
PRELIM
IN

ARY
ESP32­C3
Technical Reference Manual

Pre-release v0.1

Espressif Systems

Copyright © 2021

www.espressif.com

PRELIM
IN

ARY

About This Manual

The ESP32­C3 Technical Reference Manual is addressed to application developers. The manual provides

detailed and complete information on how to use the ESP32-C3 memory and peripherals.

For pin definition, electrical characteristics, and package information, please see ESP32-C3 Datasheet.

Document Updates

Please always refer to the latest version on https://www.espressif.com/en/support/download/documents.

Revision History

For revision history of this document, please refer to the last page.

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation.

Please subscribe at www.espressif.com/en/subscribe.

Certification

Download certificates for Espressif products from www.espressif.com/en/certificates.

https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/en/support/download/documents
http://espressif.com/en/subscribe
http://espressif.com/en/certificates

PRELIM
IN

ARY

Contents

Contents

1 Reset and Clock 9

1.1 Reset 9

1.1.1 Overview 9

1.1.2 Architectural Overview 9

1.1.3 Features 9

1.1.4 Functional Description 10

1.2 Clock 11

1.2.1 Overview 11

1.2.2 Architectural Overview 11

1.2.3 Features 11

1.2.4 Functional Description 12

1.2.4.1 CPU Clock 12

1.2.4.2 Peripheral Clock 12

1.2.4.3 Wi-Fi and Bluetooth® LE Clock 14

1.2.4.4 RTC Clock 14

2 Random Number Generator 15

2.1 Introduction 15

2.2 Features 15

2.3 Functional Description 15

2.4 Programming Procedure 16

2.5 Register Summary 16

2.6 Register 16

3 System and Memory 17

3.1 Overview 17

3.2 Features 17

3.3 Functional Description 18

3.3.1 Address Mapping 18

3.3.2 Internal Memory 19

3.3.3 External Memory 21

3.3.3.1 External Memory Address Mapping 21

3.3.3.2 Cache 21

3.3.3.3 Cache Operations 22

3.3.4 GDMA Address Space 23

3.3.5 Modules/Peripherals 23

3.3.5.1 Module/Peripheral Address Mapping 24

4 IO MUX and GPIO Matrix (GPIO, IO_MUX) 26

4.1 Overview 26

4.2 Features 26

4.3 Architectural Overview 26

4.4 Peripheral Input via GPIO Matrix 28

Espressif Systems 3
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

Contents

4.4.1 Overview 28

4.4.2 Signal Synchronization 28

4.4.3 Functional Description 29

4.4.4 Simple GPIO Input 30

4.5 Peripheral Output via GPIO Matrix 30

4.5.1 Overview 30

4.5.2 Functional Description 31

4.5.3 Simple GPIO Output 31

4.5.4 Sigma Delta Modulated Output (SDM) 32

4.5.4.1 Functional Description 32

4.5.4.2 SDM Configuration 33

4.6 Direct Input and Output via IO MUX 33

4.6.1 Overview 33

4.6.2 Functional Description 33

4.7 Analog Functions of GPIO Pins 33

4.8 Pin Hold Feature 34

4.9 Power Supplies and Management of GPIO Pins 34

4.9.1 Power Supplies of GPIO Pins 34

4.9.2 Power Supply Management 34

4.10 Peripheral Signal List 34

4.11 IO MUX Functions List 41

4.12 Analog Functions List 42

4.13 Register Summary 42

4.13.1 GPIO Matrix Register Summary 42

4.13.2 IO MUX Register Summary 44

4.13.3 SDM Register Summary 45

4.14 Registers 45

4.14.1 GPIO Matrix Registers 45

4.14.2 IO MUX Registers 53

4.14.3 SDM Output Registers 55

5 SHA Accelerator 57

5.1 Introduction 57

5.2 Features 57

5.3 Working Modes 57

5.4 Function Description 58

5.4.1 Preprocessing 58

5.4.1.1 Padding the Message 58

5.4.1.2 Parsing the Message 58

5.4.1.3 Initial Hash Value 59

5.4.2 Hash Task Process 59

5.4.2.1 Typical SHA Mode Process 59

5.4.2.2 DMA-SHA Mode Process 60

5.4.3 Message Digest 61

5.4.4 Interrupt 61

5.5 Register Summary 62

Espressif Systems 4
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

Contents

5.6 Registers 63

6 AES Accelerator 67

6.1 Introduction 67

6.2 Features 67

6.3 AES Working Modes 67

6.4 Typical AES Working Mode 69

6.4.1 Key, Plaintext, and Ciphertext 69

6.4.2 Endianness 69

6.4.3 Operation Process 71

6.5 DMA-AES Working Mode 71

6.5.1 Key, Plaintext, and Ciphertext 72

6.5.2 Endianness 72

6.5.3 Standard Incrementing Function 73

6.5.4 Block Number 73

6.5.5 Initialization Vector 73

6.5.6 Block Operation Process 74

6.6 Memory Summary 74

6.7 Register Summary 75

6.8 Registers 76

7 RSA Accelerator 80

7.1 Introduction 80

7.2 Features 80

7.3 Functional Description 80

7.3.1 Large Number Modular Exponentiation 80

7.3.2 Large Number Modular Multiplication 82

7.3.3 Large Number Multiplication 82

7.3.4 Options for Acceleration 83

7.4 Memory Summary 84

7.5 Register Summary 85

7.6 Registers 86

8 Chip Boot Control 90

8.1 Overview 90

8.2 Boot Mode Control 90

8.3 ROM Code Printing Control 91

8.4 JTAG Signals Source Control 92

8.5 USB Serial/JTAG Controller 92

9 ESP­RISC­V CPU 93

9.1 Overview 93

9.2 Features 93

9.3 Address Map 94

9.4 Configuration and Status Registers (CSRs) 94

9.4.1 Register Summary 94

Espressif Systems 5
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

Contents

9.4.2 Register Description 95

9.5 Interrupt Controller 103

9.5.1 Features 103

9.5.2 Functional Description 103

9.5.3 Suggested Operation 105

9.5.3.1 Latency Aspects 105

9.5.3.2 Configuration Procedure 105

9.5.4 Register Summary 106

9.5.5 Register Description 107

9.6 Debug 110

9.6.1 Overview 110

9.6.2 Features 111

9.6.3 Functional Description 111

9.6.4 Register Summary 111

9.6.5 Register Description 111

9.7 Hardware Trigger 114

9.7.1 Features 114

9.7.2 Functional Description 114

9.7.3 Trigger Execution Flow 115

9.7.4 Register Summary 115

9.7.5 Register Description 116

9.8 Memory Protection 120

9.8.1 Overview 120

9.8.2 Features 120

9.8.3 Functional Description 120

9.8.4 Register Summary 121

9.8.5 Register Description 121

Glossary 122

Abbreviations for Peripherals 122

Abbreviations for Registers 122

Revision History 123

Espressif Systems 6
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

List of Tables

List of Tables

1-1 Reset Sources 10

1-2 CPU_CLK Clock Source 12

1-3 CPU Clock Frequency 12

1-4 Peripheral Clocks 13

1-5 APB_CLK Clock Frequency 14

1-6 CRYPTO_CLK Frequency 14

3-1 Address Mapping 19

3-2 Internal Memory Address Mapping 20

3-3 External Memory Address Mapping 21

3-4 Module/Peripheral Address Mapping 24

4-1 Peripheral Signals via GPIO Matrix 36

4-2 IO MUX Pin Functions 41

4-3 Power-Up Glitches on Pins 42

4-4 Analog Functions of IO MUX Pins 42

5-1 SHA Accelerator Working Mode 57

5-2 SHA Hash Algorithm Selection 58

5-3 The Storage and Length of Message Digest from Different Algorithms 61

6-1 AES Accelerator Working Mode 68

6-2 Key Length and Encryption/Decryption 68

6-3 Working Status under Typical AES Working Mode 69

6-4 Text Endianness Type for Typical AES 69

6-5 Key Endianness Type for AES-128 Encryption and Decryption 70

6-6 Key Endianness Type for AES-256 Encryption and Decryption 70

6-7 Block Cipher Mode 71

6-8 Working Status under DMA-AES Working mode 72

6-9 TEXT-PADDING 72

6-10 Text Endianness for DMA-AES 73

7-1 Acceleration Performance 84

7-2 RSA Accelerator Memory Blocks 84

8-1 Default Configuration of Strapping Pins 90

8-2 Boot Mode 90

8-3 ROM Code Printing Control 91

8-4 JTAG Signals Source Control 92

9-1 CPU Address Map 94

9-3 ID wise map of Interrupt Trap-Vector Addresses 104

9-6 NAPOT encoding for maddress 115

Espressif Systems 7
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

List of Figures

List of Figures

1-1 Reset Types 9

1-2 System Clock 11

2-1 Noise Source 15

3-1 System Structure and Address Mapping 18

3-2 Cache Structure 22

3-3 Peripherals/modules that can work with GDMA 23

4-1 Diagram of IO MUX and GPIO Matrix 27

4-2 Architecture of IO MUX and GPIO Matirx 27

4-3 Internal Structure of a Pad 28

4-4 GPIO Input Synchronized on APB Clock Rising Edge or on Falling Edge 29

4-5 Filter Timing of GPIO Input Signals 29

9-1 CPU Block Diagram 93

9-2 Debug System Overview 110

Espressif Systems 8
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

1 Reset and Clock

1 Reset and Clock

1.1 Reset

1.1.1 Overview

ESP32-C3 provides four types of reset that occur at different levels, namely CPU Reset, Core Reset, System

Reset, and Chip Reset. All reset types mentioned above (except Chip Reset) maintain the data stored in internal

memory. Figure 1-1 shows the scope of affected subsystems by each type of reset.

1.1.2 Architectural Overview

Figure 1­1. Reset Types

1.1.3 Features

• Support four reset levels:

– CPU Reset: Only resets CPU core. Once such reset is triggered, the instructions from the CPU reset

vector will be executed.

– Core Reset: Resets the whole digital system except RTC, including CPU, peripherals, Wi-Fi,

Bluetooth® LE, and digital GPIOs.

– System Reset: Resets the whole digital system, including RTC.

– Chip Reset: Resets the whole chip.

• Support software reset and hardware reset:

– Software Reset: the CPU can trigger a software reset by configuring the corresponding registers.

– Hardware Reset: Hardware reset is directly triggered by the circuit.

Espressif Systems 9
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

1 Reset and Clock

Note:

If CPU is reset, SENSITIVE registers will be reset, too.

1.1.4 Functional Description

CPU will be reset immediately when any of the reset above occurs. Users can get reset source codes by reading

register RTC_CNTL_RESET_CAUSE_PROCPU after the reset is released.

Table 1-1 lists possible reset sources and the types of reset they trigger.

Table 1­1. Reset Sources

Code Source Reset Type Comments

0x01 Chip reset Chip Reset See the note1 below

0x0F Brown-out system re-

set

Chip Reset or System

Reset

Triggered by brown-out detector, see the note2

below

0x10 RWDT system reset System Reset

0x13 CLK GLITCH reset System Reset

0x12 Super Watchdog reset System Reset

0x03 Software system reset Core Reset Triggered by configuring

RTC_CNTL_SW_SYS_RST

0x05 Deep-sleep reset Core Reset

0x14 eFuse reset Core Reset Triggered by eFuse CRC error

0x17 Power glitch reset Core Reset Triggered by power glitch

0x07 MWDT0 core reset Core Reset

0x08 MWDT1 core reset Core Reset

0x09 RWDT core reset Core Reset

0x0B MWDT0 CPU reset CPU Reset

0x0C Software CPU reset CPU Reset Triggered by configuring

RTC_CNTL_SW_PROCPU_RST

0x0D RWDT CPU reset CPU Reset

0x11 MWDT1 CPU reset CPU Reset

Note:

1. Chip Reset can be triggered by the following two sources:

• Triggered by chip power-on.

• Triggered by brown-out detector.

2. Once brown-out status is detected, the detector will trigger System Reset or Chip Reset, depending on register

configuration.

Espressif Systems 10
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://github.com/espressif/esp-idf/blob/master/components/soc/esp32c3/include/soc/sensitive_reg.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

1 Reset and Clock

1.2 Clock

1.2.1 Overview

ESP32-C3 clocks are mainly sourced from oscillator (OSC), RC, and PLL circuit, and then processed by the

dividers or selectors, which allows most functional modules to select their working clock according to their power

consumption and performance requirements. Figure 1-2 shows the system clock structure.

1.2.2 Architectural Overview

Figure 1­2. System Clock

1.2.3 Features

ESP32-C3 clocks can be classified in two types depending on their frequencies:

• High speed clocks for devices working at a higher frequency, such as CPU and digital peripherals

– PLL_CLK (320 MHz or 480 MHz): internal PLL clock

– XTAL_CLK (40 MHz): external crystal clock

• Slow speed clocks for low-power devices, such as RTC module and low-power peripherals

Espressif Systems 11
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

1 Reset and Clock

– XTAL32K_CLK (32 kHz): external crystal clock

– RTC20M_CLK (20 MHz by default): internal oscillator with adjustable frequency

– RTC20M_D256_CLK (78.125 kHz by default): internal clock derived from RTC20M_CLK divided by

256

– RTC_CLK (150 kHz by default): internal low power clock with adjustable frequency

1.2.4 Functional Description

1.2.4.1 CPU Clock

As Figure 1-2 shows, CPU_CLK is the master clock for CPU and it can be as high as 160 MHz when CPU works

in high performance mode. Alternatively, CPU can run at lower frequencies, such as at 2 MHz, to lower power

consumption. Users can set PLL_CLK, RTC20M_CLK or XTAL_CLK as CPU_CLK clock source by configuring

register SYSTEM_SOC_CLK_SEL, see Table 1-2 and Table 1-3. By default, the CPU clock is sourced from

XTAL_CLK with a divider of 2, i.e. the CPU clock is 20 MHz.

Table 1­2. CPU_CLK Clock Source

SYSTEM_SOC_CLK_SEL Value CPU Clock Source

0 XTAL_CLK

1 PLL_CLK

2 RTC20M_CLK

Table 1­3. CPU Clock Frequency

CPU Clock Source SEL_0* SEL_1* SEL_2* CPU Clock Frequency

XTAL_CLK 0 - -
CPU_CLK = XTAL_CLK/(SYSTEM_PRE_DIV_CNT + 1)

SYSTEM_PRE_DIV_CNT ranges from 0 ~ 1023. Default is 1

PLL_CLK (480 MHz) 1 1 0
CPU_CLK = PLL_CLK/6

CPU_CLK frequency is 80 MHz

PLL_CLK (480 MHz) 1 1 1
CPU_CLK = PLL_CLK/3

CPU_CLK frequency is 160 MHz

PLL_CLK (320 MHz) 1 0 0
CPU_CLK = PLL_CLK/4

CPU_CLK frequency is 80 MHz

PLL_CLK (320 MHz) 1 0 1
CPU_CLK = PLL_CLK/2

CPU_CLK frequency is 160 MHz

RTC20M_CLK 2 - -
CPU_CLK = RTC20M_CLK/(SYSTEM_PRE_DIV_CNT + 1)

SYSTEM_PRE_DIV_CNT ranges from 0 ~ 1023. Default is 1

* The value of register SYSTEM_SOC_CLK_SEL.
* The value of register SYSTEM_PLL_FREQ_SEL.
* The value of register SYSTEM_CPUPERIOD_SEL.

1.2.4.2 Peripheral Clock

Peripheral clocks include APB_CLK, CRYPTO_CLK, PLL_160M_CLK, LEDC_SCLK, XTAL_CLK, and

RTC20M_CLK. Table 1-4 shows which clock can be used by each peripheral.

Espressif Systems 12
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
INARY

1
R

esetand
C

lock

Table 1­4. Peripheral Clocks

Peripheral XTAL_CLK APB_CLK PLL_160M_CLK (RTC) FAST_CLK RTC20M_CLK CRYPTO_CLK LEDC_SCLK

TIMG Y Y

I2S Y Y

UHCI Y

UART Y Y Y

RMT Y Y Y

I2C Y Y

SPI Y Y

eFuse Controller Y

SARADC Y

Temperature

Sensor

Y Y

USB Y

CRYPTO Y

TWAI Controller Y

LEDC Y Y Y Y Y

SYS_TIMER Y Y

E
spressifS

ystem
s

13
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

1 Reset and Clock

APB_CLK

The frequency of APB_CLK is determined by the clock source of CPU_CLK as shown in Table 1-5.

Table 1­5. APB_CLK Clock Frequency

CPU_CLK Source APB_CLK Frequency

PLL_CLK 80 MHz

XTAL_CLK CPU_CLK

RTC20M_CLK CPU_CLK

CRYPTO_CLK

The frequency of CRYPTO_CLK is determined by the CPU_CLK source, as shown in Table 1-6.

Table 1­6. CRYPTO_CLK Frequency

CPU_CLK Source CRYPTO_CLK Frequency

PLL_CLK 160 MHz

XTAL_CLK CPU_CLK

RTC20M_CLK CPU_CLK

PLL_160M_CLK

PLL_160M_CLK is divided from PLL_CLK according to current PLL frequency.

LEDC_SCLK

LEDC module uses RTC20M_CLK as clock source when APB_CLK is disabled. In other words, when the system

is in low-power mode, most peripherals will be halted (as APB_CLK is turned off), but LEDC can still work

normally via RTC20M_CLK.

1.2.4.3 Wi­Fi and Bluetooth® LE Clock

Wi-Fi and Bluetooth LE can only work when CPU_CLK uses PLL_CLK as its clock source. Suspending PLL_CLK

requires that Wi-Fi and Bluetooth LE have entered low-power mode first.

LOW_POWER_CLK uses XTAL32K_CLK, XTAL_CLK, RTC20M_CLK or SLOW_CLK (the low clock selected by

RTC) as its clock source for Wi-Fi and Bluetooth LE in low-power mode.

1.2.4.4 RTC Clock

The clock sources for SLOW_CLK and FAST_CLK are low-frequency clocks. RTC module can operate when

most other clocks are stopped. SLOW_CLK derived from RTC_CLK, XTAL32K_CLK or RTC20M_D256_CLK is

used to clock Power Management module. FAST_CLK is used to clock On-chip Sensor module. It can be

sourced from a divided XTAL_CLK or from a divided RTC20M_CLK.

Espressif Systems 14
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

2 Random Number Generator

2 Random Number Generator

2.1 Introduction

The ESP32-C3 contains a true random number generator, which generates 32-bit random numbers that can be

used for cryptographical operations, among other things.

2.2 Features

The random number generator in ESP32-C3 generates true random numbers, which means random number

generated from a physical process, rather than by means of an algorithm. No number generated within the

specified range is more or less likely to appear than any other number.

2.3 Functional Description

Every 32-bit value that the system reads from the RNG_DATA_REG register of the random number generator is a

true random number. These true random numbers are generated based on the thermal noise in the system and

the asynchronous clock mismatch.

• Thermal noise comes from the high-speed ADC or SAR ADC or both. Whenever the high-speed ADC or

SAR ADC is enabled, bit streams will be generated and fed into the random number generator through an

XOR logic gate as random seeds.

• RTC20M_CLK is an asynchronous clock source and it increases the RNG entropy by introducing circuit

metastability.

SAR ADC

Random
Number

Generator
High Speed

ADC

 Random bit
 seeds

 Random bit
 seeds

RNG_DATA_REG

XOR
XOR

RTC20M_CLK Random bit
seeds

Figure 2­1. Noise Source

When there is noise coming from the SAR ADC, the random number generator is fed with a 2-bit entropy in one

clock cycle of RTC20M_CLK (20 MHz), which is generated from an internal RC oscillator (see Chapter 1 Reset

and Clock for details). Thus, it is advisable to read the RNG_DATA_REG register at a maximum rate of 1 MHz to

obtain the maximum entropy.

When there is noise coming from the high-speed ADC, the random number generator is fed with a 2-bit entropy

in one APB clock cycle, which is normally 80 MHz. Thus, it is advisable to read the RNG_DATA_REG register at a

maximum rate of 5 MHz to obtain the maximum entropy.

A data sample of 2 GB, which is read from the random number generator at a rate of 5 MHz with only the

high-speed ADC being enabled, has been tested using the Dieharder Random Number Testsuite (version 3.31.1).

The sample passed all tests.

Espressif Systems 15
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

2 Random Number Generator

2.4 Programming Procedure

When using the random number generator, make sure at least either the SAR ADC, high-speed ADC1, or

RTC20M_CLK2 is enabled. Otherwise, pseudo-random numbers will be returned.

• SAR ADC can be enabled by using the DIG ADC controller.

• High-speed ADC is enabled automatically when the Wi-Fi or Bluetooth modules is enabled.

• RTC20M_CLK is enabled by setting the RTC_CNTL_DIG_CLK20M_EN bit in the

RTC_CNTL_CLK_CONF_REG register.

Note:

1. Note that, when the Wi-Fi module is enabled, the value read from the high-speed ADC can be saturated in some

extreme cases, which lowers the entropy. Thus, it is advisable to also enable the SAR ADC as the noise source for

the random number generator for such cases.

2. Enabling RTC20M_CLK increases the RNG entropy. However, to ensure maximum entropy, it’s recommended to

always enable an ADC source as well.

When using the random number generator, read the RNG_DATA_REG register multiple times until sufficient

random numbers have been generated. Ensure the rate at which the register is read does not exceed the

frequencies described in section 2.3 above.

2.5 Register Summary

The address in the following table is relative to the random number generator base address provided in Table 3-4

in Chapter 3 System and Memory.

Name Description Address Access

RNG_DATA_REG Random number data 0x00B0 RO

2.6 Register

The address in this section is relative to the random number generator base address provided in Table 3-4 in

Chapter 3 System and Memory.

