dominant bit following a Passive Error Flag, a transmitter will

increase its TEC by 8 and a receiver will increase its REC by 8. Every additional 8 consecutive dominant

bits will also increase the TEC (for transmitters) or REC (for receivers) by 8 as well.

7. When a transmitter has transmitted a message (getting ACK and no errors until the EOF is complete), the

TEC is decremented by 1, unless the TEC is already at 0.

Espressif Systems 291
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

8. When a receiver successfully receives a message (no errors before ACK Slot, and successful sending of

ACK), the REC is decremented.

• If the REC is between 1 and 127, the REC will be decremented by 1.

• If the REC is greater than 127, the REC will be set to 127.

• If the REC is 0, the REC will remain 0.

9. A node becomes Error Passive when its TEC and/or REC is greater than or equal to 128. Though the node

becomes Error Passive, it still sends an Active Error Flag. Note that once the REC has reached to 128, any

further increases to its value are invalid until the REC returns to a value less than 128.

10. A node becomes Bus Off when its TEC is greater than or equal to 256.

11. An Error Passive node becomes Error Active when both the TEC and REC are less than or equal to 127.

12. A Bus Off node can become Error Active (with both its TEC and REC reset to 0) after it monitors 128

occurrences of 11 consecutive recessive bits on the bus.

14.2.4 TWAI Bit Timing

14.2.4.1 Nominal Bit

The TWAI protocol allows a TWAI bus to operate at a particular bit rate. However, all nodes within a TWAI bus

must operate at the same bit rate.

• The Nominal Bit Rate is defined as the number of bits transmitted per second.

• The Nominal Bit Time is defined as 1/Nominal Bit Rate.

A single Nominal Bit Time is divided into multiple segments, and each segment is made up of multiple Time

Quanta. A Time Quantum is a minimum unit of time, and is implemented as some form of prescaled clock signal

in each node. Figure 14-5 illustrates the segments within a single Nominal Bit Time.

TWAI controllers will operate in time steps of one Time Quanta where the state of the TWAI bus is analyzed. If the

bus states in two consecutive Time Quantas are different (i.e., recessive to dominant or vice versa), it means an

edge is generated. The intersection of PBS1 and PBS2 is considered the Sample Point and the sampled bus

value is considered the value of that bit.

Figure 14­5. Layout of a Bit

Espressif Systems 292
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Table 14­5. Segments of a Nominal Bit Time

Segment Description

SS The SS (Synchronization Segment) is 1 Time Quantum long. If all nodes are perfectly

synchronized, the edge of a bit will lie in the SS.

PBS1 PBS1 (Phase Buffer Segment 1) can be 1 to 16 Time Quanta long. PBS1 is meant

to compensate for the physical delay times within the network. PBS1 can also be

lengthened for synchronization purposes.

PBS2 PBS2 (Phase Buffer Segment 2) can be 1 to 8 Time Quanta long. PBS2 is meant to

compensate for the information processing time of nodes. PBS2 can also be shortened

for synchronization purposes.

14.2.4.2 Hard Synchronization and Resynchronization

Due to clock skew and jitter, the bit timing of nodes on the same bus may become out of phase. Therefore, a bit

edge may come before or after the SS. To ensure that the internal bit timing clocks of each node are kept in

phase, TWAI has various methods of synchronization. The Phase Error “e” is measured in the number of Time

Quanta and relative to the SS.

• A positive Phase Error (e > 0) is when the edge lies after the SS and before the Sample Point (i.e., the edge

is late).

• A negative Phase Error (e < 0) is when the edge lies after the Sample Point of the previous bit and before

SS (i.e., the edge is early).

To correct for Phase Errors, there are two forms of synchronization, known as Hard Synchronization and

Resynchronization. Hard Synchronization and Resynchronization obey the following rules:

• Only one synchronization may occur in a single bit time.

• Synchronizations only occurs on recessive to dominant edges.

Hard Synchronization

Hard Synchronization occurs on the recessive to dominant (i.e., the first SOF bit after Bus Idle) edges when the

bus is idle. All nodes will restart their internal bit timings so that the recessive to dominant edge lies within the SS

of the restarted bit timing.

Resynchronization

Resynchronization occurs on recessive to dominant edges when the bus is not idel. If the edge has a positive

Phase Error (e > 0), PBS1 is lengthened by a certain number of Time Quanta. If the edge has a negative Phase

Error (e < 0), PBS2 will be shortened by a certain number of Time Quanta.

The number of Time Quanta to lengthen or shorten depends on the magnitude of the Phase Error, and is also

limited by the Synchronization Jump Width (SJW) value which is programmable.

• When the magnitude of the Phase Error (e) is less than or equal to the SJW, PBS1/PBS2 are

lengthened/shortened by the e number of Time Quanta. This has a same effect as Hard Synchronization.

• When the magnitude of the Phase Error is greater to the SJW, PBS1/PBS2 are lengthened/shortened by

the SJW number of Time Quanta. This means it may take multiple bits of synchronization before the Phase

Error is entirely corrected.

Espressif Systems 293
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

14.3 Architectural Overview

Figure 14­6. TWAI Overview Diagram

The major functional blocks of the TWAI controller are shown in Figure 14-6.

14.3.1 Registers Block

The ESP32-C3 CPU accesses peripherals using 32-bit aligned words. However, the majority of registers in the

TWAI controller only contain useful data at the least significant byte (bits [7:0]). Therefore, in these registers, bits

[31:8] are ignored on writes, and return 0 on reads.

Configuration Registers

The configuration registers store various configuration items for the TWAI controller such as bit rates, operation

mode, Acceptance Filter, etc. Configuration registers can only be modified whilst the TWAI controller is in Reset

Mode (See Section 14.4.1).

Command Registers

The command register is used by the CPU to drive the TWAI controller to initiate certain actions such as

transmitting a message or clearing the Receive Buffer. The command register can only be modified when the

TWAI controller is in Operation Mode (see section 14.4.1).

Interrupt & Status Registers

The interrupt register indicates what events have occurred in the TWAI controller (each event is represented by a

separate bit). The status register indicates the current status of the TWAI controller.

Error Management Registers

The error management registers include error counters and capture registers. The error counter registers

represent TEC and REC values. The capture registers will record information about instances where TWAI

Espressif Systems 294
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

controller detects a bus error, or when it loses arbitration.

Transmit Buffer Registers

The transmit buffer is a 13-byte buffer used to store a TWAI message to be transmitted.

Receive Buffer Registers

The Receive Buffer is a 13-byte buffer which stores a single message. The Receive Buffer acts as a window of

Receive FIFO, whose first message will be mapped into the Receive Buffer.

Note that the Transmit Buffer registers, Receive Buffer registers, and the Acceptance Filter registers share the

same address range (offset 0x0040 to 0x0070). Their access is governed by the following rules:

• When the TWAI controller is in Reset Mode, all reads and writes to the address range maps to the

Acceptance Filter registers.

• When the TWAI controller is in Operation Mode:

– All reads to the address range maps to the Receive Buffer registers.

– All writes to the address range maps to the Transmit Buffer registers.

14.3.2 Bit Stream Processor

The Bit Stream Processing (BSP) module frames data from the Transmit Buffer (e.g. bit stuffing and additional

CRC fields) and generates a bit stream for the Bit Timing Logic (BTL) module. At the same time, the BSP module

is also responsible for processing the received bit stream (e.g., de-stuffing and verifying CRC) from the BTL

module and placing the message into the Receive FIFO. The BSP will also detect errors on the TWAI bus and

report them to the Error Management Logic (EML).

14.3.3 Error Management Logic

The Error Management Logic (EML) module updates the TEC and REC, records error information like error types

and positions, and updates the error state of the TWAI controller such that the BSP module generates the correct

Error Flags. Furthermore, this module also records the bit position when the TWAI controller loses

arbitration.

14.3.4 Bit Timing Logic

The Bit Timing Logic (BTL) module transmits and receives messages at the configured bit rate. The BTL module

also handles bit timing synchronization so that communication remains stable. A single bit time consists of

multiple programmable segments that allows users to set the length of each segment to account for factors such

as propagation delay and controller processing time, etc.

14.3.5 Acceptance Filter

The Acceptance Filter is a programmable message filtering unit that allows the TWAI controller to accept or reject

a received message based on the message’s ID field. Only accepted messages will be stored in the Receive

FIFO. The Acceptance Filter’s registers can be programmed to specify a single filter, or two separate filters (dual

filter mode).

Espressif Systems 295
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

14.3.6 Receive FIFO

The Receive FIFO is a 64-byte buffer (inside the TWAI controller) that stores received messages accepted by the

Acceptance Filter. Messages in the Receive FIFO can vary in size (between 3 to 13-bytes). When the Receive

FIFO is full (or does not have enough space to store the next received message in its entirety), the Overrun

Interrupt will be triggered, and any subsequent received messages will be lost until adequate space is cleared in

the Receive FIFO. The first message in the Receive FIFO will be mapped to the 13-byte Receive Buffer until that

message is cleared (using the Release Receive Buffer command bit). After being cleared, the Receive Buffer will

map to the next message in the Receive FIFO, and the space occupied by the previous message in the Receive

FIFO can be used to receive new messages.

14.4 Functional Description

14.4.1 Modes

The ESP32-C3 TWAI controller has two working modes: Reset Mode and Operation Mode. Reset Mode and

Operation Mode are entered by setting or clearing the TWAI_RESET_MODE bit.

14.4.1.1 Reset Mode

Entering Reset Mode is required in order to modify the various configuration registers of the TWAI controller.

When entering Reset Mode, the TWAI controller is essentially disconnected from the TWAI bus. When in Reset

Mode, the TWAI controller will not be able to transmit any messages (including error signals). Any transmission in

progress is immediately terminated. Likewise, the TWAI controller will not be able to receive any messages

either.

14.4.1.2 Operation Mode

In operation mode, the TWAI controller connects to the bus and write-protect all configuration registers to ensure

consistency during operation. When in Operation Mode, the TWAI controller can transmit and receive messages

(including error signaling) depending on which operation sub-mode the TWAI controller was configured with. The

TWAI controller supports the following operation sub-modes:

• Normal Mode: The TWAI controller can transmit and receive messages including error signals (such as

error and overload Frames).

• Self­test Mode: Self-test mode is similar to normal Mode, but the TWAI controller will consider the

transmission of a data or RTR frame successful and do not generate an ACK error even if it was not

acknowledged. This is commonly used when the TWAI controller does self-test.

• Listen­only Mode: The TWAI controller will be able to receive messages, but will remain completely

passive on the TWAI bus. Thus, the TWAI controller will not be able to transmit any messages,

acknowledgments, or error signals. The error counters will remain frozen. This mode is useful for TWAI bus

monitoring.

Note that when exiting Reset Mode (i.e., entering Operation Mode), the TWAI controller must wait for 11

consecutive recessive bits to occur before being able to fully connect the TWAI bus (i.e., be able to transmit or

receive).

Espressif Systems 296
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

14.4.2 Bit Timing

The operating bit rate of the TWAI controller must be configured whilst the TWAI controller is in Reset Mode. The

bit rate is configured using TWAI_BUS_TIMING_0_REG and TWAI_BUS_TIMING_1_REG, and the two registers

contain the following fields:

The following Table 14-6 illustrates the bit fields of TWAI_BUS_TIMING_0_REG.

Table 14­6. Bit Information of TWAI_BUS_TIMING_0_REG (0x18)

Bit 31-16 Bit 15 Bit 14 Bit 13 Bit 12 Bit 1 Bit 0

Reserved SJW.1 SJW.0 Reserved BRP.12 BRP.1 BRP.0

Notes:

• BRP: The TWAI Time Quanta clock is derived from the APB clock that is usually 80 MHz. The Baud Rate

Prescaler (BRP) field is used to define the prescaler according to the equation below, where tTq is the Time

Quanta clock cycle and tCLK is APB clock cycle:

tTq = 2 × tCLK × (212 × BRP.12 + 211 × BRP.11 + ... + 21 × BRP.1 + 20 × BRP.0 + 1)

• SJW: Synchronization Jump Width (SJW) is configured in SJW.0 and SJW.1 where SJW = (2 x SJW.1 +

SJW.0 + 1)�

The following Table 14-7 illustrates the bit fields of TWAI_BUS_TIMING_1_REG.