Register 2.1. RNG_DATA_REG (0x00B0)

0x00000000

31 0

Reset

RNG_DATA Random number source. (RO)

Espressif Systems 16
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

3 System and Memory

3 System and Memory

3.1 Overview

The ESP32-C3 is an ultra-low-power and highly-integrated system with a 32-bit RISC-V single-core processor

with a four-stage pipeline that operates at up to 160 MHz. All internal memory, external memory, and peripherals

are located on the CPU buses.

3.2 Features

• Address Space

– 792 KB of internal memory address space accessed from the instruction bus

– 552 KB of internal memory address space accessed from the data bus

– 836 KB of peripheral address space

– 8 MB of external memory virtual address space accessed from the instruction bus

– 8 MB of external memory virtual address space accessed from the data bus

– 384 KB of internal DMA address space

• Internal Memory

– 384 KB of Internal ROM

– 400 KB of Internal SRAM

– 8 KB of RTC Memory

• External Memory

– Supports up to 16 MB external flash

• Peripheral Space

– 35 modules/peripherals in total

• GDMA

– 7 GDMA-supported modules/peripherals

Figure 3-1 illustrates the system structure and address mapping.

Espressif Systems 17
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

3 System and Memory

Figure 3­1. System Structure and Address Mapping

Note:

• The address space with gray background is not available to users.

• The range of addresses available in the address space may be larger than the actual available memory of a particular

type.

3.3 Functional Description

3.3.1 Address Mapping

Addresses below 0x4000_0000 are accessed using the data bus. Addresses in the range of 0x4000_0000 ~
0x4FFF_FFFF are accessed using the instruction bus. Addresses over and including 0x5000_0000 are shared by

the data bus and the instruction bus.

Both data bus and instruction bus are little-endian. The CPU can access data via the data bus using single-byte,

double-byte, 4-byte alignment. The CPU can also access data via the instruction bus, but only in 4-byte aligned

Espressif Systems 18
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

3 System and Memory

manner.

The CPU can:

• directly access the internal memory via both data bus and instruction bus;

• access the external memory which is mapped into the virtual address space via cache;

• directly access modules/peripherals via data bus.

Table 3-1 lists the address ranges on the data bus and instruction bus and their corresponding target

memory.

Some internal and external memory can be accessed via both data bus and instruction bus. In such cases, the

CPU can access the same memory using multiple addresses.

Table 3­1. Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target

0x0000_0000 0x3BFF_FFFF Reserved

Data bus 0x3C00_0000 0x3C7F_FFFF 8 MB External memory

0x3C80_0000 0x3FC7_FFFF Reserved

Data bus 0x3FC8_0000 0x3FCD_FFFF 384 KB Internal memory

0x3FCE_0000 0x3FEF_FFFF Reserved

Data bus 0x3FF0_0000 0x3FF1_FFFF 128 KB Internal memory

0x3FF2_0000 0x3FFF_FFFF Reserved

Instruction bus 0x4000_0000 0x4005_FFFF 384 KB Internal memory

0x4006_0000 0x4037_BFFF Reserved

Instruction bus 0x4037_C000 0x403D_FFFF 400 KB Internal memory

0x403E_0000 0x41FF_FFFF Reserved

Instruction bus 0x4200_0000 0x427F_FFFF 8 MB External memory

0x4280_0000 0x4FFF_FFFF Reserved

Data/Instruction bus 0x5000_0000 0x5000_1FFF 8 KB Internal memory

0x5000_2000 0x5FFF_FFFF Reserved

Data/Instruction bus 0x6000_0000 0x600D_0FFF 836 KB Peripherals

0x600D_1000 0xFFFF_FFFF Reserved

3.3.2 Internal Memory

The ESP32-C3 consists of the following three types of internal memory:

• Internal ROM (384 KB): The Internal ROM of the ESP32-C3 is a Mask ROM, meaning it is strictly read-only

and cannot be reprogrammed. Internal ROM contains the ROM code (software instructions and some

software read-only data) of some low level system software.

• Internal SRAM (400 KB): The Internal Static RAM (SRAM) is a volatile memory that can be quickly accessed

by the CPU (generally within a single CPU clock cycle).

– A part of the SRAM can be configured to operate as a cache for external memory access.

– Some parts of the SRAM can only be accessed via the CPU’s instruction bus.

Espressif Systems 19
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

3 System and Memory

– Some parts of the SRAM can be accessed via both the CPU’s instruction bus and the CPU’s data bus.

• RTC Memory (8 KB): The RTC (Real Time Clock) memory implemented as Static RAM (SRAM) thus is

volatile. However, RTC memory has the added feature of being persistent in deep sleep (i.e., the RTC

memory retains its values throughout deep sleep).

– RTC FAST Memory (8 KB): RTC FAST memory can only be accessed by the CPU and can be

generally used to store instructions and data that needs to persist across a deep sleep.

Based on the three different types of internal memory described above, the internal memory of the ESP32-C3 is

split into three segments: Internal ROM (384 KB), Internal SRAM (400 KB), RTC FAST Memory (8 KB).

However, within each segment, there may be different bus access restrictions (e.g., some parts of the segment

may only be accessible by the CPU’s Data bus). Therefore, each some segments are also further divided into

parts. Table 3-2 describes each part of internal memory and their address ranges on the data bus and/or

instruction bus.

Table 3­2. Internal Memory Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target

Data bus
0x3FF0_0000 0x3FF1_FFFF 128 KB Internal ROM 1

0x3FC8_0000 0x3FCD_FFFF 384 KB Internal SRAM 1

Instruction bus

0x4000_0000 0x4003_FFFF 256 KB Internal ROM 0

0x4004_0000 0x4005_FFFF 128 KB Internal ROM 1

0x4037_C000 0x4037_FFFF 16 KB Internal SRAM 0

0x4038_0000 0x403D_FFFF 384 KB Internal SRAM 1

Data/Instruction bus 0x5000_0000 0x5000_1FFF 8 KB RTC FAST Memory

Note:
All of the internal memories are managed by Permission Control module. An internal memory can only be accessed

when it is allowed by Permission Control, then the internal memory can be available to the CPU.

1. Internal ROM 0

Internal ROM 0 is a 256 KB, read-only memory space, addressed by the CPU only through the instruction bus via

0x4000_0000 ~ 0x4003_FFFF, as shown in Table 3-2.

2. Internal ROM 1

Internal ROM 1 is a 128 KB, read-only memory space, addressed by the CPU through the instruction bus via

0x4004_0000 ~ 0x4005_FFFF or through the data bus via 0x3FF0_0000 ~ 0x3FF1_FFFF in the same order, as

shown in Table 3-2.

This means, for example, address 04004_0000 and 0x3FF0_0000 correspond to the same word, 0x4004_0004

and 0x3FF0_0004 correspond to the same word, 0x4004_0008 and 0x3FF0_0008 correspond to the same

word, etc (the same ordering applies for Internal SRAM 1).

3. Internal SRAM 0

Internal SRAM 0 is a 16 KB, read-and-write memory space, addressed by the CPU through the instruction bus

via the range described in Table 3-2.

Espressif Systems 20
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

3 System and Memory

This memory managed by Permission Control, can be configured as instruction cache to store cache instructions

or read-only data of the external memory. In this case, the memory cannot be accessed by the CPU.

4. Internal SRAM 1

Internal SRAM 1 is a 384 KB, read-and-write memory space, addressed by the CPU through the data bus or

instruction bus, in the same order, via the ranges described in Table 3-2.

5. RTC FAST Memory

RTC FAST Memory is a 8 KB, read-and-write SRAM, addressed by the CPU through the data/instruction bus via

the shared address 0x5000_0000 ~ 0x5000_1FFF, as described in Table 3-2.

3.3.3 External Memory

ESP32-C3 supports SPI, Dual SPI, Quad SPI, and QPI interfaces that allow connection to multiple external flash.

It supports hardware manual encryption and automatic decryption based on XTS_AES to protect user programs

and data in the external flash.

3.3.3.1 External Memory Address Mapping

The CPU accesses the external memory via the cache. According to the MMU (Memory Management Unit)

settings, the cache maps the CPU’s address to the external memory’s physical address. Due to this address

mapping, the ESP32-C3 can address up to 16 MB external flash.

Using the cache, ESP32-C3 is able to support the following address space mappings. Note that the instruction

bus address space (8MB) and the data bus address space (8 MB) is always shared.

• Up to 8 MB instruction bus address space can be mapped into the external flash. The mapped address

space is organized as individual 64-KB blocks.

• Up to 8 MB data bus (read-only) address space can be mapped into the external flash. The mapped

address space is organized as individual 64-KB blocks.

Table 3-3 lists the mapping between the cache and the corresponding address ranges on the data bus and

instruction bus.

Table 3­3. External Memory Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target

Data bus (read-only) 0x3C00_0000 0x3C7F_FFFF 8 MB Uniform Cache

Instruction bus 0x4200_0000 0x427F_FFFF 8 MB Uniform Cache

Note:
Only if the CPU obtains permission for accessing the external memory, can it be responded for memory access.

3.3.3.2 Cache

As shown in Figure 3-2, ESP32-C3 has a read-only uniform cache which is eight-way set-associative, its size is

16 KB and its block size is 32 bytes. When cache is active, some internal memory space will be occupied by

Espressif Systems 21
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

3 System and Memory

cache (see Internal SRAM 0 in Section 3.3.2).

The uniform cache is accessible by the instruction bus and the data bus at the same time, but can only respond

to one of them at a time. When a cache miss occurs, the cache controller will initiate a request to the external

memory.

Figure 3­2. Cache Structure

3.3.3.3 Cache Operations

ESP32-C3 cache support the following operations:

1. Invalidate: This operation is used to clear valid data in the cache. After this operation is completed, the

data will only be stored in the external memory. The CPU needs to access the external memory in order to

read this data. There are two types of invalidate-operation: automatic invalidation (Auto-Invalidate) and

manual invalidation (Manual-Invalidate). Manual-Invalidate is performed only on data in the specified area in

the cache, while Auto-Invalidate is performed on all data in the cache.

2. Preload: This operation is used to load instructions and data into the cache in advance. The minimum unit

of preload-operation is one block. There are two types of preload-operation: manual preload

(Manual-Preload) and automatic preload (Auto-Preload). Manual-Preload means that the hardware

prefetches a piece of continuous data according to the virtual address specified by the software.

Auto-Preload means the hardware prefetches a piece of continuous data according to the current address

where the cache hits or misses (depending on configuration).

3. Lock/Unlock: The lock operation is used to prevent the data in the cache from being easily replaced.

There are two types of lock: prelock and manual lock. When prelock is enabled, the cache locks the data

in the specified area when filling the missing data to cache memory, while the data outside the specified

area will not be locked. When manual lock is enabled, the cache checks the data that is already in the

cache memory and only locks the data in the specified area, and leaves the data outside the specified area

unlocked. When there are missing data, the cache will replace the data in the unlocked way first, so the

data in the locked way is always stored in the cache and will not be replaced. But when all ways within the

cache are locked, the cache will replace data, as if it was not locked. Unlocking is the reverse of locking,

except that it only can be done manually.

Please note that the Manual-Invalidate operations will only work on the unlocked data. If you expect to

perform such operation on the locked data, please unlock them first.

Espressif Systems 22
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

3 System and Memory

3.3.4 GDMA Address Space

The GDMA (General Direct Memory Access) peripheral in ESP32-C3 can provide DMA (Direct Memory Access)

services including:

• Data transfers between different locations of internal memory;

• Data transfers between modules/peripherals and internal memory.

GDMA uses the same addresses as the data bus to read and write Internal SRAM 1. Specifically, GDMA uses

address range 0x3FC8_0000 ~ 0x3FCD_FFFF to access Internal SRAM 1. Note that GDMA cannot access the

internal memory occupied by the cache.

There are 7 peripherals/modules that can work together with GDMA. As shown in Figure 3-3, these 7 vertical

lines in turn correspond to these 7 peripherals/modules with GDMA function, the horizontal line represents a

certain channel of GDMA (can be any channel), and the intersection of the vertical line and the horizontal line

indicates that a peripheral/module has the ability to access the corresponding channel of GDMA. If there are

multiple intersections on the same line, it means that these peripherals/modules cannot enable the GDMA

function at the same time.

Figure 3­3. Peripherals/modules that can work with GDMA

These peripherals/modules can access any memory available to GDMA.

Note:
When accessing a memory via GDMA, a corresponding access permission is needed, otherwise this access may

fail.

3.3.5 Modules/Peripherals

The CPU can access modules/peripherals via 0x6000_0000 ~ 0x600D_0FFF shared by the data/instruction

bus.

Espressif Systems 23
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

3 System and Memory

3.3.5.1 Module/Peripheral Address Mapping

Table 3-4 lists all the modules/peripherals and their respective address ranges. Note that the address space of

specific modules/peripherals is defined by ”Boundary Address” (including both Low Address and High

Address).

Table 3­4. Module/Peripheral Address Mapping

Boundary Address
Target

Low Address High Address
Size Notes

UART Controller 0 0x6000_0000 0x6000_0FFF 4 KB

Reserved 0x6000_1000 0x6000_1FFF

SPI Controller 1 0x6000_2000 0x6000_2FFF 4 KB

SPI Controller 0 0x6000_3000 0x6000_3FFF 4 KB

GPIO 0x6000_4000 0x6000_4FFF 4 KB

Reserved 0x6000_5000 0x6000_6FFF

TIMER 0x6000_7000 0x6000_7FFF 4 KB

Low-Power Management 0x6000_8000 0x6000_8FFF 4 KB

IO MUX 0x6000_9000 0x6000_9FFF 4 KB

Reserved 0x6000_A000 0x6000_FFFF

UART Controller 1 0x6001_0000 0x6001_0FFF 4 KB

Reserved 0x6001_1000 0x6001_2FFF

I2C Controller 0x6001_3000 0x6001_3FFF 4 KB

UHCI0 0x6001_4000 0x6001_4FFF 4 KB

Reserved 0x6001_5000 0x6001_5FFF

Remote Control Peripheral 0x6001_6000 0x6001_6FFF 4 KB

Reserved 0x6001_7000 0x6001_8FFF

LED Control PWM 0x6001_9000 0x6001_9FFF 4 KB

eFuse Controller 0x6001_A000 0x6001_AFFF 4 KB

Reserved 0x6001_B000 0x6001_EFFF

Timer Group 0 0x6001_F000 0x6001_FFFF 4 KB

Timer Group 1 0x6002_0000 0x6002_0FFF 4 KB

Reserved 0x6002_1000 0x6002_2FFF

System Timer 0x6002_3000 0x6002_3FFF 4 KB

SPI Controller 2 0x6002_4000 0x6002_4FFF 4 KB

Reserved 0x6002_5000 0x6002_5FFF

APB Controller 0x6002_6000 0x6002_6FFF 4 KB

Reserved 0x6002_7000 0x6002_AFFF

Two-wire Automotive Interface 0x6002_B000 0x6002_BFFF 4 KB

Reserved 0x6002_C000 0x6002_CFFF

I2S Controller 0x6002_D000 0x6002_DFFF 4 KB

Reserved 0x6002_E000 0x6003_9FFF

AES Accelerator 0x6003_A000 0x6003_AFFF 4 KB

SHA Accelerator 0x6003_B000 0x6003_BFFF 4 KB

RSA Accelerator 0x6003_C000 0x6003_CFFF 4 KB

Digital Signature 0x6003_D000 0x6003_DFFF 4 KB

Espressif Systems 24
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

3 System and Memory

Boundary Address
Target

Low Address High Address
Size Notes

HMAC Accelerator 0x6003_E000 0x6003_EFFF 4 KB

GDMA Controller 0x6003_F000 0x6003_FFFF 4 KB

ADC Controller 0x6004_0000 0x6004_0FFF 4 KB

Reserved 0x6004_1000 0x6002_FFFF

USB Serial/JTAG Controller 0x6004_3000 0x6004_3FFF 4 KB

Reserved 0x6004_4000 0x600B_FFFF

System Registers 0x600C_0000 0x600C_0FFF 4 KB

Sensitive Register 0x600C_1000 0x600C_1FFF 4 KB

Interrupt Matrix 0x600C_2000 0x600C_2FFF 4 KB

Reserved 0x600C_3000 0x600C_3FFF

Configure Cache 0x600C_4000 0x600C_BFFF 32 KB

External Memory Encryption and

Decryption

0x600C_C000 0x600C_CFFF 4 KB

Reserved 0x600C_D000 0x600C_DFFF

Assist Debug 0x600C_E000 0x600C_EFFF 4 KB

Reserved 0x600C_F000 0x600C_FFFF

World Controller 0x600D_0000 0x600D_0FFF 4 KB

Espressif Systems 25
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

4.1 Overview

The ESP32-C3 chip features 22 physical GPIO pins. Each pin can be used as a general-purpose I/O, or be

connected to an internal peripheral signal. Through GPIO matrix and IO MUX, peripheral input signals can be

from any IO pins, and peripheral output signals can be routed to any IO pins. Together these modules provide

highly configurable I/O.

Note that the GPIO pins are numbered from 0 ~ 21.

4.2 Features

GPIO Matrix Features

• A full-switching matrix between the peripheral input/output signals and the pins. Control signals: DRV, IE,

OE, WPU, WPD.

• 49 peripheral input signals can be sourced from the input of any GPIO pins. Control signals: SIG_IN_SEL,

IE, etc.

• The output of any GPIO pins can be from any of the 125 peripheral output signals. Control signals:

SIG_OUT_SEL, OE, etc.

• Support signal synchronization for peripheral inputs based on APB clock bus.

• Provide input signal filter.

• Support sigma delta modulated output.

• Support GPIO simple input and output.

IO MUX Features

• Provide one configuration register IO_MUX_GPIOn_REG for each GPIO pin. The pin can be configured to

– perform GPIO function routed by GPIO matrix;

– or perform direct connection bypassing GPIO matrix.

• Support some high-speed digital signals (SPI, JTAG, UART) bypassing GPIO matrix for better

high-frequency digital performance. In this case, IO MUX is used to connect these pins directly to

peripherals.

4.3 Architectural Overview

This section provides an overview to the architecture of IO MUX and GPIO matrix with the following figures:

• Figure 4-1 shows the general work flow of IO MUX and GPIO matix.

• Figure 4-2 shows in details how IO MUX and GPIO matrix route signals from pins to peripherals, and from

peripherals to pins.

• Figure 4-3 shows the interface logic for a GPIO pin.

Espressif Systems 26
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Figure 4­1. Diagram of IO MUX and GPIO Matrix

Figure 4­2. Architecture of IO MUX and GPIO Matirx

1. Only part of peripheral input signals (Y: 0 ~ 3, 6 ~ 7, 9 ~ 10, 63 ~ 68) can bypass GPIO matrix. The other

input signals can only be routed to peripherals via GPIO matrix.

2. There are only 22 inputs from GPIO SYNC to GPIO matrix, since ESP32-C3 provides 22 GPIO pins in total.

3. The pins supplied by VDD3P3_CPU are controlled by the signals: IE, OE, WPU, and WPD.

4. Only part of peripheral outputs (0 ~ 59, 63~ 127) can be routed to pins bypassing GPIO matrix. See Table

4-1.

Espressif Systems 27
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

5. There are only 22 outputs (GPIO pin X: 0 ~ 21) from GPIO matrix to IO MUX.

6. The pins supplied by VDD3P3_RTC are controlled by the signals: IE, OE, WPU, and WPD.

Figure 4-3 shows the internal structure of a pad, which is an electrical interface between the chip logic and the

GPIO pin.

Figure 4­3. Internal Structure of a Pad

• IE: input enable

• OE: output enable

• WPU: internal weak pull-up

• WPD: internal weak pull-down

4.4 Peripheral Input via GPIO Matrix

4.4.1 Overview

To receive a peripheral input signal via GPIO matrix, the matrix is configured to source the peripheral input signal

from one of the 22 GPIOs (0 ~ 21), see Table 4-1. Meanwhile, register corresponding to the peripheral signal

should be set to receive input signal via GPIO matrix.

4.4.2 Signal Synchronization

When signals are directed from pins using GPIO matrix, the signals will be synchronized to the APB bus clock by

GPIO SYNC hardware, then go to GPIO matrix. This synchronization applies to all GPIO matrix signals but does

not apply when using the IO MUX, see Figure 4-2.

Espressif Systems 28
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Figure 4­4. GPIO Input Synchronized on APB Clock Rising Edge or on Falling Edge

Figure 4-4 shows the functionality of GPIO SYNC. In the figure, negative sync and positive sync mean GPIO input

is synchronized on APB clock falling edge and on APB clock rising edge, respectively.

4.4.3 Functional Description

To read GPIO pin X1 into peripheral signal Y, follow the steps below:

1. Configure register GPIO_FUNCy_IN_SEL_CFG_REG corresponding to peripheral signal Y in GPIO matrix:

• Set GPIO_SIGy_IN_SEL to enable peripheral signal input via GPIO matrix.

• Set GPIO_FUNCy_IN_SEL to the desired GPIO pin, i.e. X here.

Note that some peripheral signals have no valid GPIO_SIGy_IN_SEL bit, namely, these peripherals can only

receive input signals via GPIO matrix.

2. Optionally enable the filter for pin input signals by setting the register IO_MUX_GPIOn_FILTER_EN. Only the

signals with a valid width of more than two clock cycles can be sampled, see Figure 4-5.

Figure 4­5. Filter Timing of GPIO Input Signals

3. Synchronize GPIO input. To do so, please set GPIO_PINx_REG corresponding to GPIO pin X as follows:

• Set GPIO_PINx_SYNC1_BYPASS to enable input signal synchronized on rising edge or on falling edge

in the first clock, see Figure 4-4.

• Set GPIO_PINx_SYNC2_BYPASS to enable input signal synchronized on rising edge or on falling edge

in the second clock, see Figure 4-4.

Espressif Systems 29
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

4. Configure IO MUX register to enable pin input. For this end, please set IO_MUX_GPIOx_REG

corresponding to GPIO pinx as follows:

• Set IO_MUX_GPIOx_FUN_IE to enable input2.

• Set or clear IO_MUX_GPIOx_FUN_WPU and IO_MUX_GPIOx_FUN_WPD, as desired, to enable or

disable pull-up and pull-down resistors.

For example, to connect I2S MCLK input signal3 (I2S_MCLK_in, signal index 12) to GPIO7, please follow the

steps below. Note that GPIO7 is also named as MTDO pin.

1. Set GPIO_SIG12_IN_SEL in register GPIO_FUNC12_IN_SEL_CFG_REG to enable peripheral signal input

via GPIO matrix.

2. Set GPIO_FUNC12_IN_SEL in register GPIO_FUNC12_IN_SEL_CFG_REG to 7.

3. Set IO_MUX_GPIO7_FUN_IE in register IO_MUX_GPIO7_REG to enable pin input.

Note:

1. One input pin can be connected to multiple peripheral input signals.

2. The input signal can be inverted by configuring GPIO_FUNCy_IN_INV_SEL.

3. It is possible to have a peripheral read a constantly low or constantly high input value without connecting this input

to a pin. This can be done by selecting a special GPIO_FUNCy_IN_SEL input, instead of a GPIO number:

• When GPIO_FUNCy_IN_SEL is set to 0x1F, input signal is always 0.

• When GPIO_FUNCy_IN_SEL is set to 0x1E, input signal is always 1.

4.4.4 Simple GPIO Input

GPIO_IN_REG holds the input values of each GPIO pin. The input value of any GPIO pin can be read at any time

without configuring GPIO matrix for a particular peripheral signal. However, it is necessary to enable the input via

IO MUX by setting IO_MUX_GPIOx_FUN_IE bit in register IO_MUX_GPIOx_REG corresponding to pin X, as

mentioned in Section 4.4.2.

4.5 Peripheral Output via GPIO Matrix

4.5.1 Overview

To output a signal from a peripheral via GPIO matrix, the matrix is configured to route peripheral output signals (0

~ 59, 63~ 127) to one of the 22 GPIOs (0 ~ 21). See Table 4-1.

The output signal is routed from the peripheral into GPIO matrix and then into IO MUX. IO MUX must be

configured to set the chosen pin to GPIO function. This enables the output GPIO signal to be connected to the

pin.

Note:

There is a range of peripheral output signals (97 ~ 100) which are not connected to any peripheral, but to the input signals

(97 ~ 100) directly. These can be used to input a signal from one GPIO pin and output directly to another GPIO pin.

Espressif Systems 30
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

4.5.2 Functional Description

Some of the 125 output signals (0 ~ 59, 63~ 127) can be set to go through GPIO matrix into IO MUX and then to

a pin. Figure 4-2 illustrates the configuration.

To output peripheral signal Y to a particular GPIO pin X1, follow these steps:

1. Configure register GPIO_FUNCx_OUT_SEL_CFG_REG and GPIO_ENABLE_REG[x] corresponding to GPIO

pin X in GPIO matrix. Recommended operation: use corresponding W1TS (write 1 to set) and W1TC (write

1 to clear) registers to set or clear GPIO_ENABLE_REG.

• Set the GPIO_FUNCx_OUT_SEL field in register GPIO_FUNCx_OUT_SEL_CFG_REG to the index of

the desired peripheral output signal Y.

• If the signal should always be enabled as an output, set the GPIO_FUNCx_OEN_SEL bit in register

GPIO_FUNCx_OUT_SEL_CFG_REG and the bit in register GPIO_ENABLE_W1TS_REG,

corresponding to GPIO pin X. To have the output enable signal decided by internal logic (for example,

the SPIQ_oe in column “Output enable signal when GPIO_FUNCn_OEN_SEL = 0” in Table 4-1), clear

GPIO_FUNCx

_OEN_SEL bit instead.

• Clear the corresponding bit in register GPIO_ENABLE_W1TC_REG to disable the output from the

GPIO pin.

2. For an open drain output, set the GPIO_PINx_PAD_DRIVER bit in register GPIO_PINx_REG corresponding

to GPIO pin X.

3. Configure IO MUX register to enable output via GPIO matrix. Set the IO_MUX_GPIOx_REG corresponding

to GPIO pin X as follows:

• Set the field IO_MUX_GPIOx_MCU_SEL to desired IO MUX function corresponding to GPIO pinX. This

is Function 1 (GPIO function), numeric value 1, for all pins.

• Set the IO_MUX_GPIOx_FUN_DRV field to the desired value for output strength (0 ~ 3). The higher the

driver strength, the more current can be sourced/sunk from the pin.

– 0: ~5 mA

– 1: ~10 mA

– 2: ~20 mA (default value)

– 3: ~40 mA

• If using open drain mode, set/clear the IO_MUX_GPIOx_FUN_WPU and IO_MUX_GPIOx_FUN_WPD

bits to enable/disable the internal pull-up/pull-down resistors.

Note:

1. The output signal from a single peripheral can be sent to multiple pins simultaneously.

2. The output signal can be inverted by setting GPIO_FUNCx_OUT_INV_SEL bit.

4.5.3 Simple GPIO Output

GPIO matrix can also be used for simple GPIO output. This can be done as below:

Espressif Systems 31
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

• Set GPIO matrix GPIO_FUNCn_OUT_SEL with a special peripheral index 128 (0x80);

• Set the corresponding bit in GPIO_OUT_REG register to the desired GPIO output value.

Note:

• GPIO_OUT_REG[0] ~ GPIO_OUT_REG[21] correspond to GPIO0 ~ GPIO21, and GPIO_OUT_REG[25:22] are in-

valid.

• Recommended operation: use corresponding W1TS and W1TC registers, such as GPIO_OUT_W1TS/GPIO_OUT

_W1TC to set or clear the registers GPIO_OUT_REG.

4.5.4 Sigma Delta Modulated Output (SDM)

4.5.4.1 Functional Description

Four out of the 125 peripheral outputs (output index: 55 ~ 58) support 1-bit second-order sigma delta

modulation. By default output is enabled for these four channels. This modulator can also output PDM (pulse

density modulation) signal with configurable duty cycle. The transfer function of this second-order SDM

modulator is:

H(z) = X(z)z−1 + E(z)(1-z−1)2

E(z) is quantization error and X(z) is the input.

Sigma Delta modulator supports scaling down of APB_CLK by divider 1 ~ 256:

• Set GPIOSD_FUNCTION_CLK_EN to enable the modulator clock.

• Configure register GPIOSD_SDn_PRESCALE (n is 0 ~ 3 for four channels).

After scaling, the clock cycle is equal to one pulse output cycle from the modulator.

GPIOSD_SDn_IN is a signed number with a range of [-128, 127] and is used to control the duty cycle 1 of PDM

output signal.

• GPIOSD_SDn_IN = -128, the duty cycle of the output signal is 0%.

• GPIOSD_SDn_IN = 0, the duty cycle of the output signal is near 50%.

• GPIOSD_SDn_IN = 127, the duty cycle of the output signal is close to 100%.

The formula for calculating PDM signal duty cycle is shown as below:

Duty_Cycle =
GPIOSD_SDn_IN + 128

256

Note:

For PDM signals, duty cycle refers to the percentage of high level cycles to the whole statistical period (several pulse

cycles, for example 256 pulse cycles).

Espressif Systems 32
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

4.5.4.2 SDM Configuration

The configuration of SDM is shown below:

• Route one of SDM outputs to a pin via GPIO matrix, see Section 4.5.2.

• Enable the modulator clock by setting the register GPIOSD_FUNCTION_CLK_EN.

• Configure the divider value by setting the register GPIOSD_SDn_PRESCALE.

• Configure the duty cycle of SDM output signal by setting the register GPIOSD_SDn_IN.

4.6 Direct Input and Output via IO MUX

4.6.1 Overview

Some high-speed signals (SPI and JTAG) can bypass GPIO matrix for better high-frequency digital performance.

In this case, IO MUX is used to connect these pins directly to peripherals.

This option is less flexible than routing signals via GPIO matrix, as the IO MUX register for each GPIO pin can only

select from a limited number of functions, but high-frequency digital performance can be improved.

4.6.2 Functional Description

Two registers must be configured in order to bypass GPIO matrix for peripheral input signals:

1. IO_MUX_GPIOn_MCU_SEL for the GPIO pin must be set to the required pin function. For the list of pin

functions, please refer to Section 4.11.

2. Clear GPIO_SIGn_IN_SEL to route the input directly to the peripheral.

To bypass GPIO matrix for peripheral output signals, IO_MUX_GPIOn_MCU_SEL for the GPIO pin must be set to

the required pin function. For the list of pin functions, please refer to Section 4.11.

Note:

Not all signals can be directly connected to peripheral via IO MUX. Some input/output signals can only be connected to

peripheral via GPIO matrix.

4.7 Analog Functions of GPIO Pins

Some GPIO pins in ESP32-C3 provide analog functions. When the pin is used for analog purpose, make sure

that pull-up and pull-down resistors are disabled by following configuration:

• Set IO_MUX_GPIOn_MCU_SEL to 1, and clear IO_MUX_GPIOn_FUN_IE, IO_MUX_GPIOn_FUN_WPU, IO_

MUX_GPIOn_FUN_WPD.

• Write 1 to GPIO_ENABLE_W1TC[n], to clear output enable.

See Table 4-4 for analog functions of ESP32-C3 pins.

Espressif Systems 33
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

4.8 Pin Hold Feature

Each GPIO pin (including the RTC pins: GPIO0 ~ GPIO5) has an individual hold function controlled by a RTC

register. When the pin is set to hold, the state is latched at that moment and will not change no matter how the

internal signals change or how the IO MUX/GPIO configuration is modified. Users can use the hold function for

the pins to retain the pin state through a core reset and system reset triggered by watchdog time-out or

Deep-sleep events.

Note:

• For digital pins (GPIO6 ~21), to maintain pin input/output status in Deep-sleep mode, users can set RTC_CNTL_DIG

_PAD_HOLDn in register RTC_CNTL_DIG_PAD_HOLD_REG to 1 before powering down. To disable the hold func-

tion after the chip is woken up, users can set RTC_CNTL_DIG_PAD_HOLDn to 0.

• For RTC pins (GPIO0 ~5), the input and output values are controlled by the corresponding bits of register RTC_CNTL

_RTC_PAD_HOLD_REG, and users can set it to 1 to hold the value or set it to 0 to unhold the value.

4.9 Power Supplies and Management of GPIO Pins

4.9.1 Power Supplies of GPIO Pins

For more information on the power supply for IO pins, please refer to Pin Definition in ESP32-C3 Datasheet. All

the pins can be used to wake up the chip from Light-sleep mode, but only the pins (GPIO0 ~ GPIO5) in

VDD3P3_RTC domain can be used to wake up the chip from Deep-sleep mode.

4.9.2 Power Supply Management

Each ESP32-C3 pin is connected to one of the two different power domains.

• VDD3P3_RTC: the input power supply for both RTC and CPU

• VDD3P3_CPU: the input power supply for CPU

4.10 Peripheral Signal List

Table 4-1 shows the peripheral input/output signals via GPIO matrix.

Please pay attention to the configuration of the bit GPIO_FUNCn_OEN_SEL:

• GPIO_FUNCn_OEN_SEL = 1: the output enable is controlled by the corresponding bit n of

GPIO_ENABLE_REG:

– GPIO_ENABLE_REG = 0: output is disabled;

– GPIO_ENABLE_REG = 1: output is enabled;

• GPIO_FUNCn_OEN_SEL = 0: use the output enable signal from peripheral, for example SPIQ_oe in the

column “Output enable signal when GPIO_FUNCn_OEN_SEL = 0” of Table 4-1. Note that the signals such

as SPIQ_oe can be 1 (1’d1) or 0 (1’d0), depending on the configuration of corresponding peripherals. If it’s

1’d1 in the “Output enable signal when GPIO_FUNCn_OEN_SEL = 0”, it indicates that once the register

GPIO_FUNCn_OEN_SEL is cleared, the output signal is always enabled by default.

Espressif Systems 34
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Note:

Signals are numbered consecutively, but not all signals are valid.

• For input signals, only 0 ~ 3, 6 ~ 19, 28 ~ 35, 40 ~ 42, 45, 51 ~ 54, 63 ~ 68, 74, 77 ~ 80, 97 ~ 100 are valid.

• For output signals, only 0 ~ 59, 63 ~ 127 are valid.

Espressif Systems 35
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
INARY

4
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
_M

U
X)

Table 4­1. Peripheral Signals via GPIO Matrix

Signal

No.

Input Signal Default

value

Direct

Input

through

IO MUX

Output Signal Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output

through

IO MUX

0 SPIQ_in 0 yes SPIQ_out SPIQ_oe yes

1 SPID_in 0 yes SPID_out SPID_oe yes

2 SPIHD_in 0 yes SPIHD_out SPIHD_oe yes

3 SPIWP_in 0 yes SPIWP_out SPIWP_oe yes

4 - - - SPICLK_out_mux SPICLK_oe yes

5 - - - SPICS0_out SPICS0_oe yes

6 U0RXD_in 0 yes U0TXD_out 1’d1 yes

7 U0CTS_in 0 yes U0RTS_out 1’d1 no

8 U0DSR_in 0 no U0DTR_out 1’d1 no

9 U1RXD_in 0 yes U1TXD_out 1’d1 no

10 U1CTS_in 0 yes U1RTS_out 1’d1 no

11 U1DSR_in 0 no U1DTR_out 1’d1 no

12 I2S_MCLK_in 0 no I2S_MCLK_out 1’d1 no

13 I2SO_BCK_in 0 no I2SO_BCK_out 1’d1 no

13 I2SO_WS_in 0 no I2SO_WS_out 1’d1 no

15 I2SI_SD_in 0 no I2SO_SD_out 1’d1 no

16 I2SI_BCK_in 0 no I2SI_BCK_out 1’d1 no

17 I2SI_WS_in 0 no I2SI_WS_out 1’d1 no

18 gpio_bt_priority 0 no gpio_wlan_prio 1’d1 no

19 gpio_bt_active 0 no gpio_wlan_active 1’d1 no

20 - - - cpu_test_bu0 1’d1 no

21 - - - cpu_test_bu1 1’d1 no

22 - - - cpu_test_bu2 1’d1 no

23 - - - cpu_test_bu3 1’d1 no

E
spressifS

ystem
s

36
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
INARY

4
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
_M

U
X)

Signal

No.

Input Signal Default

value

Direct

Input

through

IO_MUX

Output Signal Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output

through

IO_MUX

24 - - - cpu_test_bu4 1’d1 no

25 - - - cpu_test_bu5 1’d1 no

26 - - - cpu_test_bu6 1’d1 no

27 - - - cpu_test_bu7 1’d1 no

28 cpu_gpio_in0 0 no cpu_gpio_out0 cpu_gpio_out_oen0 no

29 cpu_gpio_in1 0 no cpu_gpio_out1 cpu_gpio_out_oen1 no

30 cpu_gpio_in2 0 no cpu_gpio_out2 cpu_gpio_out_oen2 no

31 cpu_gpio_in3 0 no cpu_gpio_out3 cpu_gpio_out_oen3 no

32 cpu_gpio_in4 0 no cpu_gpio_out4 cpu_gpio_out_oen4 no

33 cpu_gpio_in5 0 no cpu_gpio_out5 cpu_gpio_out_oen5 no

34 cpu_gpio_in6 0 no cpu_gpio_out6 cpu_gpio_out_oen6 no

35 cpu_gpio_in7 0 no cpu_gpio_out7 cpu_gpio_out_oen7 no

36 - - - usb_jtag_tck 1’d1 no

37 - - - usb_jtag_tms 1’d1 no

38 - - - usb_jtag_tdi 1’d1 no

39 - - - usb_jtag_tdo 1’d1 no

40 usb_extphy_vp 0 no usb_extphy_oen 1’d1 no

41 usb_extphy_vm 0 no usb_extphy_speed 1’d1 no

42 usb_extphy_rcv 0 no usb_extphy_vpo 1’d1 no

43 - - - usb_extphy_vmo 1’d1 no

44 - - - usb_extphy_suspnd 1’d1 no

45 ext_adc_start 0 no ledc_ls_sig_out0 1’d1 no

46 - - - ledc_ls_sig_out1 1’d1 no

47 - - - ledc_ls_sig_out2 1’d1 no

48 - - - ledc_ls_sig_out3 1’d1 no

49 - - - ledc_ls_sig_out4 1’d1 no

E
spressifS

ystem
s

37
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
INARY

4
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
_M

U
X)

Signal

No.

Input Signal Default

value

Direct

Input

through

IO_MUX

Output Signal Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output

through

IO_MUX

50 - - - ledc_ls_sig_out5 1’d1 no

51 rmt_sig_in0 0 no rmt_sig_out0 1’d1 no

52 rmt_sig_in1 0 no rmt_sig_out1 1’d1 no

53 I2CEXT0_SCL_in 1 no I2CEXT0_SCL_out I2CEXT0_SCL_oe no

54 I2CEXT0_SDA_in 1 no I2CEXT0_SDA_out I2CEXT0_SDA_oe no

55 - - - gpio_sd0_out 1’d1 no

56 - - - gpio_sd1_out 1’d1 no

57 - - - gpio_sd2_out 1’d1 no

58 - - - gpio_sd3_out 1’d1 no

59 - - - I2SO_SD1_out 1’d1 no

60 - - - - 1’d1 -

61 - - - - 1’d1 -

62 - - - - 1’d1 -

63 FSPICLK_in 0 yes FSPICLK_out_mux FSPICLK_oe yes

64 FSPIQ_in 0 yes FSPIQ_out FSPIQ_oe yes

65 FSPID_in 0 yes FSPID_out FSPID_oe yes

66 FSPIHD_in 0 yes FSPIHD_out FSPIHD_oe yes

67 FSPIWP_in 0 yes FSPIWP_out FSPIWP_oe yes

68 FSPICS0_in 0 yes FSPICS0_out FSPICS0_oe yes

69 - - - FSPICS1_out FSPICS1_oe no

70 - - - FSPICS2_out FSPICS2_oe no

71 - - - FSPICS3_out FSPICS3_oe no

72 - - - FSPICS4_out FSPICS4_oe no

73 - - - FSPICS5_out FSPICS5_oe no

74 twai_rx 1 no twai_tx 1’d1 no

75 - - - twai_bus_off_on 1’d1 no

E
spressifS

ystem
s

38
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
INARY

4
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
_M

U
X)

Signal

No.

Input Signal Default

value

Direct

Input

through

IO_MUX

Output Signal Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output

through

IO_MUX

76 - - - twai_clkout 1’d1 no

77 pcmfsync_in 0 no bt_audio0_irq 1’d1 no

78 pcmclk_in 0 no bt_audio1_irq 1’d1 no

79 pcmdin 0 no bt_audio2_irq 1’d1 no

80 rw_wakeup_req 0 no ble_audio0_irq 1’d1 no

81 - - - ble_audio1_irq 1’d1 no

82 - - - ble_audio2_irq 1’d1 no

83 - - - pcmfsync_out pcmfsync_en no

84 - - - pcmclk_out pcmclk_en no

85 - - - pcmdout pcmdout_en no

86 - - - ble_audio_sync0_p 1’d1 no

87 - - - ble_audio_sync1_p 1’d1 no

88 - - - ble_audio_sync2_p 1’d1 no

89 - - - ant_sel0 1’d1 no

90 - - - ant_sel1 1’d1 no

91 - - - ant_sel2 1’d1 no

92 - - - ant_sel3 1’d1 no

93 - - - ant_sel4 1’d1 no

94 - - - ant_sel5 1’d1 no

95 - - - ant_sel6 1’d1 no

96 - - - ant_sel7 1’d1 no

97 sig_in_func_97 0 no sig_in_func97 1’d1 no

98 sig_in_func_98 0 no sig_in_func98 1’d1 no

99 sig_in_func_99 0 no sig_in_func99 1’d1 no

100 sig_in_func_100 0 no sig_in_func100 1’d1 no

101 - - - syncerr !efuse_dis_btlc_gpio1 no

E
spressifS

ystem
s

39
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
INARY

4
IO

M
U

X
and

G
P

IO
M

atrix
(G

P
IO

,IO
_M

U
X)

Signal

No.

Input Signal Default

value

Direct

Input

through

IO_MUX

Output Signal Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output

through

IO_MUX

102 - - - syncfound_flag !efuse_dis_btlc_gpio1 no

103 - - - evt_cntl_immediate_abort !(efuse_dis_btlc_gpio1&efuse_dis_btlc_gpio0) no

104 - - - linklbl !efuse_dis_btlc_gpio1&!efuse_dis_btlc_gpio0 no

105 - - - data_en !efuse_dis_btlc_gpio1&!efuse_dis_btlc_gpio0 no

106 - - - data !efuse_dis_btlc_gpio1&!efuse_dis_btlc_gpio0 no

107 - - - pkt_tx_on !efuse_dis_btlc_gpio1 no

108 - - - pkt_rx_on !efuse_dis_btlc_gpio1 no

109 - - - rw_tx_on !efuse_dis_btlc_gpio1 no

110 - - - rw_rx_on !efuse_dis_btlc_gpio1 no

111 - - - evt_req_p !(efuse_dis_btlc_gpio1&efuse_dis_btlc_gpio0) no

112 - - - evt_stop_p !(efuse_dis_btlc_gpio1&efuse_dis_btlc_gpio0) no

113 - - - bt_mode_on !(efuse_dis_btlc_gpio1&efuse_dis_btlc_gpio0) no

114 - - - gpio_lc_diag0 !efuse_dis_btlc_gpio1 no

115 - - - gpio_lc_diag1 !efuse_dis_btlc_gpio1 no

116 - - - gpio_lc_diag2 !efuse_dis_btlc_gpio1 no

117 - - - ch_idx !efuse_dis_btlc_gpio1&!efuse_dis_btlc_gpio0 no

118 - - - rx_window !efuse_dis_btlc_gpio1 no

119 - - - update_rx !efuse_dis_btlc_gpio1 no

120 - - - rx_status !efuse_dis_btlc_gpio1 no

121 - - - clk_gpio !efuse_dis_btlc_gpio1 no

122 - - - nbt_ble !(efuse_dis_btlc_gpio1&efuse_dis_btlc_gpio0) no

123 - - - CLK_OUT_out1 1’d1 no

124 - - - CLK_OUT_out2 1’d1 no

125 - - - CLK_OUT_out3 1’d1 no

126 - - - SPICS1_out 1’d1 no

127 - - - usb_jtag_trst 1’d1 no

E
spressifS

ystem
s

40
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

4.11 IO MUX Functions List

Table 4-2 shows the IO MUX functions of each pin.