Table 14­7. Bit Information of TWAI_BUS_TIMING_1_REG (0x1c)

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved SAM PBS2.2 PBS2.1 PBS2.0 PBS1.3 PBS1.2 PBS1.1 PBS1.0

Notes:

• PBS1: The number of Time Quanta in Phase Buffer Segment 1 is defined according to the following

equation: (8 x PBS1.3 + 4 x PBS1.2 + 2 x PBS1.1 + PBS1.0 + 1)�

• PBS2: The number of Time Quanta in Phase Buffer Segment 2 is defined according to the following

equation: (4 x PBS2.2 + 2 x PBS2.1 + PBS2.0 + 1)�

• SAM: Enables triple sampling if set to 1. This is useful for low/medium speed buses to filter spikes on the

bus line.

14.4.3 Interrupt Management

The ESP32-C3 TWAI controller provides eight interrupts, each represented by a single bit in the

TWAI_INT_RAW_REG. For a particular interrupt to be triggered, the corresponding enable bit in TWAI_INT

ENA_REG must be set.

The TWAI controller provides the following interrupts:

• Receive Interrupt

• Transmit Interrupt

• Error Warning Interrupt

• Data Overrun Interrupt

• Error Passive Interrupt

Espressif Systems 297
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

• Arbitration Lost Interrupt

• Bus Error Interrupt

• Bus Status Interrupt

The TWAI controller’s interrupt signal to the interrupt matrix will be asserted whenever one or more interrupt bits

are set in the TWAI_INT_RAW_REG, and deasserted when all bits in TWAI_INT_RAW_REG are cleared. The

majority of interrupt bits in TWAI_INT_RAW_REG are automatically cleared when the register is read, except for

the Receive Interrupt which can only be cleared when all the messages are released by setting the

TWAI_RELEASE_BUF bit.

14.4.3.1 Receive Interrupt (RXI)

The Receive Interrupt (RXI) is asserted whenever the TWAI controller has received messages that are pending to

be read from the Receive Buffer (i.e., when TWAI_RX_MESSAGE_CNT_REG > 0). Pending received messages

includes valid messages in the Receive FIFO and also overrun messages. The RXI will not be deasserted until all

pending received messages are cleared using the TWAI_RELEASE_BUF command bit.

14.4.3.2 Transmit Interrupt (TXI)

The Transmit Interrupt (TXI) is triggered whenever Transmit Buffer becomes free, indicating another message can

be loaded into the Transmit Buffer to be transmitted. The Transmit Buffer becomes free under the following

scenarios:

• A message transmission has completed successfully, i.e., acknowledged without any errors. (Any failed

messages will automatically be resent.)

• A single shot transmission has completed (successfully or unsuccessfully, indicated by the

TWAI_TX_COMPLETE bit).

• A message transmission was aborted using the TWAI_ABORT_TX command bit.

14.4.3.3 Error Warning Interrupt (EWI)

The Error Warning Interrupt (EWI) is triggered whenever there is a change to the TWAI_ERR_ST and

TWAI_BUS_OFF_ST bits of the TWAI_STATUS_REG (i.e., transition from 0 to 1 or vice versa). Thus, an EWI

could indicate one of the following events, depending on the values TWAI_ERR_ST and TWAI_BUS_OFF_ST at

the moment when the EWI is triggered.

• If TWAI_ERR_ST = 0 and TWAI_BUS_OFF_ST = 0:

– If the TWAI controller was in the Error Active state, it indicates both the TEC and REC have returned

below the threshold value set by TWAI_ERR_WARNING_LIMIT_REG.

– If the TWAI controller was previously in the Bus Off Recovery state, it indicates that Bus Recovery has

completed successfully.

• If TWAI_ERR_ST = 1 and TWAI_BUS_OFF_ST = 0: The TEC or REC error counters have exceeded the

threshold value set by TWAI_ERR_WARNING_LIMIT_REG.

• If TWAI_ERR_ST = 1 and TWAI_BUS_OFF_ST = 1: The TWAI controller has entered the BUS_OFF state

(due to the TEC >= 256).

Espressif Systems 298
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

• If TWAI_ERR_ST = 0 and TWAI_BUS_OFF_ST = 1: The TWAI controller’s TEC has dropped below the

threshold value set by TWAI_ERR_WARNING_LIMIT_REG during BUS_OFF recovery.

14.4.3.4 Data Overrun Interrupt (DOI)

The Data Overrun Interrupt (DOI) is triggered whenever the Receive FIFO has overrun. The DOI indicates that the

Receive FIFO is full and should be cleared immediately to prevent any further overrun messages.

The DOI is only triggered by the first message that causes the Receive FIFO to overrun (i.e., the transition from

the Receive FIFO not being full to the Receive FIFO overrunning). Any subsequent overrun messages will not

trigger the DOI again. The DOI could be triggered again when all received messages (valid or overrun) have been

cleared.

14.4.3.5 Error Passive Interrupt (TXI)

The Error Passive Interrupt (EPI) is triggered whenever the TWAI controller switches from Error Active to Error

Passive, or vice versa.

14.4.3.6 Arbitration Lost Interrupt (ALI)

The Arbitration Lost Interrupt (ALI) is triggered whenever the TWAI controller is attempting to transmit a message

and loses arbitration. The bit position where the TWAI controller lost arbitration is automatically recorded in

Arbitration Lost Capture register (TWAI_ARB LOST CAP_REG). When the ALI occurs again, the Arbitration Lost

Capture register will no longer record new bit location until it is cleared (via CPU reading this register).

14.4.3.7 Bus Error Interrupt (BEI)

The Bus Error Interrupt (BEI) is triggered whenever TWAI controller detects an error on the TWAI bus. When a

bus error occurs, the Bus Error type and its bit position are automatically recorded in the Error Code Capture

register (TWAI_ERR_CODE_CAP_REG). When the BEI occurs again, the Error Code Capture register will no

longer record new error information until it is cleared (via a read from the CPU).

14.4.3.8 Bus Status Interrupt (BSI)

The Bus Status Interrupt (BSI) is triggered whenever TWAI controller is switching between receive/transmit status

and idle status. When a BSI occurs, the current status of TWAI controller can be measured by reading

TWAI_RX_ST and TWAI_TX_ST in TWAI_STATUS_REG register.

14.4.4 Transmit and Receive Buffers

14.4.4.1 Overview of Buffers

Table 14­8. Buffer Layout for Standard Frame Format and Extended Frame Format

Standard Frame Format (SFF) Extended Frame Format (EFF)

TWAI Address Content TWAI Address Content

0x40 TX/RX frame information 0x40 TX/RX frame information

0x44 TX/RX identifier 1 0x44 TX/RX identifier 1

Espressif Systems 299
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Standard Frame Format (SFF) Extended Frame Format (EFF)

TWAI Address Content TWAI Address Content

0x48 TX/RX identifier 2 0x48 TX/RX identifier 2

0x4c TX/RX data byte 1 0x4c TX/RX identifier 3

0x50 TX/RX data byte 2 0x50 TX/RX identifier 4

0x54 TX/RX data byte 3 0x54 TX/RX data byte 1

0x58 TX/RX data byte 4 0x58 TX/RX data byte 2

0x5c TX/RX data byte 5 0x5c TX/RX data byte 3

0x60 TX/RX data byte 6 0x60 TX/RX data byte 4

0x64 TX/RX data byte 7 0x64 TX/RX data byte 5

0x68 TX/RX data byte 8 0x68 TX/RX data byte 6

0x6c reserved 0x6c TX/RX data byte 7

0x70 reserved 0x70 TX/RX data byte 8

Table 14-8 illustrates the layout of the Transmit Buffer and Receive Buffer registers. Both the Transmit and

Receive Buffer registers share the same address space and are only accessible when the TWAI controller is in

Operation Mode. The CPU accesses Transmit Buffer registers for write operations, and Receive Buffer registers

for read operations . Both buffers share the exact same register layout and fields to represent a message

(received or to be transmitted). The Transmit Buffer registers are used to configure a TWAI message to be

transmitted. The CPU would write to the Transmit Buffer registers specifying the message’s frame type, frame

format, frame ID, and frame data (payload). Once the Transmit Buffer is configured, the CPU would then initiate

the transmission by setting the TWAI_TX_REQ bit in TWAI_CMD_REG.

• For a self-reception request, set the TWAI_SELF_RX_REQ bit instead.

• For a single-shot transmission, set both the TWAI_TX_REQ and the TWAI_ABORT_TX simultaneously.

The Receive Buffer registers map the first message in the Receive FIFO. The CPU would read the Receive Buffer

registers to obtain the first message’s frame type, frame format, frame ID, and frame data (payload). Once the

message has been read from the Receive Buffer registers, the CPU can set the TWAI_RELEASE_BUF bit in

TWAI_CMD_REG to clear the Receive Buffer registers. If there are still messages in the Receive FIFO, the

Receive Buffer registers will map the first message again.

14.4.4.2 Frame Information

The frame information is one byte long and specifies a message’s frame type, frame format, and length of data.

The frame information fields are shown in Table 14-9.

Table 14­9. TX/RX Frame Information (SFF/EFF)�TWAI Address 0x40

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved FF1 RTR2 X3 X3 DLC.34 DLC.24 DLC.14 DLC.04

Notes:

1. FF: The Frame Format (FF) bit specifies whether the message is Extended Frame Format (EFF) or Standard

Frame Format (SFF). The message is EFF when FF bit is 1, and SFF when FF bit is 0.

2. RTR: The Remote Transmission Request (RTR) bit specifies whether the message is a data frame or a

remote frame. The message is a remote frame when the RTR bit is 1, and a data frame when the RTR bit is

Espressif Systems 300
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

0.

3. X: Don’t care, can be any value.

4. DLC: The Data Length Code (DLC) field specifies the number of data bytes for a data frame, or the number

of data bytes to request in a remote frame. TWAI data frames are limited to a maximum payload of 8 data

bytes, and thus the DLC should range anywhere from 0 to 8.

14.4.4.3 Frame Identifier

The Frame Identifier fields is two-byte (11-bit) long if the message is SFF, and four-byte (29-bit) long if the

message is EFF.

The Frame Identifier fields for an SFF (11-bit) message is shown in Table 14-10 ~ 14-11.

Table 14­10. TX/RX Identifier 1 (SFF); TWAI Address 0x44

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3

Table 14­11. TX/RX Identifier 2 (SFF); TWAI Address 0x48

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.2 ID.1 ID.0 X1 X2 X2 X2 X2

Notes:

1. Don’t care. Recommended to be compatible with receive buffer (i.e., set to RTR) in case of using the self

reception functionality (or together with self-test functionality).

2. Don’t care. Recommended to be compatible with receive buffer (i.e., set to 0) in case of using the self

reception functionality (or together with self-test functionality).

The Frame Identifier fields for an EFF (29-bits) message is shown in Table 14-12 ~ 14-15.

Table 14­12. TX/RX Identifier 1 (EFF); TWAI Address 0x44

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

Table 14­13. TX/RX Identifier 2 (EFF); TWAI Address 0x48

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

Table 14­14. TX/RX Identifier 3 (EFF); TWAI Address 0x4c

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

Espressif Systems 301
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Table 14­15. TX/RX Identifier 4 (EFF); TWAI Address 0x50

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.4 ID.3 ID.2 ID.1 ID.0 X1 X2 X2

Notes:

1. Don’t care. Recommended to be compatible with receive buffer (i.e., set to RTR) in case of using the self

reception functionality (or together with self-test functionality).

2. Don’t care. Recommended to be compatible with receive buffer (i.e., set to 0) in case of using the self

reception functionality (or together with self-test functionality).

14.4.4.4 Frame Data

The Frame Data field contains the payloads of transmitted or received data frame, and can range from 0 to eight

bytes. The number of valid bytes should be equal to the DLC. However, if the DLC is larger than eight bytes, the

number of valid bytes would still be limited to eight. Remote frames do not have data payloads, so their Frame

Data fields will be unused.

For example, when transmitting a data frame with five bytes, the CPU should write five to the DLC field, and then

write data to the corresponding register of the first to the fifth data field. Likewise, when the CPU receives a data

frame with a DLC of five data bytes, only the first to the fifth data byte will contain valid payload data for the CPU

to read.