Table 4­2. IO MUX Pin Functions

GPIO Pin Name Function 0 Function 1 Function 2 Function 3 Function 4 Reset Notes

0 XTAL_32K_P GPIO0 GPIO0 - - - 0 R

1 XTAL_32K_N GPIO1 GPIO1 - - - 0 R

2 GPIO2 GPIO2 GPIO2 FSPIQ - - 1 R

3 GPIO3 GPIO3 GPIO3 - - - 1 R

4 MTMS MTMS GPIO4 FSPIHD - - 1 R

5 MTDI MTDI GPIO5 FSPIWP - - 1 R

6 MTCK MTCK GPIO6 FSPICLK - - 1* G

7 MTDO MTDO GPIO7 FSPID - - 1 G

8 GPIO8 GPIO8 GPIO8 - - - 1 -

9 GPIO9 GPIO9 GPIO9 - - - 3 -

10 GPIO10 GPIO10 GPIO10 FSPICS0 - - 1 G

11 VDD_SPI GPIO11 GPIO11 - - - 0 -

12 SPIHD SPIHD GPIO12 - - - 3 -

13 SPIWP SPIWP GPIO13 - - - 3 -

14 SPICS0 SPICS0 GPIO14 - - - 3 -

15 SPICLK SPICLK GPIO15 - - - 3 -

16 SPID SPID GPIO16 - - - 3 -

17 SPIQ SPIQ GPIO17 - - - 3 -

18 GPIO18 GPIO18 GPIO18 - - - 0 USB,

G

19 GPIO19 GPIO19 GPIO19 - - - 0* USB

20 U0RXD U0RXD GPIO20 - - - 1 G

21 U0TXD U0TXD GPIO21 - - - 1 -

Reset Configurations

“Reset” column shows the default configuration of each pin after reset:

• 0 - IE = 0 (input disabled)

• 1 - IE = 1 (input enabled)

• 2 - IE = 1, WPD = 1 (input enabled, pull-down resistor enabled)

• 3 - IE = 1, WPU = 1 (input enabled, pull-up resistor enabled)

• 0* - IE = 0, WPU = 0. The USB pull-up value of GPIO19 is 1 by default, therefore, the pin’s pull-up resistor

is enabled. For more information, see the note below.

• 1* - If eFuse bit EFUSE_DIS_PAD_JTAG = 1, the pin MTCK is left floating after reset, i.e. IE = 1. If eFuse bit

EFUSE_DIS_PAD_JTAG = 0, the pin MTCK is connected to internal pull-up resistor, i.e. IE = 1, WPU = 1.

Note:

Espressif Systems 41
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

• R - Pins in VDD3P3_RTC domain, and part of them have analog functions, see Table 4-4.

• USB - GPIO18 and GPIO19 are USB pins. The pull-up value of the two pins are controlled by the pins’

pull-up value together with USB pull-up value. If any one of the pull-up value is 1, the pin’s pull-up resistor

will be enabled. The pull-up resistors of USB pins are controlled by USB_SERIAL_JTAG_DP_PULLUP.

• G - These pins have glitches during power-up. See details in Table 4-3.

Table 4­3. Power­Up Glitches on Pins

Typical Time Period
Pin Glitch

(ns)

MTCK Low-level glitch 5

MTDO Low-level glitch 5

GPIO10 Low-level glitch 5

U0RXD Low-level glitch 5

GPIO18 Pull-up glitch 50000

4.12 Analog Functions List

Table 4-4 shows the IO MUX pins with analog functions.

Table 4­4. Analog Functions of IO MUX Pins

GPIO Num Pin Name Analog Function 0 Analog Function 1

0 XTAL_32K_P XTAL_32K_P ADC0

1 XTAL_32K_N XTAL_32K_N ADC1

2 GPIO2 - ADC2

3 GPIO3 - ADC3

Note:

1. The pin VDD_SPI can be configured as either power supply or normal GPIO.

2. The pins GPIO18 and GPIO19 can be configured as USB pins.

4.13 Register Summary

The addresses in this section are relative to GPIO Matrix, IO MUX and SDM base addresses provided in Table 3-4

in Chapter 3 System and Memory.

4.13.1 GPIO Matrix Register Summary

Name Description Address Access

Configuration Registers

GPIO_BT_SELECT_REG GPIO bit select register 0x0000 R/W

GPIO_OUT_REG GPIO output register 0x0004 R/W/SS

GPIO_OUT_W1TS_REG GPIO output set register 0x0008 WT

GPIO_OUT_W1TC_REG GPIO output clear register 0x000C WT

Espressif Systems 42
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Name Description Address Access

GPIO_ENABLE_REG GPIO output enable register 0x0020 R/W/SS

GPIO_ENABLE_W1TS_REG GPIO output enable set register 0x0024 WT

GPIO_ENABLE_W1TC_REG GPIO output enable clear register 0x0028 WT

GPIO_STRAP_REG pin strapping register 0x0038 RO

GPIO_IN_REG GPIO input register 0x003C RO

GPIO_STATUS_REG GPIO interrupt status register 0x0044 R/W/SS

GPIO_STATUS_W1TS_REG GPIO interrupt status set register 0x0048 WT

GPIO_STATUS_W1TC_REG GPIO interrupt status clear register 0x004C WT

GPIO_PCPU_INT_REG GPIO PRO_CPU interrupt status register 0x005C RO

GPIO_PCPU_NMI_INT_REG GPIO PRO_CPU (non-maskable) interrupt status

register

0x0060 RO

GPIO_STATUS_NEXT_REG GPIO interrupt source register 0x014C RO

Pin Configuration Registers

GPIO_PIN0_REG GPIO pin0 configuration register 0x0074 R/W

GPIO_PIN1_REG GPIO pin1 configuration register 0x0078 R/W

GPIO_PIN2_REG GPIO pin2 configuration register 0x007C R/W

GPIO_PIN3_REG GPIO pin3 configuration register 0x0080 R/W

GPIO_PIN4_REG GPIO pin4 configuration register 0x0084 R/W

GPIO_PIN5_REG GPIO pin5 configuration register 0x0088 R/W

GPIO_PIN6_REG GPIO pin6 configuration register 0x008C R/W

GPIO_PIN7_REG GPIO pin7 configuration register 0x0090 R/W

GPIO_PIN8_REG GPIO pin8 configuration register 0x0094 R/W

GPIO_PIN9_REG GPIO pin9 configuration register 0x0098 R/W

GPIO_PIN10_REG GPIO pin10 configuration register 0x009C R/W

GPIO_PIN11_REG GPIO pin11 configuration register 0x00A0 R/W

GPIO_PIN12_REG GPIO pin12 configuration register 0x00A4 R/W

GPIO_PIN13_REG GPIO pin13 configuration register 0x00A8 R/W

GPIO_PIN14_REG GPIO pin14 configuration register 0x00AC R/W

GPIO_PIN15_REG GPIO pin15 configuration register 0x00B0 R/W

GPIO_PIN16_REG GPIO pin16 configuration register 0x00B4 R/W

GPIO_PIN17_REG GPIO pin17 configuration register 0x00B8 R/W

GPIO_PIN18_REG GPIO pin18 configuration register 0x00BC R/W

GPIO_PIN19_REG GPIO pin19 configuration register 0x00C0 R/W

GPIO_PIN20_REG GPIO pin20 configuration register 0x00C4 R/W

GPIO_PIN21_REG GPIO pin21 configuration register 0x00C8 R/W

Input Function Configuration Registers

GPIO_FUNC0_IN_SEL_CFG_REG Configuration register for input signal 0 0x0154 R/W

GPIO_FUNC1_IN_SEL_CFG_REG Configuration register for input signal 1 0x0158 R/W

...

GPIO_FUNC126_IN_SEL_CFG_REG Configuration register for input signal 126 0x034C R/W

GPIO_FUNC127_IN_SEL_CFG_REG Configuration register for input signal 127 0x0350 R/W

Output Function Configuration Registers

GPIO_FUNC0_OUT_SEL_CFG_REG Configuration register for GPIO0 output 0x0554 R/W

Espressif Systems 43
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Name Description Address Access

GPIO_FUNC1_OUT_SEL_CFG_REG Configuration register for GPIO1 output 0x0558 R/W

GPIO_FUNC2_OUT_SEL_CFG_REG Configuration register for GPIO2 output 0x055C R/W

GPIO_FUNC3_OUT_SEL_CFG_REG Configuration register for GPIO3 output 0x0560 R/W

GPIO_FUNC4_OUT_SEL_CFG_REG Configuration register for GPIO4 output 0x0564 R/W

GPIO_FUNC5_OUT_SEL_CFG_REG Configuration register for GPIO5 output 0x0568 R/W

GPIO_FUNC6_OUT_SEL_CFG_REG Configuration register for GPIO6 output 0x056C R/W

GPIO_FUNC7_OUT_SEL_CFG_REG Configuration register for GPIO7 output 0x0570 R/W

GPIO_FUNC8_OUT_SEL_CFG_REG Configuration register for GPIO8 output 0x0574 R/W

GPIO_FUNC9_OUT_SEL_CFG_REG Configuration register for GPIO9 output 0x0578 R/W

GPIO_FUNC10_OUT_SEL_CFG_REG Configuration register for GPIO10 output 0x057C R/W

GPIO_FUNC11_OUT_SEL_CFG_REG Configuration register for GPIO11 output 0x0580 R/W

GPIO_FUNC12_OUT_SEL_CFG_REG Configuration register for GPIO12 output 0x0584 R/W

GPIO_FUNC13_OUT_SEL_CFG_REG Configuration register for GPIO13 output 0x0588 R/W

GPIO_FUNC14_OUT_SEL_CFG_REG Configuration register for GPIO14 output 0x058C R/W

GPIO_FUNC15_OUT_SEL_CFG_REG Configuration register for GPIO15 output 0x0590 R/W

GPIO_FUNC16_OUT_SEL_CFG_REG Configuration register for GPIO16 output 0x0594 R/W

GPIO_FUNC17_OUT_SEL_CFG_REG Configuration register for GPIO17 output 0x0598 R/W

GPIO_FUNC18_OUT_SEL_CFG_REG Configuration register for GPIO18 output 0x059C R/W

GPIO_FUNC19_OUT_SEL_CFG_REG Configuration register for GPIO19 output 0x05A0 R/W

GPIO_FUNC20_OUT_SEL_CFG_REG Configuration register for GPIO20 output 0x05A4 R/W

GPIO_FUNC21_OUT_SEL_CFG_REG Configuration register for GPIO21 output 0x05A8 R/W

Version Register

GPIO_DATE_REG GPIO version register 0x06FC R/W

Clock Gate Register

GPIO_CLOCK_GATE_REG GPIO clock gate register 0x062C R/W

4.13.2 IO MUX Register Summary

Name Description Address Access

Configuration Registers

IO_MUX_PIN_CTRL_REG Clock output configuration Register 0x0000 R/W

IO_MUX_GPIO0_REG IO MUX configuration register for pin

XTAL_32K_P

0x0004 R/W

IO_MUX_GPIO1_REG IO MUX configuration register for pin

XTAL_32K_N

0x0008 R/W

IO_MUX_GPIO2_REG IO MUX configuration register for pin GPIO2 0x000C R/W

IO_MUX_GPIO3_REG IO MUX configuration register for pin GPIO3 0x0010 R/W

IO_MUX_GPIO4_REG IO MUX configuration register for pin MTMS 0x0014 R/W

IO_MUX_GPIO5_REG IO MUX configuration register for pin MTDI 0x0018 R/W

IO_MUX_GPIO6_REG IO MUX configuration register for pin MTCK 0x001C R/W

IO_MUX_GPIO7_REG IO MUX configuration register for pin MTDO 0x0020 R/W

IO_MUX_GPIO8_REG IO MUX configuration register for pin GPIO8 0x0024 R/W

IO_MUX_GPIO9_REG IO MUX configuration register for pin GPIO9 0x0028 R/W

Espressif Systems 44
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Name Description Address Access

IO_MUX_GPIO10_REG IO MUX configuration register for pin GPIO10 0x002C R/W

IO_MUX_GPIO11_REG IO MUX configuration register for pin VDD_SPI 0x0030 R/W

IO_MUX_GPIO12_REG IO MUX configuration register for pin SPIHD 0x0034 R/W

IO_MUX_GPIO13_REG IO MUX configuration register for pin SPIWP 0x0038 R/W

IO_MUX_GPIO14_REG IO MUX configuration register for pin SPICS0 0x003C R/W

IO_MUX_GPIO15_REG IO MUX configuration register for pin SPICLK 0x0040 R/W

IO_MUX_GPIO16_REG IO MUX configuration register for pin SPID 0x0044 R/W

IO_MUX_GPIO17_REG IO MUX configuration register for pin SPIQ 0x0048 R/W

IO_MUX_GPIO18_REG IO MUX configuration register for pin GPIO18 0x004C R/W

IO_MUX_GPIO19_REG IO MUX configuration register for pin GPIO19 0x0050 R/W

IO_MUX_GPIO20_REG IO MUX configuration register for pin U0RXD 0x0054 R/W

IO_MUX_GPIO21_REG IO MUX configuration register for pin U0TXD 0x0058 R/W

Version Register

IO_MUX_DATE_REG IO MUX Version Control Register 0x00FC R/W

4.13.3 SDM Register Summary

Name Description Address Access

Configuration registers

GPIOSD_SIGMADELTA0_REG Duty Cycle Configuration Register of SDM0 0x0000 R/W

GPIOSD_SIGMADELTA1_REG Duty Cycle Configuration Register of SDM1 0x0004 R/W

GPIOSD_SIGMADELTA2_REG Duty Cycle Configuration Register of SDM2 0x0008 R/W

GPIOSD_SIGMADELTA3_REG Duty Cycle Configuration Register of SDM3 0x000C R/W

GPIOSD_SIGMADELTA_CG_REG Clock Gating Configuration Register 0x0020 R/W

GPIOSD_SIGMADELTA_MISC_REG MISC Register 0x0024 R/W

Version register

GPIOSD_SIGMADELTA_VERSION_REG Version Control Register 0x0028 R/W

4.14 Registers

The addresses in this section are relative to GPIO Matrix, IO MUX and SDM base addresses provided in Table 3-4

in Chapter 3 System and Memory.

4.14.1 GPIO Matrix Registers

Register 4.1. GPIO_BT_SELECT_REG (0x0000)

GPIO
_B

T_
SEL

0x000000

31 0

Reset

GPIO_BT_SEL Reserved (R/W)

Espressif Systems 45
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.2. GPIO_OUT_REG (0x0004)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_O

UT_
DAT

A_O
RIG

0x00000

25 0

Reset

GPIO_OUT_DATA_ORIG GPIO0 ~ 21 output value in simple GPIO output mode. The values of bit0 ~
bit21 correspond to the output value of GPIO0 ~ GPIO21 respectively, and bit22 ~ bit25 are invalid.

(R/W/SS)

Register 4.3. GPIO_OUT_W1TS_REG (0x0008)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_O

UT_
W

1T
S

0x00000

25 0

Reset

GPIO_OUT_W1TS GPIO0 ~ 21 output set register. Bit0 ~ bit21 are corresponding to GPIO0

~ 21, and bit22 ~ bit25 are invalid. If the value 1 is written to a bit here, the correspond-

ing bit in GPIO_OUT_REG will be set to 1. Recommended operation: use this register to set

GPIO_OUT_REG. (WT)

Register 4.4. GPIO_OUT_W1TC_REG (0x000C)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_O

UT_
W

1T
C

0x00000

25 0

Reset

GPIO_OUT_W1TC GPIO0 ~ 21 output clear register. Bit0 ~ bit21 are corresponding to GPIO0

~ 21, and bit22 ~ bit25 are invalid. If the value 1 is written to a bit here, the correspond-

ing bit in GPIO_OUT_REG will be cleared. Recommended operation: use this register to clear

GPIO_OUT_REG. (WT)

Espressif Systems 46
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.5. GPIO_ENABLE_REG (0x0020)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_E

NABLE
_D

AT
A

0x00000

25 0

Reset

GPIO_ENABLE_DATA GPIO output enable register for GPIO0 ~ 21. Bit0 ~ bit21 are corresponding

to GPIO0 ~ 21, and bit22 ~ bit25 are invalid. (R/W/SS)

Register 4.6. GPIO_ENABLE_W1TS_REG (0x0024)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_E

NABLE
_W

1T
S

0x00000

25 0

Reset

GPIO_ENABLE_W1TS GPIO0 ~ 21 output enable set register. Bit0 ~ bit21 are corresponding to

GPIO0 ~ 21, and bit22 ~ bit25 are invalid. If the value 1 is written to a bit here, the corresponding

bit in GPIO_ENABLE_REG will be set to 1. Recommended operation: use this register to set

GPIO_ENABLE_REG. (WT)

Register 4.7. GPIO_ENABLE_W1TC_REG (0x0028)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_E

NABLE
_W

1T
C

0x00000

25 0

Reset

GPIO_ENABLE_W1TC GPIO0 ~ 21 output enable clear register. Bit0 ~ bit21 are corresponding to

GPIO0 ~ 21, and bit22 ~ bit25 are invalid. If the value 1 is written to a bit here, the corresponding

bit in GPIO_ENABLE_REG will be cleared. Recommended operation: use this register to clear

GPIO_ENABLE_REG. (WT)

Espressif Systems 47
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.8. GPIO_STRAP_REG (0x0038)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

GPIO
_S

TR
APPIN

G

0x00

15 0

Reset

GPIO_STRAPPING GPIO strapping values. (RO)

• bit 0: GPIO2

• bit 2: GPIO8

• bit 3: GPIO9

Register 4.9. GPIO_IN_REG (0x003C)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_IN

_D
AT

A_N
EXT

0x00000

25 0

Reset

GPIO_IN_DATA_NEXT GPIO0 ~ 21 input value. Bit0 ~ bit21 are corresponding to GPIO0 ~ 21, and

bit22 ~ bit25 are invalid. Each bit represents a pin input value, 1 for high level and 0 for low level.

(RO)

Register 4.10. GPIO_STATUS_REG (0x0044)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_S

TA
TU

S_IN
TE

RRUPT

0x00000

25 0

Reset

GPIO_STATUS_INTERRUPT GPIO0 ~ 21 interrupt status register. Bit0 ~ bit21 are corresponding to

GPIO0 ~ 21, and bit22 ~ bit25 are invalid. (R/W/SS)

Espressif Systems 48
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.11. GPIO_STATUS_W1TS_REG (0x0048)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_S

TA
TU

S_W
1T

S

0x00000

25 0

Reset

GPIO_STATUS_W1TS GPIO0 ~ 21 interrupt status set register. Bit0 ~ bit21 are corresponding to

GPIO0 ~ 21, and bit22 ~ bit25 are invalid. If the value 1 is written to a bit here, the corresponding

bit in GPIO_STATUS_INTERRUPT will be set to 1. Recommended operation: use this register to

set GPIO_STATUS_INTERRUPT. (WT)

Register 4.12. GPIO_STATUS_W1TC_REG (0x004C)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_S

TA
TU

S_W
1T

C

0x00000

25 0

Reset

GPIO_STATUS_W1TC GPIO0 ~ 21 interrupt status clear register. Bit0 ~ bit21 are corresponding to

GPIO0 ~ 21, and bit22 ~ bit25 are invalid. If the value 1 is written to a bit here, the corresponding

bit in GPIO_STATUS_INTERRUPT will be cleared. Recommended operation: use this register to

clear GPIO_STATUS_INTERRUPT. (WT)

Register 4.13. GPIO_PCPU_INT_REG (0x005C)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_P

ROCPU_IN
T

0x00000

25 0

Reset

GPIO_PROCPU_INT GPIO0 ~ 21 PRO_CPU interrupt status. Bit0 ~ bit21 are corresponding to

GPIO0 ~ 21, and bit22 ~ bit25 are invalid. This interrupt status is corresponding to the bit in

GPIO_STATUS_REG when assert (high) enable signal (bit13 of GPIO_PINn_REG). (RO)

Espressif Systems 49
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.14. GPIO_PCPU_NMI_INT_REG (0x0060)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_P

ROCPU_N
M

I_I
NT

0x00000

25 0

Reset

GPIO_PROCPU_NMI_INT GPIO0 ~ 21 PRO_CPU non-maskable interrupt status. Bit0 ~ bit21 are

corresponding to GPIO0 ~ 21, and bit22 ~ bit25 are invalid. This interrupt status is corresponding

to the bit in GPIO_STATUS_REG when assert (high) enable signal (bit 14 of GPIO_PINn_REG). (RO)

Register 4.15. GPIO_PINn_REG (n: 0­21) (0x0074+4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

GPIO
_P

IN
n_

IN
T_

ENA

0x0

17 13

GPIO
_P

IN
n_

CONFIG

0x0

12 11

GPIO
_P

IN
n_

W
AKEUP_E

NABLE

0

10

GPIO
_P

IN
n_

IN
T_

TY
PE

0x0

9 7

(re
se

rve
d)

0 0

6 5

GPIO
_P

IN
n_

SYNC1_
BYPA

SS

0x0

4 3

GPIO
_P

IN
n_

PA
D_D

RIVER

0

2

GPIO
_P

IN
n_

SYNC2_
BYPA

SS

0x0

1 0

Reset

GPIO_PINn_SYNC2_BYPASS For the second stage synchronization, GPIO input data can be syn-

chronized on either edge of the APB clock. 0: no synchronization; 1: synchronized on falling edge;

2 and 3: synchronized on rising edge. (R/W)

GPIO_PINn_PAD_DRIVER pin drive selection. 0: normal output; 1: open drain output. (R/W)

GPIO_PINn_SYNC1_BYPASS For the first stage synchronization, GPIO input data can be synchro-

nized on either edge of the APB clock. 0: no synchronization; 1: synchronized on falling edge; 2

and 3: synchronized on rising edge. (R/W)

GPIO_PINn_INT_TYPE Interrupt type selection. 0: GPIO interrupt disabled; 1: rising edge trigger; 2:

falling edge trigger; 3: any edge trigger; 4: low level trigger; 5: high level trigger. (R/W)

GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable bit, only wakes up the CPU from Light-sleep.

(R/W)

GPIO_PINn_CONFIG reserved (R/W)

GPIO_PINn_INT_ENA Interrupt enable bits. bit13: CPU interrupt enabled; bit14: CPU non-maskable

interrupt enabled. (R/W)

Espressif Systems 50
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.16. GPIO_STATUS_NEXT_REG (0x014C)

(re
se

rve
d)

0 0 0 0 0 0

31 26

GPIO
_S

TA
TU

S_IN
TE

RRUPT_
NEXT

0x00000

25 0

Reset

GPIO_STATUS_INTERRUPT_NEXT Interrupt source signal of GPIO0 ~ 21, could be rising edge in-

terrupt, falling edge interrupt, level sensitive interrupt and any edge interrupt. Bit0 ~ bit21 are

corresponding to GPIO0 ~ 21, and bit22 ~ bit25 are invalid. (RO)

Register 4.17. GPIO_FUNCn_IN_SEL_CFG_REG (n: 0­127) (0x0154+4*n)

(re
se

rve
d)

0 0

31 7

GPIO
_S

IG
n_

IN
_S

EL

0

6

GPIO
_F

UNCn
_IN

_IN
V_S

EL

0

5

GPIO
_F

UNCn
_IN

_S
EL

0x0

4 0

Reset

GPIO_FUNCn_IN_SEL Selection control for peripheral input signal n, selects a pin from the 22 GPIO

matrix pins to connect this input signal. Or selects 0x1e for a constantly high input or 0x1f for a

constantly low input. (R/W)

GPIO_FUNCn_IN_INV_SEL Invert the input value. 1: invert enabled; 0: invert disabled. (R/W)

GPIO_SIGn_IN_SEL Bypass GPIO matrix. 1: route signals via GPIO matrix, 0: connect signals di-

rectly to peripheral configured in IO MUX. (R/W)

Espressif Systems 51
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.18. GPIO_FUNCn_OUT_SEL_CFG_REG (n: 0­21) (0x0554+4*n)

(re
se

rve
d)

0 0

31 11

GPIO
_F

UNCn
_O

EN_IN
V_S

EL

0

10

GPIO
_F

UNCn
_O

EN_S
EL

0

9

GPIO
_F

UNCn
_O

UT_
IN

V_S
EL

0

8

GPIO
_F

UNCn
_O

UT_
SEL

0x80

7 0

Reset

GPIO_FUNCn_OUT_SEL Selection control for GPIO output n. If a value Y (0<=Y<128) is written to

this field, the peripheral output signal Y will be connected to GPIO output X. If a value 128 is written

to this field, bit n of GPIO_OUT_REG and GPIO_ENABLE_REG will be selected as the output value

and output enable. (R/W)

GPIO_FUNCn_OUT_INV_SEL 0: Do not invert the output value; 1: Invert the output value. (R/W)

GPIO_FUNCn_OEN_SEL 0: Use output enable signal from peripheral; 1: Force the output enable

signal to be sourced from bit n of GPIO_ENABLE_REG. (R/W)

GPIO_FUNCn_OEN_INV_SEL 0: Do not invert the output enable signal; 1: Invert the output enable

signal. (R/W)

Register 4.19. GPIO_CLOCK_GATE_REG (0x062C)

(re
se

rve
d)

0 0

31 1

GPIO
_C

LK
_E

N

1

0

Reset

GPIO_CLK_EN Clock gating enable bit. If set to 1, the clock is free running. (R/W)

Register 4.20. GPIO_DATE_REG (0x06FC)

(re
se

rve
d)

0 0 0 0

31 28

GPIO
_D

AT
E_R

EG

0x2006130

27 0

Reset

GPIO_DATE_REG Version control register (R/W)

Espressif Systems 52
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

4.14.2 IO MUX Registers

Register 4.21. IO_MUX_PIN_CTRL_REG (0x0000)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

IO
_M

UX_
CLK

_O
UT3

0x7

11 8

IO
_M

UX_
CLK

_O
UT2

0xf

7 4

IO
_M

UX_
CLK

_O
UT1

0xf

3 0

Reset

IO_MUX_CLK_OUTx If you want to output clock for I2S to CLK_OUT_outx, set IO_MUX_CLK_OUTx

to 0x0. CLK_OUT_outx can be found in Table 4-1. (R/W)

Espressif Systems 53
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.22. IO_MUX_GPIOn_REG (n: 0­21) (0x0004+4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

IO
_M

UX_
GPIO

n_
FIL

TE
R_E

N

0

15

IO
_M

UX_
GPIO

n_
M

CU_S
EL

0x0

14 12

IO
_M

UX_
GPIO

n_
FU

N_D
RV

0x2

11 10

IO
_M

UX_
GPIO

n_
FU

N_IE

1

9

IO
_M

UX_
GPIO

n_
FU

N_W
PU

1

8

IO
_M

UX_
GPIO

n_
FU

N_W
PD

0

7

(re
se

rve
d)

0 0

6 5

IO
_M

UX_
GPIO

n_
M

CU_IE

0

4

IO
_M

UX_
GPIO

n_
M

CU_W
PU

0

3

IO
_M

UX_
GPIO

n_
M

CU_W
PD

0

2

IO
_M

UX_
GPIO

n_
SLP

_S
EL

0

1

IO
_M

UX_
GPIO

n_
M

CU_O
E

0

0

Reset

IO_MUX_GPIOn_MCU_OE Output enable of the pin in sleep mode. 1: output enabled; 0: output

disabled. (R/W)

IO_MUX_GPIOn_SLP_SEL Sleep mode selection of this pin. Set to 1 to put the pin in sleep mode.

(R/W)

IO_MUX_GPIOn_MCU_WPD Pull-down enable of the pin in sleep mode. 1: internal pull-down en-

abled; 0: internal pull-down disabled. (R/W)

IO_MUX_GPIOn_MCU_WPU Pull-up enable of the pin during sleep mode. 1: internal pull-up en-

abled; 0: internal pull-up disabled. (R/W)

IO_MUX_GPIOn_MCU_IE Input enable of the pin during sleep mode. 1: input enabled; 0: input

disabled. (R/W)

IO_MUX_GPIOn_FUN_WPD Pull-down enable of the pin. 1: internal pull-down enabled; 0: internal

pull-down disabled. (R/W)

IO_MUX_GPIOn_FUN_WPU Pull-up enable of the pin. 1: internal pull-up enabled; 0: internal pull-up

disabled. (R/W)

IO_MUX_GPIOn_FUN_IE Input enable of the pin. 1: input enabled; 0: input disabled. (R/W)

IO_MUX_GPIOn_FUN_DRV Select the drive strength of the pin. 0: ~5 mA; 1: ~ 10 mA; 2: ~ 20 mA;

3: ~40mA. (R/W)

IO_MUX_GPIOn_MCU_SEL Select IO MUX function for this signal. 0: Select Function 0; 1: Select

Function 1; etc. (R/W)

IO_MUX_GPIOn_FILTER_EN Enable filter for pin input signals. 1: Filter enabled; 2: Filter disabled.

(R/W)

Espressif Systems 54
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.23. IO_MUX_DATE_REG (0x00FC)

(re
se

rve
d)

0 0 0 0

31 28

IO
_M

UX_
DAT

E_R
EG

0x2006050

27 0

Reset

IO_MUX_DATE_REG Version control register (R/W)

4.14.3 SDM Output Registers

Register 4.24. GPIOSD_SIGMADELTAn_REG (n: 0­3) (0x0000+4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

GPIO
SD_S

Dn
_P

RESCALE

0xff

15 8

GPIO
SD_S

Dn
_IN

0x0

7 0

Reset

GPIOSD_SDn_IN This field is used to configure the duty cycle of sigma delta modulation output.

(R/W)

GPIOSD_SDn_PRESCALE This field is used to set a divider value to divide APB clock. (R/W)

Register 4.25. GPIOSD_SIGMADELTA_CG_REG (0x0020)

GPIO
SD_C

LK
_E

N

0

31

(re
se

rve
d)

0 0

30 0

Reset

GPIOSD_CLK_EN Clock enable bit of configuration registers for sigma delta modulation. (R/W)

Espressif Systems 55
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

4 IO MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.26. GPIOSD_SIGMADELTA_MISC_REG (0x0024)

GPIO
SD_S

PI_S
W

AP

0

31

GPIO
SD_F

UNCTIO
N_C

LK
_E

N

0

30

(re
se

rve
d)

0 0

29 0

Reset

GPIOSD_FUNCTION_CLK_EN Clock enable bit of sigma delta modulation. (R/W)

GPIOSD_SPI_SWAP Reserved. (R/W)

Register 4.27. GPIOSD_SIGMADELTA_VERSION_REG (0x0028)

(re
se

rve
d)

0 0 0 0

31 28

GPIO
SD_D

AT
E

0x2006230

27 0

Reset

GPIOSD_DATE Version Control Register. (R/W)

Espressif Systems 56
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

5 SHA Accelerator

5 SHA Accelerator

5.1 Introduction

ESP32-C3 integrates an SHA accelerator, which is a hardware device that speeds up SHA algorithm significantly,

compared to SHA algorithm implemented solely in software. The SHA accelerator integrated in ESP32-C3 has

two working modes, which are Typical SHA and DMA-SHA.

5.2 Features

The following functionality is supported:

• The following hash algorithms introduced in FIPS PUB 180-4 Spec.

– SHA-1

– SHA-224

– SHA-256

• Two working modes

– Typical SHA

– DMA-SHA

• Interleaved function when working in Typical SHA working mode

• Interrupt function when working in DMA-SHA working mode

5.3 Working Modes

The SHA accelerator integrated in ESP32-C3 has two working modes.

• Typical SHA Working Mode: all the data is written and read via CPU directly.

• DMA-SHA Working Mode: all the data is read via DMA. That is, users can configure the DMA controller to

read all the data needed for hash operation, thus releasing CPU for completing other tasks.

Users can start the SHA accelerator with different working modes by configuring registers SHA_START_REG and

SHA_DMA_START_REG. For details, please see Table 5-1.

Table 5­1. SHA Accelerator Working Mode

Working Mode Configuration Method

Typical SHA Set SHA_START_REG to 1

DMA-SHA Set SHA_DMA_START_REG to 1

Espressif Systems 57
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://doi.org/10.6028/NIST.FIPS.180-4
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

5 SHA Accelerator

Users can choose hash algorithms by configuring the SHA_MODE_REG register. For details, please see Table

5-2.

Table 5­2. SHA Hash Algorithm Selection

Hash Algorithm SHA_MODE_REG Configuration

SHA-1 0

SHA-224 1

SHA-256 2

5.4 Function Description

SHA accelerator can generate the message digest via two steps: Preprocessing and Hash operation.

5.4.1 Preprocessing

Preprocessing consists of three steps: padding the message, parsing the message into message blocks and

setting the initial hash value.

5.4.1.1 Padding the Message

The SHA accelerator can only process message blocks of 512 bits. Thus, all the messages should be padded to

a multiple of 512 bits before the hash task.

Suppose that the length of the message M is m bits. Then M shall be padded as introduced below:

1. First, append the bit “1” to the end of the message;

2. Second, append k bits of zeros, where k is the smallest, non-negative solution to the equation

m+ 1 + k ≡ 448 mod 512;

3. Last, append the 64-bit block of value equal to the number m expressed using a binary representation.

For more details, please refer to Section “5.1 Padding the Message” in FIPS PUB 180-4 Spec.

5.4.1.2 Parsing the Message

The message and its padding must be parsed into N 512-bit blocks, M (1), M (2), …, M (N). Since the 512 bits

of the input block may be expressed as sixteen 32-bit words, the first 32 bits of message block i are denoted

M(i)
0 , the next 32 bits are M(i)

1 , and so on up to M(i)
15 .

During the task, all the message blocks are written into the SHA_M_n_REG: M(i)
0 is stored in SHA_M_0_REG,

M(i)
1 stored in SHA_M_1_REG, …, and M(i)

15 stored in SHA_M_15_REG.

Note:

For more information about “message block”, please refer to Section “2.1 Glossary of Terms and Acronyms” in FIPS PUB
180-4 Spec.

Espressif Systems 58
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

5 SHA Accelerator

5.4.1.3 Initial Hash Value

Before hash task begins for any secure hash algorithms, the initial Hash value H(0) must be set based on different

algorithms. However, the SHA accelerator uses the initial Hash values (constant C) stored in the hardware for

hash tasks.

5.4.2 Hash Task Process

After the preprocessing, the ESP32-C3 SHA accelerator starts to hash a message M and generates message

digest of different lengths, depending on different hash algorithms. As described above, the ESP32-C3 SHA

accelerator supports two working modes, which are Typical SHA and DMA-SHA. The operation process for the

SHA accelerator under two working modes is described in the following subsections.

5.4.2.1 Typical SHA Mode Process

Usually, the SHA accelerator will process all blocks of a message and produce a message digest before starting

the computation of the next message digest.

However, ESP32-C3 SHA also supports optional “interleaved” message digest calculation. Users can insert new

calculation (both Typical SHA and DMA-SHA) each time the SHA accelerator completes a sequence of

operations.

• In Typical SHA mode, this can be done after each individual message block.

• In DMA-SHA mode, this can be done after a full sequence of DMA operations is complete.

Specifically, users can read out the message digest from registers SHA_H_n_REG after completing part of a

message digest calculation, and use the SHA accelerator for a different calculation. After the different calculation

completes, users can restore the previous message digest to registers SHA_H_n_REG, and resume the

accelerator with the previously paused calculation.

Typical SHA Process

1. Select a hash algorithm.

• Configure the SHA_MODE_REG register based on Table 5-2.

2. Process the current message block 1.

• Write the message block in registers SHA_M_n_REG.

3. Start the SHA accelerator.

• If this is the first time to execute this step, set the SHA_START_REG register to 1 to start the SHA

accelerator. In this case, the accelerator uses the initial hash value stored in hardware for a given

algorithm configured in Step 1 to start the calculation;

• If this is not the first time to execute this step2, set the SHA_CONTINUE_REG register to 1 to start the

SHA accelerator. In this case, the accelerator uses the hash value stored in the SHA_H_n_REG

register to start calculation.

4. Check the progress of the current message block.

• Poll register SHA_BUSY_REG until the content of this register becomes 0, indicating the accelerator

has completed the calculation for the current message block and now is in the “idle” status 3.

Espressif Systems 59
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

5 SHA Accelerator

5. Decide if you have more message blocks to process:

• If yes, please go back to Step 2.

• Otherwise, please continue.

6. Obtain the message digest.

• Read the message digest from registers SHA_H_n_REG.

Note:

1. In this step, the software can also write the next message block (to be processed) in registers SHA_M_n_REG, if

any, while the hardware starts SHA calculation, to save time.

2. You are resuming the SHA accelerator with the previously paused calculation.

3. Here you can decide if you want to insert other calculations. If yes, please go to the process for interleaved

calculations for details.

As mentioned above, ESP32-C3 SHA accelerator supports “interleaving” calculation under the Typical SHA

working mode.

The process to implement interleaved calculation is described below.

1. Prepare to hand the SHA accelerator over for an interleaved calculation by storing the following data of the

previous calculation.

• The selected hash algorithm stored in the SHA_MODE_REG register.

• The message digest stored in registers SHA_H_n_REG.

2. Perform the interleaved calculation. For the detailed process of the interleaved calculation, please refer to

Typical SHA process or DMA-SHA process, depending on the working mode of your interleaved calculation.

3. Prepare to hand the SHA accelerator back to the previously paused calculation by restoring the following

data of the previous calculation.

• Write the previously stored hash algorithm back to register SHA_MODE_REG.

• Write the previously stored message digest back to registers SHA_H_n_REG.

4. Write the next message block from the previous paused calculation in registers SHA_M_n_REG, and set the

SHA_CONTINUE_REG register to 1 to restart the SHA accelerator with the previously paused calculation.

5.4.2.2 DMA­SHA Mode Process

ESP32-C3 SHA accelerator does not support “interleaving” message digest calculation at the level of individual

message blocks when using DMA, which means you cannot insert new calculation before a complete DMA-SHA

process (of one or more message blocks) completes. In this case, users who need interleaved operation are

recommended to divide the message blocks and perform several DMA-SHA calculations, instead of trying to

compute all the messages in one go.

Single DMA-SHA calculation supports up to 63 data blocks.

In contrast to the Typical SHA working mode, when the SHA accelerator is working under the DMA-SHA mode,

all data read are completed via DMA. Therefore, users are required to configure the DMA controller.

Espressif Systems 60
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

5 SHA Accelerator

DMA­SHA process

1. Select a hash algorithm.

• Select a hash algorithm by configuring the SHA_MODE_REG register. For details, please refer to Table

5-2.

2. Configure the SHA_INT_ENA_REG register to enable or disable interrupt (Set 1 to enable).

3. Configure the number of message blocks.

• Write the number of message blocks M to the SHA_DMA_BLOCK_NUM_REG register.

4. Start the DMA-SHA calculation.

• If the current DMA-SHA calculation follows a previous calculation, firstly write the message digest from

the previous calculation to registers SHA_H_n_REG, then write 1 to register

SHA_DMA_CONTINUE_REG to start SHA accelerator;

• Otherwise, write 1 to register SHA_DMA_START_REG to start the accelerator.

5. Wait till the completion of the DMA-SHA calculation, which happens when:

• The content of SHA_BUSY_REG register becomes 0, or

• An SHA interrupt occurs. In this case, please clear interrupt by writing 1 to the SHA_INT_CLEAR_REG

register.

6. Obtain the message digest:

• Read the message digest from registers SHA_H_n_REG.

5.4.3 Message Digest

After the hash task completes, the SHA accelerator writes the message digest from the task to registers

SHA_H_n_REG(n: 0~7). The lengths of the generated message digest are different depending on different hash

algorithms. For details, see Table 5-3 below:

Table 5­3. The Storage and Length of Message Digest from Different Algorithms

Hash Algorithm Length of Message Digest (in bits) Storage1

SHA-1 160 SHA_H_0_REG ~ SHA_H_4_REG

SHA-224 224 SHA_H_0_REG ~ SHA_H_6_REG

SHA-256 256 SHA_H_0_REG ~ SHA_H_7_REG

1 The message digest is stored in registers from most significant bits to the least significant bits,

with the first word stored in register SHA_H_0_REG and the second word stored in register

SHA_H_1_REG... For details, please see subsection 5.4.1.2.

5.4.4 Interrupt

SHA accelerator supports interrupt on the completion of message digest calculation when working in the

DMA-SHA mode. To enable this function, write 1 to register SHA_INT_ENA_REG. Note that the interrupt should

be cleared by software after use via setting the SHA_INT_CLEAR_REG register to 1.