14.4.5 Receive FIFO and Data Overruns

The Receive FIFO is a 64-byte internal buffer used to store received messages in First In First Out order. A single

received message can occupy between 3 to 13 bytes of space in the Receive FIFO, and their endianness is

identical to the register layout of the Receive Buffer registers. The Receive Buffer registers are mapped to the

bytes of the first message in the Receive FIFO.

When the TWAI controller receives a message, it will increment the value of TWAI_RX_MESSAGE_COUNTER up

to a maximum of 64. If there is adequate space in the Receive FIFO, the message contents will be written into

the Receive FIFO. Once a message has been read from the Receive Buffer, the TWAI_RELEASE_BUF bit should

be set. This will decrement TWAI_RX_MESSAGE_COUNTER and free the space occupied by the first message

in the Receive FIFO. The Receive Buffer will then map to the next message in the Receive FIFO.

A data overrun occurs when the TWAI controller receives a message, but the Receive FIFO lacks the adequate

free space to store the received message in its entirety (either due to the message contents being larger than the

free space in the Receive FIFO, or the Receive FIFO being completely full).

When a data overrun occurs:

• The free space left in the Receive FIFO is filled with the partial contents of the overrun message. If the

Receive FIFO is already full, then none of the overrun message’s contents will be stored.

• When data in the Receive FIFO overruns for the first time, a Data Overrun Interrupt will be triggered.

• Each overrun message will still increment the TWAI_RX_MESSAGE_COUNTER up to a maximum of 64.

• The Receive FIFO will internally mark overrun messages as invalid. The TWAI_MISS_ST bit can be used to

determine whether the message currently mapped to by the Receive Buffer is valid or overrun.

Espressif Systems 302
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

To clear an overrun Receive FIFO, the TWAI_RELEASE_BUF must be called repeatedly until

TWAI_RX_MESSAGE_COUNTER is 0. This has the effect of reading all valid messages in the Receive FIFO and

clearing all overrun messages.

14.4.6 Acceptance Filter

The Acceptance Filter allows the TWAI controller to filter out received messages based on their ID (and optionally

their first data byte and frame type). Only accepted messages are passed on to the Receive FIFO. The use of

Acceptance Filters allows a more lightweight operation of the TWAI controller (e.g., less use of Receive FIFO,

fewer Receive Interrupts) since the TWAI Controller only need to handle a subset of messages.

The Acceptance Filter configuration registers can only be accessed whilst the TWAI controller is in Reset Mode,

since they share the same address spaces with the Transmit Buffer and Receive Buffer registers.

The configuration registers consist of a 32-bit Acceptance Code Value and a 32-bit Acceptance Mask Value. The

Acceptance Code value specifies a bit pattern which each filtered bit of the message must match in order for the

message to be accepted. The Acceptance Mask Value is able to mask out certain bits of the Code value (i.e., set

as “Don’t Care” bits). Each filtered bit of the message must either match the acceptance code or be masked in

order for the message to be accepted, as demonstrated in Figure 14-7.

Figure 14­7. Acceptance Filter

The TWAI controller Acceptance Filter allows the 32-bit Acceptance Code and Mask Values to either define a

single filter (i.e., Single Filter Mode), or two filters (i.e., Dual Filter Mode). How the Acceptance Filter interprets the

32-bit code and mask values is dependent on filter mode and the format of received messages (i.e., SFF or

EFF).

14.4.6.1 Single Filter Mode

Single Filter Mode is enabled by setting the TWAI_RX_FILTER_MODE bit to 1. This will cause the 32-bit code and

mask values to define a single filter. The single filter can filter the following bits of a data or remote frame:

• SFF

– The entire 11-bit ID

– RTR bit

– Data byte 1 and Data byte 2

• EFF

– The entire 29-bit ID

– RTR bit

The following Figure 14-8 illustrates how the 32-bit code and mask values will be interpreted under Single Filter

Mode.

Espressif Systems 303
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Figure 14­8. Single Filter Mode

14.4.6.2 Dual Filter Mode

Dual Filter Mode is enabled by clearing the TWAI_RX_FILTER_MODE bit to 0. This will cause the 32-bit code and

mask values to define a two separate filters referred to as filter 1 or filter 2. Under Dual Filter Mode, a message

will be accepted if it is accepted by one of the two filters.

The two filters can filter the following bits of a data or remote frame:

• SFF

– The entire 11-bit ID

– RTR bit

– Data byte 1 (for filter 1 only)

• EFF

– The first 16 bits of the 29-bit ID

The following Figure 14-9 illustrates how the 32-bit code and mask values will be interpreted in Dual Filter

Mode.

14.4.7 Error Management

The TWAI protocol requires that each TWAI node maintains the Transmit Error Counter (TEC) and Receive Error

Counter (REC). The value of both error counters determines the current error state of the TWAI controller (i.e.,

Error Active, Error Passive, Bus-Off). The TWAI controller stores the TEC and REC values in

TWAI_TX_ERR_CNT_REG and TWAI_RX_ERR_CNT_REG respectively, and they can be read by the CPU

anytime. In addition to the error states, the TWAI controller also offers an Error Warning Limit (EWL) feature that

can warn users of the occurrence of severe bus errors before the TWAI controller enters the Error Passive

state.

The current error state of the TWAI controller is indicated via a combination of the following values and status bits:

TEC, REC, TWAI_ERR_ST, and TWAI_BUS_OFF_ST. Certain changes to these values and bits will also trigger

interrupts, thus allowing the users to be notified of error state transitions (see section 14.4.3). The following figure

14-10 shows the relation between the error states, values and bits, and error state related interrupts.

Espressif Systems 304
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Figure 14­9. Dual Filter Mode

Figure 14­10. Error State Transition

14.4.7.1 Error Warning Limit

The Error Warning Limit (EWL) is a configurable threshold value for the TEC and REC, which will trigger an

interrupt when exceeded. The EWL is intended to serve as a warning about severe TWAI bus errors, and is

triggered before the TWAI controller enters the Error Passive state. The EWL is configured in

Espressif Systems 305
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

TWAI_ERR_WARNING_LIMIT_REG and can only be configured whilst the TWAI controller is in Reset Mode. The

TWAI_ERR_WARNING_LIMIT_REG has a default value of 96. When the values of TEC and/or REC are larger than

or equal to the EWL value, the TWAI_ERR_ST bit is immediately set to 1. Likewise, when the values of both the

TEC and REC are smaller than the EWL value, the TWAI_ERR_ST bit is immediately reset to 0. The Error Warning

Interrupt is triggered whenever the value of the TWAI_ERR_ST bit (or the TWAI_BUS_OFF_ST) changes.

14.4.7.2 Error Passive

The TWAI controller is in the Error Passive state when the TEC or REC value exceeds 127. Likewise, when both

the TEC and REC are less than or equal to 127, the TWAI controller enters the Error Active state. The Error

Passive Interrupt is triggered whenever the TWAI controller transitions from the Error Active state to the Error

Passive state or vice versa.

14.4.7.3 Bus­Off and Bus­Off Recovery

The TWAI controller enters the Bus-Off state when the TEC value exceeds 255. On entering the Bus-Off state,

the TWAI controller will automatically do the following:

• Set REC to 0

• Set TEC to 127

• Set the TWAI_BUS_OFF_ST bit to 1

• Enter Reset Mode

The Error Warning Interrupt is triggered whenever the value of the TWAI_BUS_OFF_ST bit (or the TWAI_ERR_ST

bit) changes.

To return to the Error Active state, the TWAI controller must undergo Bus-Off Recovery. Bus-Off Recovery

requires the TWAI controller to observe 128 occurrences of 11 consecutive recessive bits on the bus. To initiate

Bus-Off Recovery (after entering the Bus-Off state), the TWAI controller should enter Operation Mode by setting

the TWAI_RESET_MODE bit to 0. The TEC tracks the progress of Bus-Off Recovery by decrementing the TEC

each time when the TWAI controller observes 11 consecutive recessive bits. When Bus-Off Recovery has

completed (i.e., TEC has decremented from 127 to 0), the TWAI_BUS_OFF_ST bit will automatically be reset to

0, thus triggering the Error Warning Interrupt.

14.4.8 Error Code Capture

The Error Code Capture (ECC) feature allows the TWAI controller to record the error type and bit position of a

TWAI bus error in the form of an error code. Upon detecting a TWAI bus error, the Bus Error Interrupt is triggered

and the error code is recorded in TWAI_ERR_CODE_CAP_REG. Subsequent bus errors will trigger the Bus Error

Interrupt, but their error codes will not be recorded until the current error code is read from the

TWAI_ERR_CODE_CAP_REG.

The following Table 14-16 shows the fields of the TWAI_ERR_CODE_CAP_REG:

Table 14­16. Bit Information of TWAI_ERR_CODE_CAP_REG (0x30)

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ERRC.11 ERRC.01 DIR2 SEG.43 SEG.33 SEG.23 SEG.13 SEG.03

Notes:

Espressif Systems 306
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

• ERRC: The Error Code (ERRC) indicates the type of bus error: 00 for bit error, 01 for format error, 10 for

stuff error, and 11 for other types of error.

• DIR: The Direction (DIR) indicates whether the TWAI controller was transmitting or receiving when the bus

error occurred: 0 for transmitter, 1 for receiver.

• SEG: The Error Segment (SEG) indicates which segment of the TWAI message (i.e., bit position) the bus

error occurred at.

The following Table 14-17 shows how to interpret the SEG.0 to SEG.4 bits.

Table 14­17. Bit Information of Bits SEG.4 ­ SEG.0

Bit SEG.4 Bit SEG.3 Bit SEG.2 Bit SEG.1 Bit SEG.0 Description

0 0 0 1 1 start of frame

0 0 0 1 0 ID.28 ~ ID.21

0 0 1 1 0 ID.20 ~ ID.18

0 0 1 0 0 bit SRTR

0 0 1 0 1 bit IDE

0 0 1 1 1 ID.17 ~ ID.13

0 1 1 1 1 ID.12 ~ ID.5

0 1 1 1 0 ID.4 ~ ID.0

0 1 1 0 0 bit RTR

0 1 1 0 1 reserved bit 1

0 1 0 0 1 reserved bit 0

0 1 0 1 1 data length code

0 1 0 1 0 data field

0 1 0 0 0 CRC sequence

1 1 0 0 0 CRC delimiter

1 1 0 0 1 ACK slot

1 1 0 1 1 ACK delimiter

1 1 0 1 0 end of frame

1 0 0 1 0 intermission

1 0 0 0 1 active error flag

1 0 1 1 0 passive error flag

1 0 0 1 1 tolerate dominant bits

1 0 1 1 1 error delimiter

1 1 1 0 0 overload flag

Notes:

• Bit SRTR: under Standard Frame Format.

• Bit IDE: Identifier Extension Bit, 0 for Standard Frame Format.

14.4.9 Arbitration Lost Capture

The Arbitration Lost Capture (ALC) feature allows the TWAI controller to record the bit position where it loses

arbitration. When the TWAI controller loses arbitration, the bit position is recorded in TWAI_ARB LOST CAP_REG

and the Arbitration Lost Interrupt is triggered.

Espressif Systems 307
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Subsequent losses in arbitration will trigger the Arbitration Lost Interrupt, but will not be recorded in TWAI_ARB

LOST CAP_REG until the current Arbitration Lost Capture is read from the TWAI_ERR_CODE_CAP_REG.

Table 14-18 illustrates bits and fields of TWAI_ERR_CODE_CAP_REG whilst Figure 14-11 illustrates the bit

positions of a TWAI message.

Espressif Systems 308
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Table 14­18. Bit Information of TWAI_ARB LOST CAP_REG (0x2c)

Bit 31-5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved BITNO.41 BITNO.31 BITNO.21 BITNO.11 BITNO.01

Notes:

• BITNO: Bit Number (BITNO) indicates the nth bit of a TWAI message where arbitration was lost.

Figure 14­11. Positions of Arbitration Lost Bits

Espressif Systems 309
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

14.5 Register Summary

’|’ here means separate line to distinguish between TWAI working modes discussed in Section 14.4.1 Modes.

The left describes the access in Operation Mode. The right belongs to Reset Mode and is marked in red. The

addresses in this section are relative to Two-wire Automotive Interface base address provided in Table 3-4 in

Chapter 3 System and Memory.