Espressif Systems 61
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

5 SHA Accelerator

5.5 Register Summary

The addresses in this section are relative to the SHA accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Name Description Address Access

Control/Status registers

SHA_CONTINUE_REG
Continues SHA operation (only effective in Typi-

cal SHA mode)
0x0014 WO

SHA_BUSY_REG Indicates if SHA Accelerator is busy or not 0x0018 RO

SHA_DMA_START_REG
Starts the SHA accelerator for DMA-SHA oper-

ation
0x001C WO

SHA_START_REG
Starts the SHA accelerator for Typical SHA op-

eration
0x0010 WO

SHA_DMA_CONTINUE_REG
Continues SHA operation (only effective in DMA-

SHA mode)
0x0020 WO

SHA_INT_CLEAR_REG DMA-SHA interrupt clear register 0x0024 WO

SHA_INT_ENA_REG DMA-SHA interrupt enable register 0x0028 R/W

Version Register

SHA_DATE_REG Version control register 0x002C R/W

Configuration Registers

SHA_MODE_REG Defines the algorithm of SHA accelerator 0x0000 R/W

Data Registers

SHA_DMA_BLOCK_NUM_REG
Block number register (only effective for DMA-

SHA)
0x000C R/W

SHA_H_0_REG Hash value 0x0040 R/W

SHA_H_1_REG Hash value 0x0044 R/W

SHA_H_2_REG Hash value 0x0048 R/W

SHA_H_3_REG Hash value 0x004C R/W

SHA_H_4_REG Hash value 0x0050 R/W

SHA_H_5_REG Hash value 0x0054 R/W

SHA_H_6_REG Hash value 0x0058 R/W

SHA_H_7_REG Hash value 0x005C R/W

SHA_M_0_REG Message 0x0080 R/W

SHA_M_1_REG Message 0x0084 R/W

SHA_M_2_REG Message 0x0088 R/W

SHA_M_3_REG Message 0x008C R/W

SHA_M_4_REG Message 0x0090 R/W

SHA_M_5_REG Message 0x0094 R/W

SHA_M_6_REG Message 0x0098 R/W

SHA_M_7_REG Message 0x009C R/W

SHA_M_8_REG Message 0x00A0 R/W

SHA_M_9_REG Message 0x00A4 R/W

SHA_M_10_REG Message 0x00A8 R/W

SHA_M_11_REG Message 0x00AC R/W

Espressif Systems 62
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

5 SHA Accelerator

Name Description Address Access

SHA_M_12_REG Message 0x00B0 R/W

SHA_M_13_REG Message 0x00B4 R/W

SHA_M_14_REG Message 0x00B8 R/W

SHA_M_15_REG Message 0x00BC R/W

5.6 Registers

The addresses in this section are relative to the SHA accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Register 5.1. SHA_START_REG (0x0010)

(re
se

rve
d)

0 0

31 1

SHA_S
TA

RT

0

0

Reset

SHA_START Write 1 to start Typical SHA calculation. (WO)

Register 5.2. SHA_CONTINUE_REG (0x0014)

(re
se

rve
d)

0 0

31 1

SHA_C
ONTIN

UE

0

0

Reset

SHA_CONTINUE Write 1 to continue Typical SHA calculation. (WO)

Register 5.3. SHA_BUSY_REG (0x0018)

(re
se

rve
d)

0 0

31 1

SHA_B
USY_S

TA
TE

0

0

Reset

SHA_BUSY_STATE Indicates the states of SHA accelerator. (RO) 1’h0: idle 1’h1: busy

Espressif Systems 63
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

5 SHA Accelerator

Register 5.4. SHA_DMA_START_REG (0x001C)

(re
se

rve
d)

0 0

31 1

SHA_D
M

A_S
TA

RT

0

0

Reset

SHA_DMA_START Write 1 to start DMA-SHA calculation. (WO)

Register 5.5. SHA_DMA_CONTINUE_REG (0x0020)

(re
se

rve
d)

0 0

31 1

SHA_D
M

A_C
ONTIN

UE

0

0

Reset

SHA_DMA_CONTINUE Write 1 to continue DMA-SHA calculation. (WO)

Register 5.6. SHA_INT_CLEAR_REG (0x0024)

(re
se

rve
d)

0 0

31 1

SHA_C
LE

AR_IN
TE

RRUPT

0

0

Reset

SHA_CLEAR_INTERRUPT Clears DMA-SHA interrupt. (WO)

Register 5.7. SHA_INT_ENA_REG (0x0028)

(re
se

rve
d)

0 0

31 1

SHA_IN
TE

RRUPT_
ENA

0

0

Reset

SHA_INTERRUPT_ENA Enables DMA-SHA interrupt. (R/W)

Espressif Systems 64
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

5 SHA Accelerator

Register 5.8. SHA_DATE_REG (0x002C)

(re
se

rve
d)

0 0

31 30

SHA_D
AT

E

0x20190402

29 0

Reset

SHA_DATE Version control register. (R/W)

Register 5.9. SHA_MODE_REG (0x0000)

(re
se

rve
d)

0 0

31 3

SHA_M
ODE

0x0

2 0

Reset

SHA_MODE Defines the SHA algorithm. For details, please see Table 5-2. (R/W)

Register 5.10. SHA_DMA_BLOCK_NUM_REG (0x000C)

(re
se

rve
d)

0 0

31 6

SHA_D
M

A_B
LO

CK_N
UM

0x0

5 0

Reset

SHA_DMA_BLOCK_NUM Defines the DMA-SHA block number. (R/W)

Register 5.11. SHA_H_n_REG (n: 0­7) (0x0040+4*n)

SHA_H
_n

0x000000

31 0

Reset

SHA_H_n Stores the nth 32-bit piece of the Hash value. (R/W)

Espressif Systems 65
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

5 SHA Accelerator

Register 5.12. SHA_M_n_REG (n: 0­15) (0x0080+4*n)

SHA_M
_n

0x000000

31 0

Reset

SHA_M_n Stores the nth 32-bit piece of the message. (R/W)

Espressif Systems 66
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

6 AES Accelerator

6 AES Accelerator

6.1 Introduction

ESP32-C3 integrates an Advanced Encryption Standard (AES) Accelerator, which is a hardware device that

speeds up AES Algorithm significantly, compared to AES algorithms implemented solely in software. The AES

Accelerator integrated in ESP32-C3 has two working modes, which are Typical AES and DMA-AES.

6.2 Features

The following functionality is supported:

• Typical AES working mode

– AES-128/AES-256 encryption and decryption

• DMA-AES working mode

– AES-128/AES-256 encryption and decryption

– Block cipher mode

* ECB (Electronic Codebook)

* CBC (Cipher Block Chaining)

* OFB (Output Feedback)

* CTR (Counter)

* CFB8 (8-bit Cipher Feedback)

* CFB128 (128-bit Cipher Feedback)

– Interrupt on completion of computation

6.3 AES Working Modes

The AES Accelerator integrated in ESP32-C3 has two working modes, which are Typical AES and

DMA-AES.

• Typical AES Working Mode:

– Supports encryption and decryption using cryptographic keys of 128 and 256 bits, specified in NIST

FIPS 197.

In this working mode, the plaintext and ciphertext is written and read via CPU directly.

• DMA-AES Working Mode:

– Supports encryption and decryption using cryptographic keys of 128 and 256 bits, specified in NIST

FIPS 197;

– Supports block cipher modes ECB/CBC/OFB/CTR/CFB8/CFB128 under NIST SP 800-38A.

In this working mode, the plaintext and ciphertext are written and read via DMA. An interrupt will be

generated when operation completes.

Espressif Systems 67
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

6 AES Accelerator

Users can choose the working mode for AES accelerator by configuring the AES_DMA_ENABLE_REG register

according to Table 6-1 below.

Table 6­1. AES Accelerator Working Mode

AES_DMA_ENABLE_REG Working Mode

0 Typical AES

1 DMA-AES

Users can choose the length of cryptographic keys and encryption / decryption by configuring the

AES_MODE_REG register according to Table 6-2 below.

Table 6­2. Key Length and Encryption/Decryption

AES_MODE_REG[2:0] Key Length and Encryption / Decryption

0 AES-128 encryption

1 reserved

2 AES-256 encryption

3 reserved

4 AES-128 decryption

5 reserved

6 AES-256 decryption

7 reserved

For detailed introduction on these two working modes, please refer to Section 6.4 and Section 6.5 below.

Espressif Systems 68
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

6 AES Accelerator

6.4 Typical AES Working Mode

In the Typical AES working mode, users can check the working status of the AES accelerator by inquiring the

AES_STATE_REG register and comparing the return value against the Table 6-3 below.

Table 6­3. Working Status under Typical AES Working Mode

AES_STATE_REG Status Description

0 IDLE The AES accelerator is idle or completed operation.

1 WORK The AES accelerator is in the middle of an operation.

6.4.1 Key, Plaintext, and Ciphertext

The encryption or decryption key is stored in AES_KEY_n_REG, which is a set of eight 32-bit registers.

• For AES-128 encryption/decryption, the 128-bit key is stored in AES_KEY_0_REG ~ AES_KEY_3_REG.

• For AES-256 encryption/decryption, the 256-bit key is stored in AES_KEY_0_REG ~ AES_KEY_7_REG.

The plaintext and ciphertext are stored in AES_TEXT_IN_m_REG and AES_TEXT_OUT_m_REG, which are two

sets of four 32-bit registers.

• For AES-128/AES-256 encryption, the AES_TEXT_IN_m_REG registers are initialized with plaintext. Then,

the AES Accelerator stores the ciphertext into AES_TEXT_OUT_m_REG after operation.

• For AES-128/AES-256 decryption, the AES_TEXT_IN_m_REG registers are initialized with ciphertext. Then,

the AES Accelerator stores the plaintext into AES_TEXT_OUT_m_REG after operation.

6.4.2 Endianness

Text Endianness

In Typical AES working mode, the AES Accelerator uses cryptographic keys to encrypt and decrypt data in

blocks of 128 bits. When filling data into AES_TEXT_IN_m_REG register or reading result from

AES_TEXT_OUT_m_REG registers, users should follow the text endianness type specified in Table 6-4.

Table 6­4. Text Endianness Type for Typical AES

Plaintext/Ciphertext

State1
c2

0 1 2 3

r

0 AES_TEXT_x_0_REG[7:0] AES_TEXT_x_1_REG[7:0] AES_TEXT_x_2_REG[7:0] AES_TEXT_x_3_REG[7:0]

1 AES_TEXT_x_0_REG[15:8] AES_TEXT_x_1_REG[15:8] AES_TEXT_x_2_REG[15:8] AES_TEXT_x_3_REG[15:8]

2 AES_TEXT_x_0_REG[23:16] AES_TEXT_x_1_REG[23:16] AES_TEXT_x_2_REG[23:16] AES_TEXT_x_3_REG[23:16]

3 AES_TEXT_x_0_REG[31:24] AES_TEXT_x_1_REG[31:24] AES_TEXT_x_2_REG[31:24] AES_TEXT_x_3_REG[31:24]

1 The definition of “State (including c and r)” is described in Section 3.4 The State in NIST FIPS

197.
2 Where x = IN or OUT.

Espressif Systems 69
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
INARY

6
A

E
S

A
ccelerator

Key Endianness

In Typical AES working mode, when filling key into AES_KEY_m_REG registers, users should follow the key endianness type specified in Table 6-5 and Table 6-6.

Table 6­5. Key Endianness Type for AES­128 Encryption and Decryption

Bit1 w[0] w[1] w[2] w[3]2

[31:24] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0]

[23:16] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8]

[15:8] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16]

[7:0] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24]

1 Column “Bit” specifies the bytes of each word stored in w[0] ~ w[3].
2 w[0] ~ w[3] are “the first Nk words of the expanded key” as specified in Section 5.2 Key Expansion in NIST FIPS 197.

Table 6­6. Key Endianness Type for AES­256 Encryption and Decryption

Bit1 w[0] w[1] w[2] w[3] w[4] w[5] w[6] w[7]2

[31:24] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_5_REG[7:0] AES_KEY_6_REG[7:0] AES_KEY_7_REG[7:0]

[23:16] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_5_REG[15:8] AES_KEY_6_REG[15:8] AES_KEY_7_REG[15:8]

[15:8] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_5_REG[23:16] AES_KEY_6_REG[23:16] AES_KEY_7_REG[23:16]

[7:0] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_5_REG[31:24] AES_KEY_6_REG[31:24] AES_KEY_7_REG[31:24]

1 Column “Bit” specifies the bytes of each word stored in w[0] ~ w[7].
2 w[0] ~ w[7] are “the first Nk words of the expanded key” as specified in Chapter 5.2 Key Expansion in NIST FIPS 197.

E
spressifS

ystem
s

70
S

ubm
itD

ocum
entation

Feedback
E

S
P

32-C
3

TR
M

(P
re-release

v0.1)

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

6 AES Accelerator

6.4.3 Operation Process

Single Operation

1. Write 0 to the AES_DMA_ENABLE_REG register.

2. Initialize registers AES_MODE_REG, AES_KEY_n_REG, AES_TEXT_IN_m_REG.

3. Start operation by writing 1 to the AES_TRIGGER_REG register.

4. Wait till the content of the AES_STATE_REG register becomes 0, which indicates the operation is

completed.

5. Read results from the AES_TEXT_OUT_m_REG register.

Consecutive Operations

In consecutive operations, primarily the input AES_TEXT_IN_m_REG and output AES_TEXT_OUT_m_REG

registers are being written and read, while the content of AES_DMA_ENABLE_REG, AES_MODE_REG,

AES_KEY_n_REG is kept unchanged. Therefore, the initialization can be simplified during the consecutive

operation.

1. Write 0 to the AES_DMA_ENABLE_REG register before starting the first operation.

2. Initialize registers AES_MODE_REG and AES_KEY_n_REG before starting the first operation.

3. Update the content of AES_TEXT_IN_m_REG.

4. Start operation by writing 1 to the AES_TRIGGER_REG register.

5. Wait till the content of the AES_STATE_REG register becomes 0, which indicates the operation completes.

6. Read results from the AES_TEXT_OUT_m_REG register, and return to Step 3 to continue the next

operation.

6.5 DMA­AES Working Mode

In the DMA-AES working mode, the AES accelerator supports six block cipher modes including

ECB/CBC/OFB/CTR/CFB8/CFB128. Users can choose the block cipher mode by configuring the

AES_BLOCK_MODE_REG register according to Table 6-7 below.

Table 6­7. Block Cipher Mode

AES_BLOCK_MODE_REG[2:0] Block Cipher Mode

0 ECB (Electronic Codebook)

1 CBC (Cipher Block Chaining)

2 OFB (Output Feedback)

3 CTR (Counter)

4 CFB8 (8-bit Cipher Feedback)

5 CFB128 (128-bit Cipher Feedback)

6 reserved

7 reserved

Users can check the working status of the AES accelerator by inquiring the AES_STATE_REG register and

comparing the return value against the Table 6-8 below.

Espressif Systems 71
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

6 AES Accelerator

Table 6­8. Working Status under DMA­AES Working mode

AES_STATE_REG[1:0] Status Description

0 IDLE The AES accelerator is idle.

1 WORK The AES accelerator is in the middle of an operation.

2 DONE The AES accelerator completed operations.

When working in the DMA-AES working mode, the AES accelerator supports interrupt on the completion of

computation. To enable this function, write 1 to the AES_INT_ENA_REG register. By default, the interrupt

function is disabled. Also, note that the interrupt should be cleared by software after use.

6.5.1 Key, Plaintext, and Ciphertext

Block Operation

During the block operations, the AES Accelerator reads source data from DMA, and write result data to DMA

after the computation.

• For encryption, DMA reads plaintext from memory, then passes it to AES as source data. After

computation, AES passes ciphertext as result data back to DMA to write into memory.

• For decryption, DMA reads ciphertext from memory, then passes it to AES as source data. After

computation, AES passes plaintext as result data back to DMA to write into memory.

During block operations, the lengths of the source data and result data are the same. The total computation time

is reduced because the DMA data operation and AES computation can happen concurrently.

The length of source data for AES Accelerator under DMA-AES working mode must be 128 bits or the integral

multiples of 128 bits. Otherwise, trailing zeros will be added to the original source data, so the length of source

data equals to the nearest integral multiples of 128 bits. Please see details in Table 6-9 below.

Table 6­9. TEXT­PADDING

Function : TEXT­PADDING()

Input : X, bit string.

Output : Y = TEXT­PADDING(X), whose length is the nearest integral multiples of 128 bits.

Steps

Let us assume that X is a data-stream that can be split into n parts as following:

X = X1||X2|| · · · ||Xn−1||Xn

Here, the lengths of X1, X2, · · · , Xn−1 all equal to 128 bits, and the length of Xn is t

(0<=t<=127).

If t = 0, then

TEXT­PADDING(X) = X;

If 0 < t <= 127, define a 128-bit block, X∗
n, and let X∗

n = Xn||0128−t, then

TEXT­PADDING(X) = X1||X2|| · · · ||Xn−1||X∗
n = X||0128−t

6.5.2 Endianness

Under the DMA-AES working mode, the transmission of source data and result data for AES Accelerator is solely

controlled by DMA. Therefore, the AES Accelerator cannot control the Endianness of the source data and result

Espressif Systems 72
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

6 AES Accelerator

data, but does have requirement on how these data should be stored in memory and on the length of the

data.

For example, let us assume DMA needs to write the following data into memory at address 0x0280.

• Data represented in hexadecimal:

– 0102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F20

• Data Length:

– Equals to 2 blocks.

Then, this data will be stored in memory as shown in Table 6-10 below.

Table 6­10. Text Endianness for DMA­AES

Address Byte Address Byte Address Byte Address Byte

0x0280 0x01 0x0281 0x02 0x0282 0x03 0x0283 0x04

0x0284 0x05 0x0285 0x06 0x0286 0x07 0x0287 0x08

0x0288 0x09 0x0289 0x0A 0x028A 0x0B 0x028B 0x0C

0x028C 0x0D 0x028D 0x0E 0x028E 0x0F 0x028F 0x10

0x0290 0x11 0x0291 0x12 0x0292 0x13 0x0293 0x14

0x0294 0x15 0x0295 0x16 0x0296 0x17 0x0297 0x18

0x0298 0x19 0x0299 0x1A 0x029A 0x1B 0x029B 0x1C

0x029C 0x1D 0x029D 0x1E 0x029E 0x1F 0x029F 0x20

6.5.3 Standard Incrementing Function

AES accelerator provides two Standard Incrementing Functions for the CTR block operation, which are INC32

and INC128 Standard Incrementing Functions. By setting the AES_INC_SEL_REG register to 0 or 1, users can

choose the INC32 or INC128 functions respectively. For details on the Standard Incrementing Function, please see

Chapter B.1 The Standard Incrementing Function in NIST SP 800-38A.

6.5.4 Block Number

Register AES_BLOCK_NUM_REG stores the Block Number of plaintext P or ciphertext C. The length of this

register equals to length(TEXT­PADDING(P))/128 or length(TEXT­PADDING(C))/128. The AES Accelerator only

uses this register when working in the DMA-AES mode.

6.5.5 Initialization Vector

AES_IV_MEM is a 16-byte memory, which is only available for AES Accelerator working in block operations. For

CBC/OFB/CFB8/CFB128 operations, the AES_IV_MEM memory stores the Initialization Vector (IV). For the CTR

operation, the AES_IV_MEM memory stores the Initial Counter Block (ICB).

Both IV and ICB are 128-bit strings, which can be divided into Byte0, Byte1, Byte2 · · · Byte15 (from left to right).

AES_IV_MEM stores data following the Endianness pattern presented in Table 6-10, i.e. the most significant (i.e.,

left-most) byte Byte0 is stored at the lowest address while the least significant (i.e., right-most) byte Byte15 at the

highest address.

For more details on IV and ICB, please refer to NIST SP 800-38A.

Espressif Systems 73
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

6 AES Accelerator

6.5.6 Block Operation Process

1. Select one of DMA channels to connect with AES, configure the DMA chained list, and then start DMA.

2. Initialize the AES accelerator-related registers:

• Write 1 to the AES_DMA_ENABLE_REG register.

• Configure the AES_INT_ENA_REG register to enable or disable the interrupt function.

• Initialize registers AES_MODE_REG and AES_KEY_n_REG.

• Select block cipher mode by configuring the AES_BLOCK_MODE_REG register. For details, see Table

6-7.

• Initialize the AES_BLOCK_NUM_REG register. For details, see Section 6.5.4.

• Initialize the AES_INC_SEL_REG register (only needed when AES Accelerator is working under CTR

block operation).

• Initialize the AES_IV_MEM memory (This is always needed except for ECB block operation).

3. Start operation by writing 1 to the AES_TRIGGER_REG register.

4. Wait for the completion of computation, which happens when the content of AES_STATE_REG becomes 2

or the AES interrupt occurs.

5. Check if DMA completes data transmission from AES to memory. At this time, DMA had already written the

result data in memory, which can be accessed directly.

6. Clear interrupt by writing 1 to the AES_INT_CLR_REG register, if any AES interrupt occurred during the

computation.

7. Release the AES Accelerator by writing 0 to the AES_DMA_EXIT_REG register. After this, the content of the

AES_STATE_REG register becomes 0. Note that, you can release DMA earlier, but only after Step 4 is

completed.

6.6 Memory Summary

The addresses in this section are relative to the AES accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Name Description Size (byte) Starting Address Ending Address Access

AES_IV_MEM Memory IV 16 bytes 0x0050 0x005F R/W

Espressif Systems 74
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

6 AES Accelerator

6.7 Register Summary

The addresses in this section are relative to the AES accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Name Description Address Access

Key Registers

AES_KEY_0_REG AES key data register 0 0x0000 R/W

AES_KEY_1_REG AES key data register 1 0x0004 R/W

AES_KEY_2_REG AES key data register 2 0x0008 R/W

AES_KEY_3_REG AES key data register 3 0x000C R/W

AES_KEY_4_REG AES key data register 4 0x0010 R/W

AES_KEY_5_REG AES key data register 5 0x0014 R/W

AES_KEY_6_REG AES key data register 6 0x0018 R/W

AES_KEY_7_REG AES key data register 7 0x001C R/W

TEXT_IN Registers

AES_TEXT_IN_0_REG Source text data register 0 0x0020 R/W

AES_TEXT_IN_1_REG Source text data register 1 0x0024 R/W

AES_TEXT_IN_2_REG Source text data register 2 0x0028 R/W

AES_TEXT_IN_3_REG Source text data register 3 0x002C R/W

TEXT_OUT Registers

AES_TEXT_OUT_0_REG Result text data register 0 0x0030 RO

AES_TEXT_OUT_1_REG Result text data register 1 0x0034 RO

AES_TEXT_OUT_2_REG Result text data register 2 0x0038 RO

AES_TEXT_OUT_3_REG Result text data register 3 0x003C RO

Configuration Registers

AES_MODE_REG Defines key length and encryption / decryp-

tion

0x0040 R/W

AES_DMA_ENABLE_REG Selects the working mode of the AES accel-

erator

0x0090 R/W

AES_BLOCK_MODE_REG Defines the block cipher mode 0x0094 R/W

AES_BLOCK_NUM_REG Block number configuration register 0x0098 R/W

AES_INC_SEL_REG Standard incrementing function register 0x009C R/W

Controlling / Status Registers

AES_TRIGGER_REG Operation start controlling register 0x0048 WO

AES_STATE_REG Operation status register 0x004C RO

AES_DMA_EXIT_REG Operation exit controlling register 0x00B8 WO

Interruption Registers

AES_INT_CLR_REG DMA-AES interrupt clear register 0x00AC WO

AES_INT_ENA_REG DMA-AES interrupt enable register 0x00B0 R/W

Espressif Systems 75
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

6 AES Accelerator

6.8 Registers

The addresses in this section are relative to the AES accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Register 6.1. AES_KEY_n_REG (n: 0­7) (0x0000+4*n)

0x000000000

31 0

Reset

AES_KEY_n_REG (n: 0­7) Stores AES key data. (R/W)

Register 6.2. AES_TEXT_IN_m_REG (m: 0­3) (0x0020+4*m)

0x000000000

31 0

Reset

AES_TEXT_IN_m_REG (m: 0­3) Stores the source text data when the AES Accelerator operates in

the Typical AES working mode. (R/W)

Register 6.3. AES_TEXT_OUT_m_REG (m: 0­3) (0x0030+4*m)

0x000000000

31 0

Reset

AES_TEXT_OUT_m_REG (m: 0­3) Stores the result text data when the AES Accelerator operates in

the Typical AES working mode. (RO)

Register 6.4. AES_MODE_REG (0x0040)

(re
se

rve
d)

0x00000000

31 3

AES_M
ODE

0

2 0

Reset

AES_MODE Defines the key length and encryption / decryption of the AES Accelerator. For details,

see Table 6-2. (R/W)

Espressif Systems 76
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

6 AES Accelerator

Register 6.5. AES_DMA_ENABLE_REG (0x0090)

(re
se

rve
d)

0x00000000

31 1

AES_D
M

A_E
NABLE

0

0

Reset

AES_DMA_ENABLE Defines the working mode of the AES Accelerator. 0: Typical AES, 1: DMA-AES.