Name Description Address Access

Configuration Registers

TWAI_MODE_REG Mode Register 0x0000 R/W

TWAI_BUS_TIMING_0_REG Bus Timing Register 0 0x0018 RO | R/W

TWAI_BUS_TIMING_1_REG Bus Timing Register 1 0x001C RO | R/W

TWAI_ERR_WARNING_LIMIT_REG Error Warning Limit Register 0x0034 RO | R/W

TWAI_DATA_0_REG Data Register 0 0x0040 WO | R/W

TWAI_DATA_1_REG Data Register 1 0x0044 WO | R/W

TWAI_DATA_2_REG Data Register 2 0x0048 WO | R/W

TWAI_DATA_3_REG Data Register 3 0x004C WO | R/W

TWAI_DATA_4_REG Data Register 4 0x0050 WO | R/W

TWAI_DATA_5_REG Data Register 5 0x0054 WO | R/W

TWAI_DATA_6_REG Data Register 6 0x0058 WO | R/W

TWAI_DATA_7_REG Data Register 7 0x005C WO | R/W

TWAI_DATA_8_REG Data Register 8 0x0060 WO | RO

TWAI_DATA_9_REG Data Register 9 0x0064 WO | RO

TWAI_DATA_10_REG Data Register 10 0x0068 WO | RO

TWAI_DATA_11_REG Data Register 11 0x006C WO | RO

TWAI_DATA_12_REG Data Register 12 0x0070 WO | RO

TWAI_CLOCK_DIVIDER_REG Clock Divider Register 0x007C varies

Contro Registers

TWAI_CMD_REG Command Register 0x0004 WO

Status Register

TWAI_STATUS_REG Status Register 0x0008 RO

TWAI_ARB LOST CAP_REG Arbitration Lost Capture Register 0x002C RO

TWAI_ERR_CODE_CAP_REG Error Code Capture Register 0x0030 RO

TWAI_RX_ERR_CNT_REG Receive Error Counter Register 0x0038 RO | R/W

TWAI_TX_ERR_CNT_REG Transmit Error Counter Register 0x003C RO | R/W

TWAI_RX_MESSAGE_CNT_REG Receive Message Counter Register 0x0074 RO

Interrupt Registers

TWAI_INT_RAW_REG Interrupt Register 0x000C RO

TWAI_INT ENA_REG Interrupt Enable Register 0x0010 R/W

Espressif Systems 310
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

14.6 Registers

’|’ here means separate line. The left describes the access in Operation Mode. The right belongs to Reset Mode

with red color. The addresses in this section are relative to Two-wire Automotive Interface base address provided

in Table 3-4 in Chapter 3 System and Memory.

Register 14.1. TWAI_MODE_REG (0x0000)

(re
se

rve
d)

0 0

31 4

TW
AI_R

X_
FIL

TE
R_M

ODE

0

3

TW
AI_S

ELF
_T

EST_
M

ODE

0

2

TW
AI_L

IS
TE

N_O
NLY

_M
ODE

0

1

TW
AI_R

ESET_
M

ODE

1

0

Reset

TWAI_RESET_MODE This bit is used to configure the operation mode of the TWAI Controller. 1:

Reset mode; 0: Operation mode (R/W)

TWAI_LISTEN_ONLY_MODE 1: Listen only mode. In this mode the nodes will only receive messages

from the bus, without generating the acknowledge signal nor updating the RX error counter. (R/W)

TWAI_SELF_TEST_MODE 1: Self test mode. In this mode the TX nodes can perform a successful

transmission without receiving the acknowledge signal. This mode is often used to test a single

node with the self reception request command. (R/W)

TWAI_RX_FILTER_MODE This bit is used to configure the filter mode. 0: Dual filter mode; 1: Single

filter mode (R/W)

Register 14.2. TWAI_BUS_TIMING_0_REG (0x0018)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

TW
AI_S

YNC_J
UM

P_W
ID

TH

0x0

15 14

(re
se

rve
d)

0x0

13

TW
AI_B

AUD_P
RESC

0x00

12 0

Reset

TWAI_BAUD_PRESC Baud Rate Prescaler value, determines the frequency dividing ratio. (RO | R/W)

TWAI_SYNC_JUMP_WIDTH Synchronization Jump Width (SJW), 1 ~ 14 Tq wide. (RO | R/W)

Espressif Systems 311
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Register 14.3. TWAI_BUS_TIMING_1_REG (0x001C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

IM
E_S

AM
P

0

7

TW
AI_T

IM
E_S

EG2

0x0

6 4

TW
AI_T

IM
E_S

EG1

0x0

3 0

Reset

TWAI_TIME_SEG1 The width of PBS1. (RO | R/W)

TWAI_TIME_SEG2 The width of PBS2. (RO | R/W)

TWAI_TIME_SAMP The number of sample points. 0: the bus is sampled once; 1: the bus is sampled

three times (RO | R/W)

Register 14.4. TWAI_ERR_WARNING_LIMIT_REG (0x0034)

(re
se

rve
d)

0 0

31 8

TW
AI_E

RR_W
ARNIN

G_L
IM

IT

0x60

7 0

Reset

TWAI_ERR_WARNING_LIMIT Error warning threshold. In the case when any of an error counter

value exceeds the threshold, or all the error counter values are below the threshold, an error warning

interrupt will be triggered (given the enable signal is valid). (RO | R/W)

Espressif Systems 312
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Register 14.5. TWAI_DATA_0_REG (0x0040)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_0
| T

W
AI_A

CCEPTA
NCE_C

ODE_0

0x0

7 0

Reset

TWAI_TX_BYTE_0 Stored the 0th byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_CODE_0 Stored the 0th byte of the filter code in reset mode. (R/W)

Register 14.6. TWAI_DATA_1_REG (0x0044)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_1
| T

W
AI_A

CCEPTA
NCE_C

ODE_1

0x0

7 0

Reset

TWAI_TX_BYTE_1 Stored the 1st byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_CODE_1 Stored the 1st byte of the filter code in reset mode. (R/W)

Espressif Systems 313
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Register 14.7. TWAI_DATA_2_REG (0x0048)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_2
| T

W
AI_A

CCEPTA
NCE_C

ODE_2

0x0

7 0

Reset

TWAI_TX_BYTE_2 Stored the 2nd byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_CODE_2 Stored the 2nd byte of the filter code in reset mode. (R/W)

Register 14.8. TWAI_DATA_3_REG (0x004C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_3
| T

W
AI_A

CCEPTA
NCE_C

ODE_3

0x0

7 0

Reset

TWAI_TX_BYTE_3 Stored the 3rd byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_CODE_3 Stored the 3rd byte of the filter code in reset mode. (R/W)

Espressif Systems 314
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Register 14.9. TWAI_DATA_4_REG (0x0050)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_4
| T

W
AI_A

CCEPTA
NCE_M

ASK_0

0x0

7 0

Reset

TWAI_TX_BYTE_4 Stored the 4th byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_MASK_0 Stored the 0th byte of the filter code in reset mode. (R/W)

Register 14.10. TWAI_DATA_5_REG (0x0054)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_5
| T

W
AI_A

CCEPTA
NCE_M

ASK_1

0x0

7 0

Reset

TWAI_TX_BYTE_5 Stored the 5th byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_MASK_1 Stored the 1st byte of the filter code in reset mode. (R/W)

Espressif Systems 315
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Register 14.11. TWAI_DATA_6_REG (0x0058)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_6
| T

W
AI_A

CCEPTA
NCE_M

ASK_2

0x0

7 0

Reset

TWAI_TX_BYTE_6 Stored the 6th byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_MASK_2 Stored the 2nd byte of the filter code in reset mode. (R/W)

Register 14.12. TWAI_DATA_7_REG (0x005C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_7
| T

W
AI_A

CCEPTA
NCE_M

ASK_3

0x0

7 0

Reset

TWAI_TX_BYTE_7 Stored the 7th byte information of the data to be transmitted in operation mode.

(WO)

TWAI_ACCEPTANCE_MASK_3 Stored the 3rd byte of the filter code in reset mode. (R/W)

Espressif Systems 316
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Register 14.13. TWAI_DATA_8_REG (0x0060)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_8

0x0

7 0

Reset

TWAI_TX_BYTE_8 Stored the 8th byte information of the data to be transmitted in operation mode.

(WO)

Register 14.14. TWAI_DATA_9_REG (0x0064)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_9

0x0

7 0

Reset

TWAI_TX_BYTE_9 Stored the 9th byte information of the data to be transmitted in operation mode.

(WO)

Register 14.15. TWAI_DATA_10_REG (0x0068)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_1
0

0x0

7 0

Reset

TWAI_TX_BYTE_10 Stored the 10th byte information of the data to be transmitted in operation mode.

(WO)

Espressif Systems 317
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Register 14.16. TWAI_DATA_11_REG (0x006C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_1
1

0x0

7 0

Reset

TWAI_TX_BYTE_11 Stored the 11th byte information of the data to be transmitted in operation mode.

(WO)

Register 14.17. TWAI_DATA_12_REG (0x0070)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_1
2

0x0

7 0

Reset

TWAI_TX_BYTE_12 Stored the 12th byte information of the data to be transmitted in operation mode.

(WO)

Register 14.18. TWAI_CLOCK_DIVIDER_REG (0x007C)

(re
se

rve
d)

0 0

31 9

TW
AI_C

LO
CK_O

FF

0

8

TW
AI_C

D

0x0

7 0

Reset

TWAI_CD These bits are used to configure the divisor of the external CLKOUT pin. (R/W)

TWAI_CLOCK_OFF This bit can be configured in reset mode. 1: Disable the external CLKOUT pin;

0: Enable the external CLKOUT pin (RO | R/W)

Espressif Systems 318
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Register 14.19. TWAI_CMD_REG (0x0004)

(re
se

rve
d)

0 0

31 5

TW
AI_S

ELF
_R

X_
REQ

0

4

TW
AI_C

LR
_O

VERRUN

0

3

TW
AI_R

ELE
ASE_B

UF

0

2

TW
AI_A

BORT_
TX

0

1

TW
AI_T

X_
REQ

0

0

Reset

TWAI_TX_REQ Set the bit to 1 to drive nodes to start transmission. (WO)

TWAI_ABORT_TX Set the bit to 1 to cancel a pending transmission request. (WO)

TWAI_RELEASE_BUF Set the bit to 1 to release the RX buffer. (WO)

TWAI_CLR_OVERRUN Set the bit to 1 to clear the data overrun status bit. (WO)

TWAI_SELF_RX_REQ Self reception request command. Set the bit to 1 to allow a message be

transmitted and received simultaneously. (WO)

Register 14.20. TWAI_STATUS_REG (0x0008)

(re
se

rve
d)

0 0

31 9

TW
AI_M

IS
S_S

T

0

8

TW
AI_B

US_O
FF

_S
T

0

7

TW
AI_E

RR_S
T

0

6

TW
AI_T

X_
ST

0

5

TW
AI_R

X_
ST

0

4

TW
AI_T

X_
COM

PLE
TE

1

3

TW
AI_T

X_
BUF_

ST

1

2

TW
AI_O

VERRUN_S
T

0

1

TW
AI_R

X_
BUF_

ST

0

0

Reset

TWAI_RX_BUF_ST 1: The data in the RX buffer is not empty, with at least one received data packet.

(RO)

TWAI_OVERRUN_ST 1: The RX FIFO is full and data overrun has occurred. (RO)

TWAI_TX_BUF_ST 1: The TX buffer is empty, the CPU may write a message into it. (RO)

TWAI_TX_COMPLETE 1: The TWAI controller has successfully received a packet from the bus. (RO)

TWAI_RX_ST 1: The TWAI Controller is receiving a message from the bus. (RO)

TWAI_TX_ST 1: The TWAI Controller is transmitting a message to the bus. (RO)

TWAI_ERR_ST 1: At least one of the RX/TX error counter has reached or exceeded the value set in

register TWAI_ERR_WARNING_LIMIT_REG. (RO)

TWAI_BUS_OFF_ST 1: In bus-off status, the TWAI Controller is no longer involved in bus activities.

(RO)

TWAI_MISS_ST This bit reflects whether the data packet in the RX FIFO is complete. 1: The current

packet is missing; 0: The current packet is complete (RO)

Espressif Systems 319
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Register 14.21. TWAI_ARB LOST CAP_REG (0x002C)

(re
se

rve
d)

0 0

31 5

TW
AI_A

RB_L
OST_

CAP

0x0

4 0

Reset

TWAI_ARB_LOST_CAP This register contains information about the bit position of lost arbitration.