For details, see Table 6-1. (R/W)

Register 6.6. AES_BLOCK_MODE_REG (0x0094)

(re
se

rve
d)

0x00000000

31 3

AES_B
LO

CK_M
ODE

0

2 0

Reset

AES_BLOCK_MODE Defines the block cipher mode of the AES Accelerator operating under the

DMA-AES working mode. For details, see Table 6-7. (R/W)

Register 6.7. AES_BLOCK_NUM_REG (0x0098)

0x00000000

31 0

Reset

AES_BLOCK_NUM Stores the Block Number of plaintext or ciphertext when the AES Accelerator

operates under the DMA-AES working mode. For details, see Section 6.5.4. (R/W)

Register 6.8. AES_INC_SEL_REG (0x009C)

(re
se

rve
d)

0x00000000

31 1

AES_IN
C_S

EL

0

0

Reset

AES_INC_SEL Defines the Standard Incrementing Function for CTR block operation. Set this bit to

0 or 1 to choose INC32 or INC128. (R/W)

Espressif Systems 77
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

6 AES Accelerator

Register 6.9. AES_TRIGGER_REG (0x0048)

(re
se

rve
d)

0x00000000

31 1

AES_T
RIG

GER

x

0

Reset

AES_TRIGGER Set this bit to 1 to start AES operation. (WO)

Register 6.10. AES_STATE_REG (0x004C)

(re
se

rve
d)

0x00000000

31 2

AES_S
TA

TE

0x0

1 0

Reset

AES_STATE Stores the working status of the AES Accelerator. For details, see Table 6-3 for Typical

AES working mode and Table 6-8 for DMA AES working mode. (RO)

Register 6.11. AES_DMA_EXIT_REG (0x00B8)

(re
se

rve
d)

0x00000000

31 1

AES_D
M

A_E
XIT

x

0

Reset

AES_DMA_EXIT Set this bit to 1 to exit AES operation. This register is only effective for DMA-AES

operation. (WO)

Register 6.12. AES_INT_CLR_REG (0x00AC)

(re
se

rve
d)

0x00000000

31 1

AES_IN
T_

CLR

x

0

Reset

AES_INT_CLR Set this bit to 1 to clear AES interrupt. (WO)

Espressif Systems 78
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

6 AES Accelerator

Register 6.13. AES_INT_ENA_REG (0x00B0)

(re
se

rve
d)

0x00000000

31 1

AES_IN
T_

ENA

0

0

Reset

AES_INT_ENA Set this bit to 1 to enable AES interrupt and 0 to disable interrupt. (R/W)

Espressif Systems 79
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

7 RSA Accelerator

7 RSA Accelerator

7.1 Introduction

The RSA Accelerator provides hardware support for high precision computation used in various RSA asymmetric

cipher algorithms by significantly reducing their software complexity. Compared with RSA algorithms

implemented solely in software, this hardware accelerator can speed up RSA algorithms significantly. Besides,

the RSA Accelerator also supports operands of different lengths, which provides more flexibility during the

computation.

7.2 Features

The following functionality is supported:

• Large-number modular exponentiation with two optional acceleration options

• Large-number modular multiplication

• Large-number multiplication

• Operands of different lengths

• Interrupt on completion of computation

7.3 Functional Description

The RSA Accelerator is activated by setting the SYSTEM_CRYPTO_RSA_CLK_EN bit in the

SYSTEM_PERIP_CLK

_EN1_REG register and clearing the SYSTEM_RSA_MEM_PD bit in the SYSTEM_RSA_PD_CTRL_REG register.

This releases the RSA Accelerator from reset.

The RSA Accelerator is only available after the RSA-related memories are initialized. The content of the

RSA_CLEAN

_REG register is 0 during initialization and will become 1 after the initialization is done. Therefore, it is advised to

wait until RSA_CLEAN_REG becomes 1 before using the RSA Accelerator.

The RSA_INTERRUPT_ENA_REG register is used to control the interrupt triggered on completion of

computation. Write 1 or 0 to this register to enable or disable interrupt. By default, the interrupt function of the

RSA Accelerator is enabled.

7.3.1 Large Number Modular Exponentiation

Large-number modular exponentiation performs Z = XY mod M . The computation is based on Montgomery

multiplication. Therefore, aside from the X, Y , and M arguments, two additional ones are needed — r and M ′,

which need to be calculated in advance by software.

RSA Accelerator supports operands of length N = 32× x, where x ∈ {1, 2, 3, . . . , 96}. The bit lengths of

arguments Z, X, Y , M , and r can be arbitrary N , but all numbers in a calculation must be of the same length.

The bit length of M ′ must be 32.

Espressif Systems 80
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

7 RSA Accelerator

To represent the numbers used as operands, let us define a base-b positional notation, as follows:

b = 232

Using this notation, each number is represented by a sequence of base-b digits:

n =
N

32

Z = (Zn−1Zn−2 · · ·Z0)b

X = (Xn−1Xn−2 · · ·X0)b

Y = (Yn−1Yn−2 · · ·Y0)b

M = (Mn−1Mn−2 · · ·M0)b

r = (rn−1rn−2 · · · r0)b

Each of the n values in Zn−1 · · ·Z0, Xn−1 · · ·X0, Yn−1 · · ·Y0, Mn−1 · · ·M0, rn−1 · · · r0 represents one base-b

digit (a 32-bit word).

Zn−1, Xn−1, Yn−1, Mn−1 and rn−1 are the most significant bits of Z, X, Y , M , while Z0, X0, Y0, M0 and r0 are

the least significant bits.

If we define R = bn, the additional arguments can be calculated as r = R2 mod M .

The following equation in the form compatible with the extended binary GCD algorithm can be written as�

M−1 ×M + 1 = R×R−1

M ′ = M−1 mod b

Large-number modular exponentiation can be implemented as follows:

1. Write 1 or 0 to the RSA_INTERRUPT_ENA_REG register to enable or disable the interrupt function.

2. Configure relevant registers:

(a) Write (N32 − 1) to the RSA_MODE_REG register.

(b) Write M ′ to the RSA_M_PRIME_REG register.

(c) Configure registers related to the acceleration options, which are described later in Section 7.3.4.

3. Write Xi, Yi, Mi and ri for i ∈ {0, 1, . . . , n− 1} to memory blocks RSA_X_MEM, RSA_Y_MEM,

RSA_M_MEM and RSA_Z_MEM. The capacity of each memory block is 96 words. Each word of each

memory block can store one base-b digit. The memory blocks use the little endian format for storage, i.e.

the least significant digit of each number is in the lowest address.

Users need to write data to each memory block only according to the length of the number; data beyond

this length are ignored.

4. Write 1 to the RSA_MODEXP_START_REG register to start computation.

5. Wait for the completion of computation, which happens when the content of RSA_IDLE_REG becomes 1

or the RSA interrupt occurs.

Espressif Systems 81
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

7 RSA Accelerator

6. Read the result Zi for i ∈ {0, 1, . . . , n− 1} from RSA_Z_MEM.

7. Write 1 to RSA_CLEAR_INTERRUPT_REG to clear the interrupt, if you have enabled the interrupt function.

After the computation, the RSA_MODE_REG register, memory blocks RSA_Y_MEM and RSA_M_MEM, as well

as the RSA_M_PRIME_REG remain unchanged. However, Xi in RSA_X_MEM and ri in RSA_Z_MEM

computation are overwritten, and only these overwritten memory blocks need to be re-initialized before starting

another computation.

7.3.2 Large Number Modular Multiplication

Large-number modular multiplication performs Z = X × Y mod M . This computation is based on Montgomery

multiplication. Therefore, similar to the large number modular exponentiation, two additional arguments are

needed – r and M ′, which need to be calculated in advance by software.

The RSA Accelerator supports large-number modular multiplication with operands of 96 different lengths.

The computation can be executed as follows:

1. Write 1 or 0 to the RSA_INTERRUPT_ENA_REG register to enable or disable the interrupt function.

2. Configure relevant registers:

(a) Write (N32 − 1) to the RSA_MODE_REG register.

(b) Write M ′ to the RSA_M_PRIME_REG register.

3. Write Xi, Yi, Mi, and ri for i ∈ {0, 1, . . . , n− 1} to memory blocks RSA_X_MEM, RSA_Y_MEM,

RSA_M_MEM and RSA_Z_MEM. The capacity of each memory block is 96 words. Each word of each

memory block can store one base-b digit. The memory blocks use the little endian format for storage, i.e.

the least significant digit of each number is in the lowest address.

Users need to write data to each memory block only according to the length of the number; data beyond

this length are ignored.

4. Write 1 to the RSA_MODMULT_START_REG register.

5. Wait for the completion of computation, which happens when the content of RSA_IDLE_REG becomes 1

or the RSA interrupt occurs.

6. Read the result Zi for i ∈ {0, 1, . . . , n− 1} from RSA_Z_MEM.

7. Write 1 to RSA_CLEAR_INTERRUPT_REG to clear the interrupt, if you have enabled the interrupt function.

After the computation, the length of operands in RSA_MODE_REG, the Xi in memory RSA_X_MEM, the Yi in

memory RSA_Y_MEM, the Mi in memory RSA_M_MEM, and the M ′ in memory RSA_M_PRIME_REG remain

unchanged. However, the ri in memory RSA_Z_MEM has already been overwritten, and only this overwritten

memory block needs to be re-initialized before starting another computation.

7.3.3 Large Number Multiplication

Large-number multiplication performs Z = X × Y . The length of result Z is twice that of operand X and operand

Y . Therefore, the RSA Accelerator only supports Large Number Multiplication with operand length N = 32× x,

where x ∈ {1, 2, 3, . . . , 48}. The length N̂ of result Z is 2×N .

The computation can be executed as follows:

Espressif Systems 82
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

7 RSA Accelerator

1. Write 1 or 0 to the RSA_INTERRUPT_ENA_REG register to enable or disable the interrupt function.

2. Write (N̂32 − 1), i.e. (N16 − 1) to the RSA_MODE_REG register.

3. Write Xi and Yi for ∈ {0, 1, . . . , n− 1} to memory blocks RSA_X_MEM and RSA_Z_MEM. Each word of

each memory block can store one base-b digit. The memory blocks use the little endian format for storage,

i.e. the least significant digit of each number is in the lowest address. n is N
32 .

Write Xi for i ∈ {0, 1, . . . , n− 1} to the address of the i words of the RSA_X_MEM memory block. Note

that Yi for i ∈ {0, 1, . . . , n− 1} will not be written to the address of the i words of the RSA_Z_MEM register,

but the address of the n+ i words, i.e. the base address of the RSA_Z_MEM memory plus the address

offset 4× (n+ i).

Users need to write data to each memory block only according to the length of the number; data beyond

this length are ignored.

4. Write 1 to the RSA_MULT_START_REG register.

5. Wait for the completion of computation, which happens when the content of RSA_IDLE_REG becomes 1

or the RSA interrupt occurs.

6. Read the result Zi for i ∈ {0, 1, . . . , n̂− 1} from the RSA_Z_MEM register. n̂ is 2× n.

7. Write 1 to RSA_CLEAR_INTERRUPT_REG to clear the interrupt, if you have enabled the interrupt function.

After the computation, the length of operands in RSA_MODE_REG and the Xi in memory RSA_X_MEM remain

unchanged. However, the Yi in memory RSA_Z_MEM has already been overwritten, and only this overwritten

memory block needs to be re-initialized before starting another computation.

7.3.4 Options for Acceleration

The ESP32-C3 RSA accelerator also provides SEARCH and CONSTANT_TIME options that can be configured to

accelerate the large-number modular exponentiation. By default, both options are configured for no acceleration.

Users can choose to use one or two of these options to accelerate the computation.

To be more specific, when neither of these two options are configured for acceleration, the time required to

calculate Z = XY mod M is solely determined by the lengths of operands. When either or both of these two

options are configured for acceleration, the time required is also correlated with the 0/1 distribution of Y .

To better illustrate how these two options work, first assume Y is represented in binaries as

Y = (ỸN−1ỸN−2 · · · Ỹt+1ỸtỸt−1 · · · Ỹ0)2

where,

• N is the length of Y ,

• Ỹt is 1,

• ỸN−1, ỸN−2, …, Ỹt+1 are all equal to 0,

• and Ỹt−1, Ỹt−2, …, Ỹ0 are either 0 or 1 but exactly m bits should be equal to 0 and t-m bits 1, i.e. the

Hamming weight of Ỹt−1Ỹt−2, · · · , Ỹ0 is t−m.

When either of these two options is configured for acceleration:

Espressif Systems 83
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

7 RSA Accelerator

• SEARCH Option (Configuring RSA_SEARCH_ENABLE to 1 for acceleration)

– The accelerator ignores the bit positions of Ỹi, where i > α. Search position α is set by configuring

the RSA_SEARCH_POS_REG register. The maximum value of α is N-1, which leads to the same

result when this option is not used for acceleration. The best acceleration performance can be

achieved by setting α to t, in which case, all the ỸN−1, ỸN−2, …, Ỹt+1 of 0s are ignored during the

calculation. Note that if you set α to be less than t, then the result of the modular exponentiation

Z = XY mod M will be incorrect.

• CONSTANT_TIME Option (Configuring RSA_CONSTANT_TIME_REG to 0 for acceleration)

– The accelerator speeds up the calculation by simplifying the calculation concerning the 0 bits of Y .

Therefore, the higher the proportion of bits 0 against bits 1, the better the acceleration performance is.

We provide an example to demonstrate the performance of the RSA Accelerator under different combinations of

SEARCH and CONSTANT_TIME configuration. Here we perform Z = XY mod M with N = 3072 and Y =

65537. Table 7-1 below demonstrates the time costs under different combinations of SEARCH and

CONSTANT_TIME configuration. Here, we should also mention that, α is set to 16 when the SEARCH option is

enabled.

Table 7­1. Acceleration Performance

SEARCH Option CONSTANT_TIME Option Time Cost

No acceleration No acceleration 376.405 ms

Accelerated No acceleration 2.260 ms

No acceleration Acceleration 1.203 ms

Acceleration Acceleration 1.165 ms

It’s obvious that:

• The time cost is the biggest when none of these two options is configured for acceleration.

• The time cost is the smallest when both of these two options are configured for acceleration.

• The time cost can be dramatically reduced when either or both option(s) are configured for acceleration.

7.4 Memory Summary

The addresses in this section are relative to the RSA accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Table 7­2. RSA Accelerator Memory Blocks

Name Description Size (byte) Starting Address Ending Address Access

RSA_M_MEM Memory M 384 0x0000 0x017F R/W

RSA_Z_MEM Memory Z 384 0x0200 0x037F R/W

RSA_Y_MEM Memory Y 384 0x0400 0x057F R/W

RSA_X_MEM Memory X 384 0x0600 0x077F R/W

Espressif Systems 84
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

7 RSA Accelerator

7.5 Register Summary

The addresses in this section are relative to the RSA accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Name Description Address Access

Configuration Registers

RSA_M_PRIME_REG Register to store M’ 0x0800 R/W

RSA_MODE_REG RSA length mode 0x0804 R/W

RSA_CONSTANT_TIME_REG The constant_time option 0x0820 R/W

RSA_SEARCH_ENABLE_REG The search option 0x0824 R/W

RSA_SEARCH_POS_REG The search position 0x0828 R/W

Status/Control Registers

RSA_CLEAN_REG RSA clean register 0x0808 RO

RSA_MODEXP_START_REG Modular exponentiation starting bit 0x080C WO

RSA_MODMULT_START_REG Modular multiplication starting bit 0x0810 WO

RSA_MULT_START_REG Normal multiplication starting bit 0x0814 WO

RSA_IDLE_REG RSA idle register 0x0818 RO

Interrupt Registers

RSA_CLEAR_INTERRUPT_REG RSA clear interrupt register 0x081C WO

RSA_INTERRUPT_ENA_REG RSA interrupt enable register 0x082C R/W

Version Register

RSA_DATE_REG Version control register 0x0830 R/W

Espressif Systems 85
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

7 RSA Accelerator

7.6 Registers

The addresses in this section are relative to the RSA accelerator base address provided in Table 3-4 in Chapter 3

System and Memory.

Register 7.1. RSA_M_PRIME_REG (0x0800)

0x000000000

31 0

Reset

RSA_M_PRIME_REG Stores M’.(R/W)

Register 7.2. RSA_MODE_REG (0x0804)

(re
se

rve
d)

0 0

31 7

RSA_M
ODE

0 0 0 0 0 0 0

6 0

Reset

RSA_MODE Stores the mode of modular exponentiation. (R/W)

Register 7.3. RSA_CLEAN_REG (0x0808)

(re
se

rve
d)

0 0

31 1

RSA_C
LE

AN

0

0

Reset

RSA_CLEAN The content of this bit is 1 when memories complete initialization. (RO)

Register 7.4. RSA_MODEXP_START_REG (0x080C)

(re
se

rve
d)

0 0

31 1

RSA_M
ODEXP

_S
TA

RT

0

0

Reset

RSA_MODEXP_START Set this bit to 1 to start the modular exponentiation. (WO)

Espressif Systems 86
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

7 RSA Accelerator

Register 7.5. RSA_MODMULT_START_REG (0x0810)

(re
se

rve
d)

0 0

31 1

RSA_M
ODM

ULT
_S

TA
RT

0

0

Reset

RSA_MODMULT_START Set this bit to 1 to start the modular multiplication. (WO)

Register 7.6. RSA_MULT_START_REG (0x0814)

(re
se

rve
d)

0 0

31 1

RSA_M
ULT

_S
TA

RT

0

0

Reset

RSA_MULT_START Set this bit to 1 to start the multiplication. (WO)

Register 7.7. RSA_IDLE_REG (0x0818)

(re
se

rve
d)

0 0

31 1

RSA_ID
LE

0

0

Reset

RSA_IDLE The content of this bit is 1 when the RSA accelerator is idle. (RO)

Register 7.8. RSA_CLEAR_INTERRUPT_REG (0x081C)

(re
se

rve
d)

0 0

31 1

RSA_C
LE

AR_IN
TE

RRUPT

0

0

Reset

RSA_CLEAR_INTERRUPT Set this bit to 1 to clear the RSA interrupts. (WO)

Espressif Systems 87
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

7 RSA Accelerator

Register 7.9. RSA_CONSTANT_TIME_REG (0x0820)

(re
se

rve
d)

0 0

31 1

RSA_C
ONSTA

NT_
TIM

E

1

0

Reset

RSA_CONSTANT_TIME_REG Controls the constant_time option. 0: acceleration. 1: no accelera-

tion (by default). (R/W)

Register 7.10. RSA_SEARCH_ENABLE_REG (0x0824)

(re
se

rve
d)

0 0

31 1

RSA_S
EARCH_E

NABLE

0

0

Reset

RSA_SEARCH_ENABLE Controls the search option. 0: no acceleration (by default). 1: acceleration.

(R/W)

Register 7.11. RSA_SEARCH_POS_REG (0x0828)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

RSA_S
EARCH_P

OS

0x000

11 0

Reset

RSA_SEARCH_POS Is used to configure the starting address when the acceleration option of search

is used. (R/W)

Espressif Systems 88
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

7 RSA Accelerator

Register 7.12. RSA_INTERRUPT_ENA_REG (0x082C)

(re
se

rve
d)

0 0

31 1

RSA_IN
TE

RRUPT_
ENA

1

0

Reset

RSA_INTERRUPT_ENA Set this bit to 1 to enable the RSA interrupt. This option is enabled by default.