(RO)

Register 14.22. TWAI_ERR_CODE_CAP_REG (0x0030)

(re
se

rve
d)

0 0

31 8

TW
AI_E

CC_T
YPE

0x0

7 6

TW
AI_E

CC_D
IR

ECTIO
N

0

5

TW
AI_E

CC_S
EGM

ENT

0x0

4 0

Reset

TWAI_ECC_SEGMENT This register contains information about the location of errors, see Table 14-

16 for details. (RO)

TWAI_ECC_DIRECTION This register contains information about transmission direction of the node

when error occurs. 1: Error occurs when receiving a message; 0: Error occurs when transmitting

a message (RO)

TWAI_ECC_TYPE This register contains information about error types: 00: bit error; 01: form error;

10: stuff error; 11: other type of error (RO)

Register 14.23. TWAI_RX_ERR_CNT_REG (0x0038)

(re
se

rve
d)

0 0

31 8

TW
AI_R

X_
ERR_C

NT

0x0

7 0

Reset

TWAI_RX_ERR_CNT The RX error counter register, reflects value changes in reception status. (RO |

R/W)

Espressif Systems 320
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Register 14.24. TWAI_TX_ERR_CNT_REG (0x003C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
ERR_C

NT

0x0

7 0

Reset

TWAI_TX_ERR_CNT The TX error counter register, reflects value changes in transmission status. (RO

| R/W)

Register 14.25. TWAI_RX_MESSAGE_CNT_REG (0x0074)

(re
se

rve
d)

0 0

31 7

TW
AI_R

X_
M

ESSAGE_C
OUNTE

R

0x0

6 0

Reset

TWAI_RX_MESSAGE_COUNTER This register reflects the number of messages available within the

RX FIFO. (RO)

Espressif Systems 321
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Register 14.26. TWAI_INT_RAW_REG (0x000C)

(re
se

rve
d)

0 0

31 9

TW
AI_B

US_S
TA

TE
_IN

T_
ST

0

8

TW
AI_B

US_E
RR_IN

T_
ST

0

7

TW
AI_A

RB_L
OST_

IN
T_

ST

0

6

TW
AI_E

RR_P
ASSIVE_IN

T_
ST

0

5

(re
se

rve
d)

0

4

TW
AI_O

VERRUN_IN
T_

ST

0

3

TW
AI_E

RR_W
ARN_IN

T_
ST

0

2

TW
AI_T

X_
IN

T_
ST

0

1

TW
AI_R

X_
IN

T_
ST

0

0

Reset

TWAI_RX_INT_ST Receive interrupt. If this bit is set to 1, it indicates there are messages to be

handled in the RX FIFO. (RO)

TWAI_TX_INT_ST Transmit interrupt. If this bit is set to 1, it indicates the message transmission is

finished and a new transmission is able to start. (RO)

TWAI_ERR_WARN_INT_ST Error warning interrupt. If this bit is set to 1, it indicates the error status

signal and the bus-off status signal of Status register have changed (e.g., switched from 0 to 1 or

from 1 to 0). (RO)

TWAI_OVERRUN_INT_ST Data overrun interrupt. If this bit is set to 1, it indicates a data overrun

interrupt is generated in the RX FIFO. (RO)

TWAI_ERR_PASSIVE_INT_ST Error passive interrupt. If this bit is set to 1, it indicates the TWAI

Controller is switched between error active status and error passive status due to the change of

error counters. (RO)

TWAI_ARB_LOST_INT_ST Arbitration lost interrupt. If this bit is set to 1, it indicates an arbitration

lost interrupt is generated. (RO)

TWAI_BUS_ERR_INT_ST Error interrupt. If this bit is set to 1, it indicates an error is detected on the

bus. (RO)

TWAI_BUS_STATE_INT_ST Bus state interrupt. If this bit is set to 1, it indicates the status of TWAI

controller has changed. (RO)

Espressif Systems 322
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

14 Two-wire Automotive Interface (TWAI)

Register 14.27. TWAI_INT ENA_REG (0x0010)

(re
se

rve
d)

0 0

31 9

TW
AI_B

US_S
TA

TE
_IN

T_
ENA

0

8

TW
AI_B

US_E
RR_IN

T_
ENA

0

7

TW
AI_A

RB_L
OST_

IN
T_

ENA

0

6

TW
AI_E

RR_P
ASSIVE_IN

T_
ENA

0

5

(re
se

rve
d)

0

4

TW
AI_O

VERRUN_IN
T_

ENA

0

3

TW
AI_E

RR_W
ARN_IN

T_
ENA

0

2

TW
AI_T

X_
IN

T_
ENA

0

1

TW
AI_R

X_
IN

T_
ENA

0

0

Reset

TWAI_RX_INT_ENA Set this bit to 1 to enable receive interrupt. (R/W)

TWAI_TX_INT_ENA Set this bit to 1 to enable transmit interrupt. (R/W)

TWAI_ERR_WARN_INT_ENA Set this bit to 1 to enable error warning interrupt. (R/W)

TWAI_OVERRUN_INT_ENA Set this bit to 1 to enable data overrun interrupt. (R/W)

TWAI_ERR_PASSIVE_INT_ENA Set this bit to 1 to enable error passive interrupt. (R/W)

TWAI_ARB_LOST_INT_ENA Set this bit to 1 to enable arbitration lost interrupt. (R/W)

TWAI_BUS_ERR_INT_ENA Set this bit to 1 to enable bus error interrupt. (R/W)

TWAI_BUS_STATE_INT_ENA Set this bit to 1 to enable bus state interrupt. (R/W)

Espressif Systems 323
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

15 LED PWM Controller (LEDC)

15.1 Overview

The LED PWM Controller is a peripheral designed to generate PWM signals for LED control. It has specialized

features such as automatic duty cycle fading. However, the LED PWM Controller can also be used to generate

PWM signals for other purposes.

15.2 Features

The LED PWM Controller has the following features:

• Six independent PWM generators (i.e. six channels)

• Four independent timers that support division by fractions

• Automatic duty cycle fading (i.e. gradual increase/decrease of a PWM’s duty cycle without interference

from the processor) with interrupt generation on fade completion

• Adjustable phase of PWM signal output

• PWM signal output in low-power mode (Light-sleep mode)

• Maximum PWM resolution: 14 bits

Note that the four timers are identical regarding their features and operation. The following sections refer to the

timers collectively as Timerx (where x ranges from 0 to 3). Likewise, the six PWM generators are also identical in

features and operation, and thus are collectively referred to as PWMn (where n ranges from 0 to 5).

Figure 15­1. LED PWM Architecture

15.3 Functional Description

15.3.1 Architecture

Figure 15-1 shows the architecture of the LED PWM Controller.

The four timers can be independently configured (i.e. configurable clock divider, and counter overflow value) and

each internally maintains a timebase counter (i.e. a counter that counts on cycles of a reference clock). Each

Espressif Systems 324
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

PWM generator selects one of the timers and uses the timer’s counter value as a reference to generate its PWM

signal.

Figure 15-2 illustrates the main functional blocks of the timer and the PWM generator.

Figure 15­2. LED PWM Generator Diagram

15.3.2 Timers

Each timer in LED PWM Controller internally maintains a timebase counter. Referring to Figure 15-2, this clock

signal used by the timebase counter is named ref_pulsex. All timers use the same clock source LEDC_CLKx,

which is then passed through a clock divider to generate ref_pulsex for the counter.

15.3.2.1 Clock Source

Software configuring registers for LED PWM is clocked by APB_CLK. For more information about APB_CLK, see

Chapter 6 Reset and Clock. To use the LED PWM pheripheral, the APB_CLK signal to the LED PWM has to be

enabled. The APB_CLK signal to LED PWM can be enabled by setting the SYSTEM_LEDC_CLK_EN field in the

register SYSTEM_PERIP_CLK_EN0_REG and be reset via software by setting the SYSTEM_LEDC_RST field in

the register SYSTEM_PERIP_RST_EN0_REG. For more information, please refer to Table 18 in Chapter 9 System

Registers (SYSREG) [to be added later].

Timers in the LED PWM Controller choose their common clock source from one of the following clock signals:

APB_CLK, RTC20M_CLK and XTAL_CLK (see Chapter 6 Reset and Clock for more details about each clock

signal). The procedure for selecting a clock source signal for LEDC_CLKx is described below:

• APB_CLK: Set LEDC_APB_CLK_SEL[1:0] to 1

• RTC20M_CLK: Set LEDC_APB_CLK_SEL[1:0] to 2

• XTAL_CLK: Set LEDC_APB_CLK_SEL[1:0] to 3

The LEDC_CLKx signal will then be passed through the clock divider.

Espressif Systems 325
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

15.3.2.2 Clock Divider Configuration

The LEDC_CLKx signal is passed through a clock divider to generate the ref_pulsex signal for the counter. The

frequency of ref_pulsex is equal to the frequency of LEDC_CLKx divided by the LEDC_CLK_DIV_TIMERx divider

value (see Figure 15-2).

The LEDC_CLK_DIV_TIMERx divider value is a fractional clock divider. Thus, it supports non-integer divider

values. LEDC_CLK_DIV_TIMERx is configured via the LEDC_CLK_DIV_TIMERx field according to the following

equation.

LEDC_CLK_DIV _TIMERx = A+ B
256

• A corresponds to the most significant 10 bits of LEDC_CLK_DIV_TIMERx (i.e.

LEDC_TIMERx_CONF_REG[21:12])

• The fractional part B corresponds to the least significant 8 bits of LEDC_CLK_DIV_TIMERx

(i.e. LEDC_TIMERx_CONF_REG[11:4])

When the fractional part B is zero, LEDC_CLK_DIV_TIMERx is equivalent to an integer divider value (i.e. an

integer prescaler). In other words, a ref_pulsex clock pulse is generated after every A number of LEDC_CLKx

clock pulses.

However, when B is nonzero, LEDC_CLK_DIV_TIMERx becomes a non-integer divider value. The clock divider

implements non-integer frequency division by alternating between A and (A+1) LEDC_CLKx clock pulses per

ref_pulsex clock pulse. This will result in the average frequency of ref_pulsex clock pulse being the desired

frequency (i.e. the non-integer divided frequency). For every 256 ref_pulsex clock pulses:

• A number of B ref_pulsex clock pulses will consist of (A+1) LEDC_CLKx clock pulses

• A number of (256-B) ref_pulsex clock pulses will consist of A LEDC_CLKx clock pulses

• The ref_pulsex clock pulses consisting of (A+1) pulses are evenly distributed amongst those consisting of A

pulses

Figure 15-3 illustrates the relation between LEDC_CLKx clock pulses and ref_pulsex clock pulses when dividing

by a non-integer LEDC_CLK_DIV_TIMERx.

Figure 15­3. Frequency Division When LEDC_CLK_DIV_TIMERx is a Non­Integer Value

To change the timer’s clock divider value at runtime, first set the LEDC_CLK_DIV_TIMERx field, and then set the

LEDC_TIMERx_PARA_UP field to apply the new configuration. This will cause the newly configured values to

take effect upon the next overflow of the counter. The LEDC_TIMERx_PARA_UP field will be automatically

cleared by hardware.

Espressif Systems 326
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

15.3.2.3 14­bit Counter

Each timer contains a 14-bit timebase counter that uses ref_pulsex as its reference clock (see Figure 15-2). The

LEDC_TIMERx_DUTY_RES field configures the overflow value of this 14-bit counter. Hence, the maximum

resolution of the PWM signal is 14 bits. The counter counts up to 2LEDC_TIMERx_DUTY _RES − 1, overflows and

begins counting from 0 again. The counter’s value can be read, reset, and suspended by software.

The counter can trigger LEDC_TIMERx_OVF_INT interrupt (generated automatically by hardware without

configuration) every time the counter overflows. It can also be configured to trigger LEDC_OVF_CNT_CHn_INT

interrupt after the counter overflows LEDC_OV F_NUM_CHn+ 1 times. To configure

LEDC_OVF_CNT_CHn_INT interrupt, please:

1. Configure LEDC_TIMER_SEL_CHn as the counter for the PWM generator

2. Enable the counter by setting LEDC_OVF_CNT_EN_CHn

3. Set LEDC_OVF_NUM_CHn to the number of counter overflows to generate an interrupt, minus 1

4. Enable the overflow interrupt by setting LEDC_OVF_CNT_CHn_INT_ENA

5. Set LEDC_TIMERx_DUTY_RES to enable the timer and wait for a LEDC_OVF_CNT_CHn_INT interrupt

Referring to Figure 15-2, the frequency of a PWM generator output signal (sig_outn) is dependent on the

frequency of the timer’s clock source (LEDC_CLKx), the clock divider value (LEDC_CLK_DIV_TIMERx), and the

range of the counter (LEDC_TIMERx_DUTY_RES):

fPWM =
fLEDC_CLKx

LEDC_CLK_DIVx · 2LEDC_TIMERx_DUTY_RES

To change the overflow value at runtime, first set the LEDC_TIMERx_DUTY_RES field, and then set the

LEDC_TIMERx_PARA_UP field. This will cause the newly configured values to take effect upon the next overflow

of the counter. If LEDC_OVF_CNT_EN_CHn field is reconfigured, LEDC_TIMERx_PARA_UP should also be set to

apply the new configuration. In summary, these configuration values need to be updated by setting

LEDC_TIMERx_PARA_UP. LEDC_TIMERx_PARA_UP field will be automatically cleared by hardware.

15.3.3 PWM Generators

To generate a PWM signal, a PWM generator (PWMn) selects a timer (Timerx). Each PWM generator can be

configured separately by setting LEDC_TIMER_SEL_CHn to use one of four timers to generate the PWM

output.

As shown in Figure 15-2, each PWM generator has a comparator and two multiplexers. A PWM generator

compares the timer’s 14-bit counter value (Timerx_cnt) to two trigger values Hpointn and Lpointn. When the

timer’s counter value is equal to Hpointn or Lpointn, the PWM signal is high or low, respectively, as described

below:

• If Timerx_cnt == Hpointn, sig_outn is 1.

• If Timerx_cnt == Lpointn, sig_outn is 0.

Figure 15-4 illustrates how Hpointn or Lpointn are used to generate a fixed duty cycle PWM output signal.

For a particular PWM generator (PWMn), its Hpointn is sampled from the LEDC_HPOINT_CHn field each time the

selected timer’s counter overflows. Likewise, Lpointn is also sampled on every counter overflow and is calculated

from the sum of the LEDC_DUTY_CHn[18:4] and LEDC_HPOINT_CHn fields. By setting Hpointn and Lpointn via

Espressif Systems 327
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

Figure 15­4. LED_PWM Output Signal Diagram

the LEDC_HPOINT_CHn and LEDC_DUTY_CHn[18:4] fields, the relative phase and duty cycle of the PWM

output can be set.

The PWM output signal (sig_outn) is enabled by setting LEDC_SIG_OUT_EN_CHn. When

LEDC_SIG_OUT_EN_CHn is cleared, PWM signal output is disabled, and the output signal (sig_outn) will output

a constant level as specified by LEDC_IDLE_LV_CHn.

The bits LEDC_DUTY_CHn[3:0] are used to dither the duty cycles of the PWM output signal (sig_outn) by

periodically altering the duty cycle of sig_outn. When LEDC_DUTY_CHn[3:0] is set to a non-zero value, then for

every 16 cycles of sig_outn, LEDC_DUTY_CHn[3:0] of those cycles will have PWM pulses that are one timer tick

longer than the other (16- LEDC_DUTY_CHn[3:0]) cycles. For instance, if LEDC_DUTY_CHn[18:4] is set to 10

and LEDC_DUTY_CHn[3:0] is set to 5, then 5 of 16 cycles will have a PWM pulse with a duty value of 11 and the

rest of the 16 cycles will have a PWM pulse with a duty value of 10. The average duty cycle after 16 cycles is

10.3125.

If fields LEDC_TIMER_SEL_CHn, LEDC_HPOINT_CHn, LEDC_DUTY_CHn[18:4] and LEDC_SIG_OUT_EN_CHn

are reconfigured, LEDC_PARA_UP_CHn must be set to apply the new configuration. This will cause the newly

configured values to take effect upon the next overflow of the counter. LEDC_PARA_UP_CHn field will be

automatically cleared by hardware.

15.3.4 Duty Cycle Fading

The PWM generators can fade the duty cycle of a PWM output signal (i.e. gradually change the duty cycle from

one value to another). If Duty Cycle Fading is enabled, the value of Lpointn will be incremented/decremented

after a fixed number of counter overflows has occured. Figure 15-5 illustrates Duty Cycle Fading.

Duty Cycle Fading is configured using the following register fields:

• LEDC_DUTY_CHn is used to set the initial value of Lpointn

• LEDC_DUTY_START_CHn will enable/disable duty cycle fading when set/cleared

• LEDC_DUTY_CYCLE_CHn sets the number of counter overflow cycles for every Lpointn

increment/decrement. In other words, Lpointn will be incremented/decremented after

LEDC_DUTY_CYCLE_CHn counter overflows.

• LEDC_DUTY_INC_CHn configures whether Lpointn is incremented/decremented if set/cleared

• LEDC_DUTY_SCALE_CHn sets the amount that Lpointn is incremented/decremented

Espressif Systems 328
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

Figure 15­5. Output Signal Diagram of Fading Duty Cycle

• LEDC_DUTY_NUM_CHn sets the maximum number of increments/decrements before duty cycle fading

stops.

If the fields LEDC_DUTY_CHn, LEDC_DUTY_START_CHn, LEDC_DUTY_CYCLE_CHn, LEDC_DUTY_INC_CHn,

LEDC_DUTY_SCALE_CHn, and LEDC_DUTY_NUM_CHn are reconfigured, LEDC_PARA_UP_CHn must be set

to apply the new configuration. After this field is set, the values for duty cycle fading will take effect at once.

LEDC_PARA_UP_CHn field will be automatically cleared by hardware.

15.3.5 Interrupts

• LEDC_OVF_CNT_CHn_INT: Triggered when the timer counter overflows for (LEDC_OVF_NUM_CHn + 1)

times and the register LEDC_OVF_CNT_EN_CHn is set to 1.

• LEDC_DUTY_CHNG_END_CHn_INT: Triggered when a fade on an LED PWM generator has finished.

• LEDC_TIMERx_OVF_INT: Triggered when an LED PWM timer has reached its maximum counter value.

Espressif Systems 329
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

15.4 Register Summary

The addresses in this section are relative to the LED PWM Controller base address provided in Table 3-4 in

Chapter 3 System and Memory.

Name Description Address Access

Configuration Register

LEDC_CH0_CONF0_REG Configuration register 0 for channel 0 0x0000 varies

LEDC_CH0_CONF1_REG Configuration register 1 for channel 0 0x000C varies

LEDC_CH1_CONF0_REG Configuration register 0 for channel 1 0x0014 varies

LEDC_CH1_CONF1_REG Configuration register 1 for channel 1 0x0020 varies

LEDC_CH2_CONF0_REG Configuration register 0 for channel 2 0x0028 varies

LEDC_CH2_CONF1_REG Configuration register 1 for channel 2 0x0034 varies

LEDC_CH3_CONF0_REG Configuration register 0 for channel 3 0x003C varies

LEDC_CH3_CONF1_REG Configuration register 1 for channel 3 0x0048 varies

LEDC_CH4_CONF0_REG Configuration register 0 for channel 4 0x0050 varies

LEDC_CH4_CONF1_REG Configuration register 1 for channel 4 0x005C varies

LEDC_CH5_CONF0_REG Configuration register 0 for channel 5 0x0064 varies

LEDC_CH5_CONF1_REG Configuration register 1 for channel 5 0x0070 varies

LEDC_CONF_REG Global ledc configuration register 0x00D0 R/W

Hpoint Register

LEDC_CH0_HPOINT_REG High point register for channel 0 0x0004 R/W

LEDC_CH1_HPOINT_REG High point register for channel 1 0x0018 R/W

LEDC_CH2_HPOINT_REG High point register for channel 2 0x002C R/W

LEDC_CH3_HPOINT_REG High point register for channel 3 0x0040 R/W

LEDC_CH4_HPOINT_REG High point register for channel 4 0x0054 R/W

LEDC_CH5_HPOINT_REG High point register for channel 5 0x0068 R/W

Duty Cycle Register

LEDC_CH0_DUTY_REG Initial duty cycle for channel 0 0x0008 R/W

LEDC_CH0_DUTY_R_REG Current duty cycle for channel 0 0x0010 RO

LEDC_CH1_DUTY_REG Initial duty cycle for channel 1 0x001C R/W

LEDC_CH1_DUTY_R_REG Current duty cycle for channel 1 0x0024 RO

LEDC_CH2_DUTY_REG Initial duty cycle for channel 2 0x0030 R/W

LEDC_CH2_DUTY_R_REG Current duty cycle for channel 2 0x0038 RO

LEDC_CH3_DUTY_REG Initial duty cycle for channel 3 0x0044 R/W

LEDC_CH3_DUTY_R_REG Current duty cycle for channel 3 0x004C RO

LEDC_CH4_DUTY_REG Initial duty cycle for channel 4 0x0058 R/W

LEDC_CH4_DUTY_R_REG Current duty cycle for channel 4 0x0060 RO

LEDC_CH5_DUTY_REG Initial duty cycle for channel 5 0x006C R/W

LEDC_CH5_DUTY_R_REG Current duty cycle for channel 5 0x0074 RO

Timer Register

LEDC_TIMER0_CONF_REG Timer 0 configuration 0x00A0 varies

LEDC_TIMER0_VALUE_REG Timer 0 current counter value 0x00A4 RO

LEDC_TIMER1_CONF_REG Timer 1 configuration 0x00A8 varies

LEDC_TIMER1_VALUE_REG Timer 1 current counter value 0x00AC RO

Espressif Systems 330
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

Name Description Address Access

LEDC_TIMER2_CONF_REG Timer 2 configuration 0x00B0 varies

LEDC_TIMER2_VALUE_REG Timer 2 current counter value 0x00B4 RO

LEDC_TIMER3_CONF_REG Timer 3 configuration 0x00B8 varies

LEDC_TIMER3_VALUE_REG Timer 3 current counter value 0x00BC RO

Interrupt Register

LEDC_INT_RAW_REG Raw interrupt status 0x00C0 R/WTC/SS

LEDC_INT_ST_REG Masked interrupt status 0x00C4 RO

LEDC_INT_ENA_REG Interrupt enable bits 0x00C8 R/W

LEDC_INT_CLR_REG Interrupt clear bits 0x00CC WT

Version Register

LEDC_DATE_REG Version control register 0x00FC R/W

Espressif Systems 331
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

15.5 Registers

The addresses in this section are relative to LED PWM Controller base address provided in Table 3-4 in Chapter 3

System and Memory.

Register 15.1. LEDC_CHn_CONF0_REG (n: 0­5) (0x0000+20*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

LE
DC_O

VF_
CNT_

RESET_
CHn

0

16

LE
DC_O

VF_
CNT_

EN_C
Hn

0

15

LE
DC_O

VF_
NUM

_C
Hn

0

14 5

LE
DC_P

ARA_U
P_C

Hn

0

4

LE
DC_ID

LE
_L

V_C
Hn

0

3

LE
DC_S

IG
_O

UT_
EN_C

Hn

0

2

LE
DC_T

IM
ER_S

EL_
CHn

0

1 0

Reset

LEDC_TIMER_SEL_CHn This field is used to select one of the timers for channel n.

0: select Timer0; 1: select Timer1; 2: select Timer2; 3: select Timer3 (R/W)

LEDC_SIG_OUT_EN_CHn Set this bit to enable signal output on channel n. (R/W)

LEDC_IDLE_LV_CHn This bit is used to control the output value when channel n is inactive (when

LEDC_SIG_OUT_EN_CHn is 0). (R/W)

LEDC_PARA_UP_CHn This bit is used to update the listed fields below for channel n, and will be

automatically cleared by hardware. (WT)

• LEDC_HPOINT_CHn

• LEDC_DUTY_START_CHn

• LEDC_SIG_OUT_EN_CHn

• LEDC_TIMER_SEL_CHn

• LEDC_DUTY_NUM_CHn

• LEDC_DUTY_CYCLE_CHn

• LEDC_DUTY_SCALE_CHn

• LEDC_DUTY_INC_CHn

• LEDC_OVF_CNT_EN_CHn

LEDC_OVF_NUM_CHn This field is used to configure the maximum times of overflow minus 1.

The LEDC_OVF_CNT_CHn_INT interrupt will be triggered when channel n overflows for

(LEDC_OVF_NUM_CHn + 1) times. (R/W)

LEDC_OVF_CNT_EN_CHn This bit is used to count the number of times when the timer selected by

channel n overflows. (R/W)

LEDC_OVF_CNT_RESET_CHn Set this bit to reset the timer-overflow counter of channel n. (WT)

Espressif Systems 332
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

Register 15.2. LEDC_CHn_CONF1_REG (n: 0­5) (0x000C+20*n)

LE
DC_D

UTY
_S

TA
RT_

CHn

0

31

LE
DC_D

UTY
_IN

C_C
Hn

1

30

LE
DC_D

UTY
_N

UM
_C

Hn

0x0

29 20

LE
DC_D

UTY
_C

YCLE
_C

Hn

0x0

19 10

LE
DC_D

UTY
_S

CALE
_C

Hn

0x0

9 0

Reset

LEDC_DUTY_SCALE_CHn This field configures the step size of the duty cycle change during fading.

(R/W)

LEDC_DUTY_CYCLE_CHn The duty will change every LEDC_DUTY_CYCLE_CHn cycle on channel

n. (R/W)

LEDC_DUTY_NUM_CHn This field controls the number of times the duty cycle will be changed. (R/W)

LEDC_DUTY_INC_CHn This bit determines whether the duty cycle of the output signal on channel n

increases or decreases. 1: Increase; 0: Decrease. (R/W)

LEDC_DUTY_START_CHn If this bit is set to 1, other configured fields in LEDC_CHn_CONF1_REG

will take effect upon the next timer overflow. (R/W/SC)

Register 15.3. LEDC_CONF_REG (0x00D0)

LE
DC_C

LK
_E

N

0

31

(re
se

rve
d)

0 0

30 2

LE
DC_A

PB_C
LK

_S
EL

0

1 0

Reset

LEDC_APB_CLK_SEL This field is used to select the common clock source for all the 4 timers.

1: APB_CLK; 2: RTC20M_CLK; 3: XTAL_CLK. (R/W)

LEDC_CLK_EN This bit is used to control the clock.

1: Force clock on for register. 0: Support clock only when application writes registers. (R/W)

Espressif Systems 333
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

Register 15.4. LEDC_CHn_HPOINT_REG (n: 0­5) (0x0004+20*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

LE
DC_H

POIN
T_

CHn

0x00

13 0

Reset

LEDC_HPOINT_CHn The output value changes to high when the selected timer for this channel has

reached the value specified by this field. (R/W)

Register 15.5. LEDC_CHn_DUTY_REG (n: 0­5) (0x0008+20*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

LE
DC_D

UTY
_C

Hn

0x000

18 0

Reset

LEDC_DUTY_CHn This field is used to change the output duty by controlling the Lpoint.

The output value turns to low when the selected timer for this channel has reached the Lpoint.

(R/W)

Register 15.6. LEDC_CHn_DUTY_R_REG (n: 0­5) (0x0010+20*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

LE
DC_D

UTY
_R

_C
Hn

0x000

18 0

Reset

LEDC_DUTY_R_CHn This field stores the current duty cycle of the output signal on channel n. (RO)

Espressif Systems 334
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

Register 15.7. LEDC_TIMERx_CONF_REG (x: 0­3) (0x00A0+8*x)

(re
se

rve
d)

0 0 0 0 0 0

31 26

LE
DC_T

IM
ERx

_P
ARA_U

P

0

25

(re
se

rve
d)

0

24

LE
DC_T

IM
ERx

_R
ST

1

23

LE
DC_T

IM
ERx

_P
AUSE

0

22

LE
DC_C

LK
_D

IV_T
IM

ERx

0x000

21 4

LE
DC_T

IM
ERx

_D
UTY

_R
ES

0x0

3 0

Reset

LEDC_TIMERx_DUTY_RES This field is used to control the range of the counter in timer x. (R/W)

LEDC_CLK_DIV_TIMERx This field is used to configure the divisor for the divider in timer x.

The least significant eight bits represent the fractional part. (R/W)

LEDC_TIMERx_PAUSE This bit is used to suspend the counter in timer x. (R/W)

LEDC_TIMERx_RST This bit is used to reset timer x. The counter will show 0 after reset. (R/W)

LEDC_TIMERx_PARA_UP Set this bit to update LEDC_CLK_DIV_TIMERx and

LEDC_TIMERx_DUTY_RES. (WT)

Register 15.8. LEDC_TIMERx_VALUE_REG (x: 0­3) (0x00A4+8*x)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

LE
DC_T

IM
ERx

_C
NT

0

13 0

Reset

LEDC_TIMERx_CNT This field stores the current counter value of timer x. (RO)

Espressif Systems 335
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

Register 15.9. LEDC_INT_RAW_REG (0x00C0)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

LE
DC_O

VF_
CNT_

CH5_
IN

T_
RAW

0

15

LE
DC_O

VF_
CNT_

CH4_
IN

T_
RAW

0

14

LE
DC_O

VF_
CNT_

CH3_
IN

T_
RAW

0

13

LE
DC_O

VF_
CNT_

CH2_
IN

T_
RAW

0

12

LE
DC_O

VF_
CNT_

CH1_
IN

T_
RAW

0

11

LE
DC_O

VF_
CNT_

CH0_
IN

T_
RAW

0

10

LE
DC_D

UTY
_C

HNG_E
ND_C

H5_
IN

T_
RAW

0

9

LE
DC_D

UTY
_C

HNG_E
ND_C

H4_
IN

T_
RAW

0

8

LE
DC_D

UTY
_C

HNG_E
ND_C

H3_
IN

T_
RAW

0

7

LE
DC_D

UTY
_C

HNG_E
ND_C

H2_
IN

T_
RAW

0

6

LE
DC_D

UTY
_C

HNG_E
ND_C

H1_
IN

T_
RAW

0

5

LE
DC_D

UTY
_C

HNG_E
ND_C

H0_
IN

T_
RAW

0

4

LE
DC_T

IM
ER3_

OVF_
IN

T_
RAW

0

3

LE
DC_T

IM
ER2_

OVF_
IN

T_
RAW

0

2

LE
DC_T

IM
ER1_

OVF_
IN

T_
RAW

0

1

LE
DC_T

IM
ER0_

OVF_
IN

T_
RAW

0

0

Reset

LEDC_TIMERx_OVF_INT_RAW Triggered when the timerx has reached its maximum counter value.

(R/WTC/SS)

LEDC_DUTY_CHNG_END_CHn_INT_RAW Interrupt raw bit for channel n. Triggered when the grad-

ual change of duty has finished. (R/WTC/SS)

LEDC_OVF_CNT_CHn_INT_RAW Interrupt raw bit for channel n. Triggered when the ovf_cnt has

reached the value specified by LEDC_OVF_NUM_CHn. (R/WTC/SS)

Register 15.10. LEDC_INT_ST_REG (0x00C4)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

LE
DC_O

VF_
CNT_

CH5_
IN

T_
ST

0

15

LE
DC_O

VF_
CNT_

CH4_
IN

T_
ST

0

14

LE
DC_O

VF_
CNT_

CH3_
IN

T_
ST

0

13

LE
DC_O

VF_
CNT_

CH2_
IN

T_
ST

0

12

LE
DC_O

VF_
CNT_

CH1_
IN

T_
ST

0

11

LE
DC_O

VF_
CNT_

CH0_
IN

T_
ST

0

10

LE
DC_D

UTY
_C

HNG_E
ND_C

H5_
IN

T_
ST

0

9

LE
DC_D

UTY
_C

HNG_E
ND_C

H4_
IN

T_
ST

0

8

LE
DC_D

UTY
_C

HNG_E
ND_C

H3_
IN

T_
ST

0

7

LE
DC_D

UTY
_C

HNG_E
ND_C

H2_
IN

T_
ST

0

6

LE
DC_D

UTY
_C

HNG_E
ND_C

H1_
IN

T_
ST

0

5

LE
DC_D

UTY
_C

HNG_E
ND_C

H0_
IN

T_
ST

0

4

LE
DC_T

IM
ER3_

OVF_
IN

T_
ST

0

3

LE
DC_T

IM
ER2_

OVF_
IN

T_
ST

0

2

LE
DC_T

IM
ER1_

OVF_
IN

T_
ST

0

1

LE
DC_T

IM
ER0_

OVF_
IN

T_
ST

0

0

Reset

LEDC_TIMERx_OVF_INT_ST This is the masked interrupt status bit for the LEDC_TIMERx_OVF_INT

interrupt when LEDC_TIMERx_OVF_INT_ENA is set to 1. (RO)

LEDC_DUTY_CHNG_END_CHn_INT_ST This is the masked interrupt status bit for the

LEDC_DUTY_CHNG_END_CHn_INT interrupt when LEDC_DUTY_CHNG_END_CHn_INT_ENA is

set to 1. (RO)

LEDC_OVF_CNT_CHn_INT_ST This is the masked interrupt status bit for the

LEDC_OVF_CNT_CHn_INT interrupt when LEDC_OVF_CNT_CHn_INT_ENA is set to 1. (RO)

Espressif Systems 336
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

Register 15.11. LEDC_INT_ENA_REG (0x00C8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

LE
DC_O

VF_
CNT_

CH5_
IN

T_
ENA

0

15

LE
DC_O

VF_
CNT_

CH4_
IN

T_
ENA

0

14

LE
DC_O

VF_
CNT_

CH3_
IN

T_
ENA

0

13

LE
DC_O

VF_
CNT_

CH2_
IN

T_
ENA

0

12

LE
DC_O

VF_
CNT_

CH1_
IN

T_
ENA

0

11

LE
DC_O

VF_
CNT_

CH0_
IN

T_
ENA

0

10

LE
DC_D

UTY
_C

HNG_E
ND_C

H5_
IN

T_
ENA

0

9

LE
DC_D

UTY
_C

HNG_E
ND_C

H4_
IN

T_
ENA

0

8

LE
DC_D

UTY
_C

HNG_E
ND_C

H3_
IN

T_
ENA

0

7

LE
DC_D

UTY
_C

HNG_E
ND_C

H2_
IN

T_
ENA

0

6

LE
DC_D

UTY
_C

HNG_E
ND_C

H1_
IN

T_
ENA

0

5

LE
DC_D

UTY
_C

HNG_E
ND_C

H0_
IN

T_
ENA

0

4

LE
DC_T

IM
ER3_

OVF_
IN

T_
ENA

0

3

LE
DC_T

IM
ER2_

OVF_
IN

T_
ENA

0

2

LE
DC_T

IM
ER1_

OVF_
IN

T_
ENA

0

1

LE
DC_T

IM
ER0_

OVF_
IN

T_
ENA

0

0

Reset

LEDC_TIMERx_OVF_INT_ENA The interrupt enable bit for the LEDC_TIMERx_OVF_INT interrupt.

(R/W)

LEDC_DUTY_CHNG_END_CHn_INT_ENA The interrupt enable bit for the

LEDC_DUTY_CHNG_END_CHn_INT interrupt. (R/W)

LEDC_OVF_CNT_CHn_INT_ENA The interrupt enable bit for the LEDC_OVF_CNT_CHn_INT inter-

rupt. (R/W)

Register 15.12. LEDC_INT_CLR_REG (0x00CC)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

LE
DC_O

VF_
CNT_

CH5_
IN

T_
CLR

0

15

LE
DC_O

VF_
CNT_

CH4_
IN

T_
CLR

0

14

LE
DC_O

VF_
CNT_

CH3_
IN

T_
CLR

0

13

LE
DC_O

VF_
CNT_

CH2_
IN

T_
CLR

0

12

LE
DC_O

VF_
CNT_

CH1_
IN

T_
CLR

0

11

LE
DC_O

VF_
CNT_

CH0_
IN

T_
CLR

0

10

LE
DC_D

UTY
_C

HNG_E
ND_C

H5_
IN

T_
CLR

0

9

LE
DC_D

UTY
_C

HNG_E
ND_C

H4_
IN

T_
CLR

0

8

LE
DC_D

UTY
_C

HNG_E
ND_C

H3_
IN

T_
CLR

0

7

LE
DC_D

UTY
_C

HNG_E
ND_C

H2_
IN

T_
CLR

0

6

LE
DC_D

UTY
_C

HNG_E
ND_C

H1_
IN

T_
CLR

0

5

LE
DC_D

UTY
_C

HNG_E
ND_C

H0_
IN

T_
CLR

0

4

LE
DC_T

IM
ER3_

OVF_
IN

T_
CLR

0

3

LE
DC_T

IM
ER2_

OVF_
IN

T_
CLR

0

2

LE
DC_T

IM
ER1_

OVF_
IN

T_
CLR

0

1

LE
DC_T

IM
ER0_

OVF_
IN

T_
CLR

0

0

Reset

LEDC_TIMERx_OVF_INT_CLR Set this bit to clear the LEDC_TIMERx_OVF_INT interrupt. (WT)

LEDC_DUTY_CHNG_END_CHn_INT_CLR Set this bit to clear the

LEDC_DUTY_CHNG_END_CHn_INT interrupt. (WT)

LEDC_OVF_CNT_CHn_INT_CLR Set this bit to clear the LEDC_OVF_CNT_CHn_INT interrupt. (WT)

Espressif Systems 337
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

15 LED PWM Controller (LEDC)

Register 15.13. LEDC_DATE_REG (0x00FC)

LE
DC_L

EDC_D
AT

E

0x19061700

31 0

Reset

LEDC_LEDC_DATE This is the version control register. (R/W)

Espressif Systems 338
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

Glossary

Glossary

Abbreviations for Peripherals

AES AES (Advanced Encryption Standard) Accelerator

BOOTCTRL Chip Boot Control

DS Digital Signature

DMA DMA (Direct Memory Access) Controller

eFuse eFuse Controller

HMAC HMAC (Hash-based Message Authentication Code) Accelerator

I2C I2C (Inter-Integrated Circuit) Controller

I2S I2S (Inter-IC Sound) Controller

LEDC LED Control PWM (Pulse Width Modulation)

MCPWM Motor Control PWM (Pulse Width Modulation)

PCNT Pulse Count Controller

RMT Remote Control Peripheral

RNG Random Number Generator

RSA RSA (Rivest Shamir Adleman) Accelerator

SDHOST SD/MMC Host Controller

SHA SHA (Secure Hash Algorithm) Accelerator

SPI SPI (Serial Peripheral Interface) Controller

SYSTIMER System Timer

TIMG Timer Group

TWAI Two-wire Automotive Interface

UART UART (Universal Asynchronous Receiver-Transmitter) Controller

ULP Coprocessor Ultra-low-power Coprocessor

USB OTG USB On-The-Go

WDT Watchdog Timers

Abbreviations for Registers

ISO Isolation. When a module is power down, its output pins will be stuck in unknown

state (some middle voltage). ”ISO” registers will control to isolate its output pins

to be a determined value, so it will not affect the status of other working modules

which are not power down.

NMI Non-maskable interrupt.

REG Register.

R/W Read/write. Software can read and write to these bits.

RO Read-only. Software can only read these bits.

SYSREG System Registers

WO Write-only. Software can only write to these bits.

Espressif Systems 339
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

Revision History

Revision History

Date Version Release notes

2021-04-08 V0.1 Preliminary release

2021-05-27 V0.2

Added the following chapters:

• Chapter 4 eFuse Controller (EFUSE)

• Chapter 13 UART Controller (UART)

• Chapter 8 Timer Group (TIMG)

• Chapter 2 GDMA Controller (GDMA)

• Chapter 15 LED PWM Controller (LEDC)

Updated the Chapter 5 IO MUX and GPIO Matrix (GPIO, IO MUX)

Adjusted the order of chapters.

Espressif Systems 340
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.2)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.2

PRELIM
IN

ARY

www.espressif.com

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY’S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO
WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-
INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information
in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any
intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a
registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property
of their respective owners, and are hereby acknowledged.

Copyright © 2021 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.

https://www.espressif.com/

	1 ESP-RISC-V CPU
	1.1 Overview
	1.2 Features
	1.3 Address Map
	1.4 Configuration and Status Registers (CSRs)
	1.4.1 Register Summary
	1.4.2 Register Description

	1.5 Interrupt Controller
	1.5.1 Features
	1.5.2 Functional Description
	1.5.3 Suggested Operation
	1.5.4 Register Summary
	1.5.5 Register Description

	1.6 Debug
	1.6.1 Overview
	1.6.2 Features
	1.6.3 Functional Description
	1.6.4 Register Summary
	1.6.5 Register Description

	1.7 Hardware Trigger
	1.7.1 Features
	1.7.2 Functional Description
	1.7.3 Trigger Execution Flow
	1.7.4 Register Summary
	1.7.5 Register Description

	1.8 Memory Protection
	1.8.1 Overview
	1.8.2 Features
	1.8.3 Functional Description
	1.8.4 Register Summary
	1.8.5 Register Description

	2 GDMA Controller (GDMA)
	2.1 Overview
	2.2 Features
	2.3 Architecture
	2.4 Functional Description
	2.4.1 Linked List
	2.4.2 Peripheral-to-Memory and Memory-to-Peripheral Data Transfer
	2.4.3 Memory-to-Memory Data Transfer
	2.4.4 Enabling GDMA
	2.4.5 Linked List Reading Process
	2.4.6 EOF
	2.4.7 Accessing Internal RAM
	2.4.8 Arbitration
	2.4.9 Bandwidth

	2.5 GDMA Interrupts
	2.6 Programming Procedures
	2.6.1 Programming Procedures for GDMA's Transmit Channel
	2.6.2 Programming Procedures for GDMA's Receive Channel
	2.6.3 Programming Procedures for Memory-to-Memory Transfer

	2.7 Register Summary
	2.8 Registers

	3 System and Memory
	3.1 Overview
	3.2 Features
	3.3 Functional Description
	3.3.1 Address Mapping
	3.3.2 Internal Memory
	3.3.3 External Memory
	3.3.4 GDMA Address Space
	3.3.5 Modules/Peripherals

	4 eFuse Controller (EFUSE)
	4.1 Overview
	4.2 Features
	4.3 Functional Description
	4.3.1 Structure
	4.3.2 Software Programming of Parameters
	4.3.3 Software Reading of Parameters
	4.3.4 eFuse VDDQ Timing
	4.3.5 The Use of Parameters by Hardware Modules
	4.3.6 Interrupts

	4.4 Register Summary
	4.5 Registers

	5 IO MUX and GPIO Matrix (GPIO, IO MUX)
	5.1 Overview
	5.2 Features
	5.3 Architectural Overview
	5.4 Peripheral Input via GPIO Matrix
	5.4.1 Overview
	5.4.2 Signal Synchronization
	5.4.3 Functional Description
	5.4.4 Simple GPIO Input

	5.5 Peripheral Output via GPIO Matrix
	5.5.1 Overview
	5.5.2 Functional Description
	5.5.3 Simple GPIO Output
	5.5.4 Sigma Delta Modulated Output (SDM)

	5.6 Direct Input and Output via IO MUX
	5.6.1 Overview
	5.6.2 Functional Description

	5.7 Analog Functions of GPIO Pins
	5.8 Pin Hold Feature
	5.9 Power Supplies and Management of GPIO Pins
	5.9.1 Power Supplies of GPIO Pins
	5.9.2 Power Supply Management

	5.10 Peripheral Signal List
	5.11 IO MUX Functions List
	5.12 Analog Functions List
	5.13 Register Summary
	5.13.1 GPIO Matrix Register Summary
	5.13.2 IO MUX Register Summary
	5.13.3 SDM Register Summary

	5.14 Registers
	5.14.1 GPIO Matrix Registers
	5.14.2 IO MUX Registers
	5.14.3 SDM Output Registers

	6 Reset and Clock
	6.1 Reset
	6.1.1 Overview
	6.1.2 Architectural Overview
	6.1.3 Features
	6.1.4 Functional Description

	6.2 Clock
	6.2.1 Overview
	6.2.2 Architectural Overview
	6.2.3 Features
	6.2.4 Functional Description

	7 Chip Boot Control
	7.1 Overview
	7.2 Boot Mode Control
	7.3 ROM Code Printing Control

	8 Timer Group (TIMG)
	8.1 Overview
	8.2 Functional Description
	8.2.1 16-bit Prescaler and Clock Selection
	8.2.2 54-bit Time-base Counter
	8.2.3 Alarm Generation
	8.2.4 Timer Reload
	8.2.5 SLOW_CLK Frequency Calculation
	8.2.6 Interrupts

	8.3 Configuration and Usage
	8.3.1 Timer as a Simple Clock
	8.3.2 Timer as One-shot Alarm
	8.3.3 Timer as Periodic Alarm
	8.3.4 SLOW_CLK Frequency Calculation

	8.4 Register Summary
	8.5 Registers

	9 SHA Accelerator (SHA)
	9.1 Introduction
	9.2 Features
	9.3 Working Modes
	9.4 Function Description
	9.4.1 Preprocessing
	9.4.2 Hash Task Process
	9.4.3 Message Digest
	9.4.4 Interrupt

	9.5 Register Summary
	9.6 Registers

	10 AES Accelerator (AES)
	10.1 Introduction
	10.2 Features
	10.3 AES Working Modes
	10.4 Typical AES Working Mode
	10.4.1 Key, Plaintext, and Ciphertext
	10.4.2 Endianness
	10.4.3 Operation Process

	10.5 DMA-AES Working Mode
	10.5.1 Key, Plaintext, and Ciphertext
	10.5.2 Endianness
	10.5.3 Standard Incrementing Function
	10.5.4 Block Number
	10.5.5 Initialization Vector
	10.5.6 Block Operation Process

	10.6 Memory Summary
	10.7 Register Summary
	10.8 Registers

	11 RSA Accelerator (RSA)
	11.1 Introduction
	11.2 Features
	11.3 Functional Description
	11.3.1 Large Number Modular Exponentiation
	11.3.2 Large Number Modular Multiplication
	11.3.3 Large Number Multiplication
	11.3.4 Options for Acceleration

	11.4 Memory Summary
	11.5 Register Summary
	11.6 Registers

	12 Random Number Generator (RNG)
	12.1 Introduction
	12.2 Features
	12.3 Functional Description
	12.4 Programming Procedure
	12.5 Register Summary
	12.6 Register

	13 UART Controller (UART)
	13.1 Overview
	13.2 Features
	13.3 UART Structure
	13.4 Functional Description
	13.4.1 Clock and Reset
	13.4.2 UART RAM
	13.4.3 Baud Rate Generation and Detection
	13.4.4 UART Data Frame
	13.4.5 RS485
	13.4.6 IrDA
	13.4.7 Wake-up
	13.4.8 Flow Control
	13.4.9 GDMA Mode
	13.4.10 UART Interrupts
	13.4.11 UHCI Interrupts

	13.5 Programming Procedures
	13.5.1 Register Type
	13.5.2 Detailed Steps

	13.6 Register Summary
	13.7 Registers

	14 Two-wire Automotive Interface (TWAI)
	14.1 Features
	14.2 Functional Protocol
	14.2.1 TWAI Properties
	14.2.2 TWAI Messages
	14.2.3 TWAI Errors
	14.2.4 TWAI Bit Timing

	14.3 Architectural Overview
	14.3.1 Registers Block
	14.3.2 Bit Stream Processor
	14.3.3 Error Management Logic
	14.3.4 Bit Timing Logic
	14.3.5 Acceptance Filter
	14.3.6 Receive FIFO

	14.4 Functional Description
	14.4.1 Modes
	14.4.2 Bit Timing
	14.4.3 Interrupt Management
	14.4.4 Transmit and Receive Buffers
	14.4.5 Receive FIFO and Data Overruns
	14.4.6 Acceptance Filter
	14.4.7 Error Management
	14.4.8 Error Code Capture
	14.4.9 Arbitration Lost Capture

	14.5 Register Summary
	14.6 Registers

	15 LED PWM Controller (LEDC)
	15.1 Overview
	15.2 Features
	15.3 Functional Description
	15.3.1 Architecture
	15.3.2 Timers
	15.3.3 PWM Generators
	15.3.4 Duty Cycle Fading
	15.3.5 Interrupts

	15.4 Register Summary
	15.5 Registers

	Glossary
	Abbreviations for Peripherals
	Abbreviations for Registers

	Revision History