(R/W)

Register 7.13. RSA_DATE_REG (0x0830)

(re
se

rve
d)

0 0

31 30

RSA_D
AT

E

0x20200618

29 0

Reset

RSA_DATE Version control register. (R/W)

Espressif Systems 89
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

8 Chip Boot Control

8 Chip Boot Control

8.1 Overview

ESP32-C3 has four strapping pins:

• GPIO2

• GPIO8

• GPIO9

• GPIO10

These strapping pins are used to control the following functions during chip power-on or hardware reset:

• control chip boot mode

• enable or disable ROM code printing to UART

• control the source of JTAG signals

During system reset triggered by power-on, brown-out or by analog super watchdog (see Chapter 1 Reset and

Clock), hardware samples and stores the voltage level of strapping pins as strapping bit of “0” or “1” in latches,

and holds these bits until the chip is powered down or shut down. Software can read the latch status (strapping

value) of GPIO2, GPIO8, and GPIO9 from the register GPIO_STRAPPING.

By default, GPIO9 is connected to the chip’s internal pull-up resistor. If GPIO9 is not connected or connected to

an external high-impedance circuit, the internal weak pull-up determines the default input level of this strapping

pin (see Table 8-1).

Table 8­1. Default Configuration of Strapping Pins

Strapping Pin Defualt Configuration

GPIO2 N/A

GPIO8 N/A

GPIO9 Pull-up

GPIO10 N/A

To change the strapping bit values, users can apply external pull-down/pull-up resistors, or use host MCU GPIOs

to control the voltage level of these pins when powering on ESP32-C3. After the reset is released, the strapping

pins work as normal-function pins.

8.2 Boot Mode Control

GPIO2, GPIO8 and GPIO9 control the boot mode after the reset is released.

Table 8­2. Boot Mode

Pin SPI Boot Download Boot

GPIO2 1 1

GPIO8 x 1

GPIO9 1 0

Espressif Systems 90
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

8 Chip Boot Control

Table 8-2 shows the strapping pin values of GPIO2, GPIO8 and GPIO9, and the associated boot modes. ”x”

means that this value is ignored.

In SPI Boot mode, the CPU boots the system by reading the program stored in SPI flash. SPI Boot mode can be

further classified as follows:

• Normal Flash Boot: supports Security Boot and programs run in RAM.

• Direct Boot: does not support Security Boot and programs run directly in flash. To enable this mode, make

sure that the first two words of the bin file downloading to flash (address: 0x42000000) are 0xaebd041d.

In Download Boot mode, users can download code to SRAM or flash using UART0 or USB interface. It is also

possible to load a program into SRAM and execute it in this mode.

The following eFuses control boot mode behaviors:

• EFUSE_DIS_FORCE_DOWNLOAD

If this eFuse is 0 (default), software can force switch the chip from SPI Boot mode to Download Boot mode

by setting register RTC_CNTL_FORCE_DOWNLOAD_BOOT and triggering a CPU reset. If this eFuse is 1,

RTC_CNTL_FORCE_DOWNLOAD_BOOT is disabled.

• EFUSE_DIS_DOWNLOAD_MODE

If this eFuse is 1, Download Boot mode is disabled.

• EFUSE_ENABLE_SECURITY_DOWNLOAD

If this eFuse is 1, Download Boot mode only allows reading, writing, and erasing plaintext flash and does

not support any SRAM or register operations. Ignore this eFuse if Download Boot mode is disabled.

8.3 ROM Code Printing Control

GPIO8 controls ROM code printing of information during the early boot process. This GPIO is used together with

EFUSE_UART_PRINT_CONTROL.

Table 8­3. ROM Code Printing Control

eFuse1 GPIO8 ROM Code Printing

0 -
ROM code is always printed to UART during boot.

GPIO8 is not used.

1
0 Print is enabled during boot

1 Print is disabled during boot

2
0 Print is disabled during boot

1 Print is enabled during boot

3 - Print is always disabled during boot. GPIO8 is not used.

1 eFuse: EFUSE_UART_PRINT_CONTROL

ROM code will print to pin U0TXD (default) or to USB Serial/JTAG Controller during power-on, depending on the

eFuse bit EFUSE_USB_PRINT_CHANNEL (0: USB; 1: UART). Note that if this eFuse bit is set to 0, i.e., USB is

selected, but USB Serial/JTAG Controller is disabled, then ROM code will not be printed.

Espressif Systems 91
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

8 Chip Boot Control

8.4 JTAG Signals Source Control

GPIO10 controls the source of JTAG signals during the early boot process. This GPIO is used together with

EFUSE_DIS_PAD_JTAG, EFUSE_DIS_USB_JTAG, and EFUSE_JTAG_SEL_ENABLE, see Table 8-4.

Table 8­4. JTAG Signals Source Control

eFuse 1a eFuse 2b eFuse 3c GPIO 10 Signals Source

0 0

0 -
JTAG signals come from USB Serial/JTAG Controller.

GPIO10 is not used.

1
0 JTAG signals come from corresponding pins.

1 JTAG signals come from USB Serial/JTAG Controller.

0 1 - -
JTAG signals come from corresponding pins.

EFUSE_JTAG_SEL_ENABLE and GPIO10 are not used.

1 0 - -
JTAG signals come from USB Serial/JTAG Controller.

EFUSE_JTAG_SEL_ENABLE and GPIO10 are not used.

1 1 - -
JTAG is disabled.

EFUSE_JTAG_SEL_ENABLE and GPIO10 are not used.

a eFuse 1: EFUSE_DIS_PAD_JTAG
b eFuse 2: EFUSE_DIS_USB_JTAG
c eFuse 3: EFUSE_JTAG_SEL_ENABLE

8.5 USB Serial/JTAG Controller

USB Serial/JTAG Controller can force the chip into Download Boot mode from SPI Boot mode, as well as force

the chip into SPI Boot mode from Download Boot mode.

Espressif Systems 92
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

9 ESP­RISC­V CPU

9.1 Overview

ESP-RISC-V CPU is a 32-bit core based upon RISC-V ISA comprising base integer (I), multiplication/division (M)

and compressed (C) standard extensions. The core has 4-stage, in-order, scalar pipeline optimized for area,

power and performance. CPU core complex has an interrupt-controller (INTC), debug module (DM) and system

bus (SYS BUS) interfaces for memory and peripheral access.

Figure 9­1. CPU Block Diagram

9.2 Features

• Operating clock frequency up to 160 MHz

• Zero wait cycle access to on-chip SRAM and Cache for program and data access over IRAM/DRAM

interface

• Interrupt controller (INTC) with up to 31 vectored interrupts with programmable priority and threshold levels

• Debug module (DM) compliant with RISC-V debug specification v0.13 with external debugger support over

an industry-standard JTAG/USB port

• Debugger direct system bus access (SBA) to memory and peripherals

• Hardware trigger compliant to RISC-V debug specification v0.13 with up to 8 breakpoints/watchpoints

• Physical memory protection (PMP) for up to 16 configurable regions

• 32-bit AHB system bus for peripheral access

• Configurable events for core performance metrics

Espressif Systems 93
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

9.3 Address Map

Below table shows address map of various regions accessible by CPU for instruction, data, system bus

peripheral and debug.

Table 9­1. CPU Address Map

Name Description Starting Address Ending Address Access

IRAM Instruction Address Map 0x4000_0000 0x47FF_FFFF R/W

DRAM Data Address Map 0x3800_0000 0x3FFF_FFFF R/W

DM Debug Address Map 0x2000_0000 0x27FF_FFFF R/W

AHB AHB Address Map *default *default R/W

*default : Address not matching any of the specified ranges (IRAM, DRAM, DM) are accessed using AHB

bus.

9.4 Configuration and Status Registers (CSRs)

9.4.1 Register Summary

Below is a list of CSRs available to the CPU. Except for the custom performance counter CSRs, all the

implemented CSRs follow the standard mapping of bit fields as described in the RISC-V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10. It must be noted that even among the standard CSRs, not all bit

fields have been implemented, limited by the subset of features implemented in the CPU. Refer to the next

section for detailed description of the subset of fields implemented under each of these CSRs.

Name Description Address Access

Machine Information CSRs

mvendorid Machine Vendor ID 0xF11 RO

marchid Machine Architecture ID 0xF12 RO

mimpid Machine Implementation ID 0xF13 RO

mhartid Machine Hart ID 0xF14 RO

Machine Trap Setup CSRs

mstatus Machine Mode Status 0x300 R/W

misa 1 Machine ISA 0x301 R/W

mtvec 2 Machine Trap Vector 0x305 R/W

Machine Trap Handling CSRs

mscratch Machine Scratch 0x340 R/W

mepc Machine Trap Program Counter 0x341 R/W

mcause 3 Machine Trap Cause 0x342 R/W

mtval Machine Trap Value 0x343 R/W

Physical Memory Protection (PMP) CSRs

pmpcfg0 Physical memory protection configuration 0x3A0 R/W

1Although misa is specified as having both read and write access (R/W), its fields are hardwired and thus write has no effect. This is what

would be termed WARL (Write Any Read Legal) in RISC-V terminology
2mtvec only provides configuration for trap handling in vectored mode with the base address aligned to 256 bytes
3External interrupt IDs reflected in mcause include even those IDs which have been reserved by RISC-V standard for core internal sources.

Espressif Systems 94
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Name Description Address Access

pmpcfg1 Physical memory protection configuration 0x3A1 R/W

pmpcfg2 Physical memory protection configuration 0x3A2 R/W

pmpcfg3 Physical memory protection configuration 0x3A3 R/W

pmpaddr0 Physical memory protection address register 0x3B0 R/W

pmpaddr1 Physical memory protection address register 0x3B1 R/W

....

pmpaddr15 Physical memory protection address register 0x3BF R/W

Trigger Module CSRs (shared with Debug Mode)

tselect Trigger Select Register 0x7A0 R/W

tdata1 Trigger Abstract Data 1 0x7A1 R/W

tdata2 Trigger Abstract Data 2 0x7A2 R/W

tcontrol Global Trigger Control 0x7A5 R/W

Debug Mode CSRs

dcsr Debug Control and Status 0x7B0 R/W

dpc Debug PC 0x7B1 R/W

dscratch0 Debug Scratch Register 0 0x7B2 R/W

dscratch1 Debug Scratch Register 1 0x7B3 R/W

Performance Counter CSRs (Custom) 4

mpcer Machine Performance Counter Event 0x7E0 R/W

mpcmr Machine Performance Counter Mode 0x7E1 R/W

mpccr Machine Performance Counter Count 0x7E2 R/W

Note that if write/set/clear operation is attempted on any of the CSRs which are read-only (RO), as indicated in

the above table, the CPU will generate illegal instruction exception.

9.4.2 Register Description

Register 9.1. mvendorid (0xF11)

M
VENDORID

0x00000612

31 0

Reset

MVENDORID Vendor ID. (RO)

4These custom machine-mode CSRs have been implemented in the address space reserved by RISC-V standard for custom use

Espressif Systems 95
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.2. marchid (0xF12)

M
ARCHID

0x80000001

31 0

Reset

MARCHID Architecture ID. (RO)

Register 9.3. mimpid (0xF13)

M
IM

PID

0x00000001

31 0

Reset

MIMPID Implementation ID. (RO)

Register 9.4. mhartid (0xF14)

M
HARTID

0x00000000

31 0

Reset

MHARTID Hart ID. (RO)

Espressif Systems 96
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.5. mstatus (0x300)

(re
se

rve
d)

0x000

31 22

TW

0

21

(re
se

rve
d)

0x00

20 13

M
PP

0x0

12 11

(re
se

rve
d)

0x0

10 8

M
PIE

0

7

(re
se

rve
d)

0x0

6 4

M
IE

0

3

(re
se

rve
d)

0x0

2 0

Reset

MIE Global machine mode interrupt enable. (R/W)

MPIE Previous MIE. (R/W)

MPP Machine previous privilege mode. (R/W)

Possible values:

• 0x0: User mode
• 0x3: Machine mode

Note : Only lower bit is writable. Write to the higher bit is ignored as it is directly tied to the lower bit.

TW Timeout wait. (R/W)

If this bit is set, executing WFI (Wait-for-Interrupt) instruction in User mode will cause illegal instruc-

tion exception.

Espressif Systems 97
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.6. misa (0x301)

M
XL

0x1

31 30

(re
se

rve
d)

0x0

29 26

Z

0

25

Y

0

24

X

0

23

W

0

22

V

0

21

U

1

20

T

0

19

S

0

18

R

0

17

Q

0

16

P

0

15

O

0

14

N

0

13

M

1

12

L

0

11

K

0

10

J

0

9

I

1

8

H

0

7

G

0

6

F

0

5

E

0

4

D

0

3

C

1

2

B

0

1

A

0

0

Reset

MXL Machine XLEN = 1 (32-bit). (RO)

Z Reserved = 0. (RO)

Y Reserved = 0. (RO)

X Non-standard extensions present = 0. (RO)

W Reserved = 0. (RO)

V Reserved = 0. (RO)

U User mode implemented = 1. (RO)

T Reserved = 0. (RO)

S Supervisor mode implemented = 0. (RO)

R Reserved = 0. (RO)

Q Quad-precision floating-point extension = 0. (RO)

P Reserved = 0. (RO)

O Reserved = 0. (RO)

N User-level interrupts supported = 0. (RO)

M Integer Multiply/Divide extension = 1. (RO)

L Reserved = 0. (RO)

K Reserved = 0. (RO)

J Reserved = 0. (RO)

I RV32I base ISA = 1. (RO)

H Hypervisor extension = 0. (RO)

G Additional standard extensions present = 0. (RO)

F Single-precision floating-point extension = 0. (RO)

E RV32E base ISA = 0. (RO)

D Double-precision floating-point extension = 0. (RO)

C Compressed Extension = 1. (RO)

B Reserved = 0. (RO)

A Atomic Extension = 0. (RO)

Espressif Systems 98
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.7. mtvec (0x305)

BASE

0x000000

31 8

(re
se

rve
d)

0x00

7 2

M
ODE

0x1

1 0

Reset

MODE Only vectored mode 0x1 is available. (RO)

BASE Higher 24 bits of trap vector base address aligned to 256 bytes. (R/W)

Register 9.8. mscratch (0x340)

M
SCRAT

CH

0x00000000

31 0

Reset

MSCRATCH Machine scratch register for custom use. (R/W)

Register 9.9. mepc (0x341)

M
EPC

0x00000000

31 0

Reset

MEPC Machine trap/exception program counter. (R/W)

This is automatically updated with address of the instruction which was about to be executed while

CPU encountered the most recent trap.

Espressif Systems 99
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.10. mcause (0x342)

Int
er

ru
pt

Fla
g

0

31

(re
se

rve
d)

0x0000000

30 5

Exc
ep

tio
n Cod

e

0x00

4 0

Reset

Exception Code This field is automatically updated with unique ID of the most recent exception or

interrupt due to which CPU entered trap. (R/W)

Possible exception IDs are:

• 0x1: PMP Instruction access fault
• 0x2: Illegal Instruction
• 0x3: Hardware Breakpoint/Watchpoint or EBREAK
• 0x5: PMP Load access fault
• 0x7: PMP Store access fault
• 0x8: ECALL from U mode
• 0xb: ECALL from M mode

Note : Exception ID 0x0 (instruction access misaligned) is not present because CPU always masks

the lowest bit of the address during instruction fetch.

Interrupt Flag This flag is automatically updated when CPU enters trap. (R/W)

If this is found to be set, indicates that the latest trap occurred due to interrupt. For exceptions it

remains unset.

Note : The interrupt controller is using up IDs in range 1-31 for all external interrupt sources. This is

different from the RISC-V standard which has reserved IDs in range 0-15 for core internal interrupt

sources.

Register 9.11. mtval (0x343)

M
TV

AL

0x00000000

31 0

Reset

MTVAL Machine trap value. (R/W)

This is automatically updated with an exception dependent data which may be useful for handling

that exception.

Data is to be interpreted depending upon exception IDs:

• 0x1: Faulting virtual address of instruction
• 0x2: Faulting instruction opcode
• 0x5: Faulting data address of load operation
• 0x7: Faulting data address of store operation

Note : The value of this register is not valid for other exception IDs and interrupts.

Espressif Systems 100
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.12. mpcer (0x7E0)

(re
se

rve
d)

0x000

31 11

IN
ST_

COM
P

0

10

(B
RANCH_T

AKEN

0

9

BRANCH

0

8

JM
P_U

NCOND

0

7

STO
RE

0

6

LO
AD

0

5

ID
LE

0

4

JM
P_H

AZA
RD

0

3

LD
_H

AZA
RD

0

2

IN
ST

0

1

CYCLE

0

0

Reset

INST_COMP Count Compressed Instructions. (R/W)

BRANCH_TAKEN Count Branches Taken. (R/W)

BRANCH Count Branches. (R/W)

JMP_UNCOND Count Unconditional Jumps. (R/W)

STORE Count Stores. (R/W)

LOAD Count Loads. (R/W)

IDLE Count IDLE Cycles. (R/W)

JMP_HAZARD Count Jump Hazards. (R/W)

LD_HAZARD Count Load Hazards. (R/W)

INST Count Instructions. (R/W)

CYCLE Count Clock Cycles. (R/W)

Note: Each bit selects a specific event for counter to increment. If more than one event is selected

and occurs simultaneously, then counter increments by one only.

Register 9.13. mpcmr (0x7E1)

(re
se

rve
d)

0

31 2

COUNT_
SAT

1

1

COUNT_
EN

1

0

Reset

COUNT_SAT Counter Saturation Control. (R/W)

Possible values:

• 0: Overflow on maximum value
• 1: Halt on maximum value

COUNT_EN Counter Enable Control. (R/W)

Possible values:

• 0: Disabled
• 1: Enabled

Espressif Systems 101
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.14. mpccr (0x7E2)

M
PCCR

0x00000000

31 0

Reset

MPCCR Machine Performance Counter Value. (R/W)

Espressif Systems 102
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

9.5 Interrupt Controller

9.5.1 Features

The interrupt controller allows capturing, masking and dynamic prioritization of interrupt sources routed from

peripherals to the RISC-V CPU. It supports:

• Up to 31 asynchronous interrupts with unique IDs (1-31)

• Configurable via read/write to memory mapped registers

• 15 levels of priority, programmable for each interrupt

• Support for both level and edge type interrupt sources

• Programmable global threshold for masking interrupts with lower priority

• Interrupts IDs mapped to trap-vector address offsets

9.5.2 Functional Description

Each interrupt ID has 5 properties associated with it:

1. Enable State (0-1):

• Determines if an interrupt is enabled to be captured and serviced by the CPU.

• Programmed by writing the corresponding bit in INT_ENABLE_REG.

2. Type (0-1):

• Enables latching the state of an interrupt signal on its rising edge.

• Programmed by writing the corresponding bit in INT_TYPE_REG.

• An interrupt for which type is kept 0 is referred as a ’level’ type interrupt.

• An interrupt for which type is set to 1 is referred as an ’edge’ type interrupt.

3. Priority (1-15):

• Determines which interrupt, among multiple pending interrupts, the CPU will service first.

• Programmed by writing to the INT_PRIORITY_n_REG for a particular ID n in range (1-31).

• Enabled interrupts with priorities zero or less than the threshold value in INT_THRESH_REG are

masked.

• Priority levels increase from 1 (lowest) to 15 (highest).

• Interrupts with same priority are statically prioritized by their IDs, lowest ID having highest priority.

4. Pending State (0-1):

• Reflects the captured state of an enabled and unmasked interrupt signal.

• For each interrupt ID, the corresponding bit in read-only INT_EIP_REG gives its pending state.

• A pending interrupt will cause CPU to enter trap if no other pending interrupt has higher priority.

• A pending interrupt is said to be ’claimed’ if it preempts the CPU and causes it to jump to the

corresponding trap vector address.

Espressif Systems 103
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

• All pending interrupts which are yet to be serviced are termed as ’unclaimed’.

5. Clear State (0-1):

• Toggling this will clear the pending state of claimed edge-type interrupts only.

• Toggled by first setting and then clearing the corresponding bit in INT_CLEAR_REG.

• Pending state of a level type interrupt is unaffected by this and must be cleared from source.

• Pending state of an unclaimed edge type interrupt can be flushed, if required, by first clearing the

corresponding bit in INT_ENABLE_REG and then toggling same bit in INT_CLEAR_REG.

When CPU services a pending interrupt, it:

• saves the address of the current un-executed instruction in mepc for resuming execution later.

• updates the value of mcause with the ID of the interrupt being serviced.

• copies the state of MIE into MPIE, and subsequently clears MIE, thereby disabling interrupts globally.

• enters trap by jumping to a word-aligned offset of the address stored in mtvec.

Table 9-3 shows the mapping of each interrupt ID with the corresponding trap-vector address. In short, the word

aligned trap address for an interrupt with a certain ID = i can be calculated as (mtvec+ 4i).

Note : ID = 0 is unavailable and therefore cannot be used for capturing interrupts. This is because the

corresponding trap vector address (mtvec + 0x00) is reserved for exceptions.

Table 9­3. ID wise map of Interrupt Trap­Vector Addresses

ID Address ID Address ID Address ID Address

0 NA 8 mtvec + 0x20 16 mtvec + 0x40 24 mtvec + 0x60

1 mtvec + 0x04 9 mtvec + 0x24 17 mtvec + 0x44 25 mtvec + 0x64

2 mtvec + 0x08 10 mtvec + 0x28 18 mtvec + 0x48 26 mtvec + 0x68

3 mtvec + 0x0c 11 mtvec + 0x2c 19 mtvec + 0x4c 27 mtvec + 0x6c

4 mtvec + 0x10 12 mtvec + 0x30 20 mtvec + 0x50 28 mtvec + 0x70

5 mtvec + 0x14 13 mtvec + 0x34 21 mtvec + 0x54 29 mtvec + 0x74

6 mtvec + 0x18 14 mtvec + 0x38 22 mtvec + 0x58 30 mtvec + 0x78

7 mtvec + 0x1c 15 mtvec + 0x3c 23 mtvec + 0x5c 31 mtvec + 0x7c

After jumping to the trap-vector, the execution flow is dependent on software implementation, although it can be

presumed that the interrupt will get handled (and cleared) in some interrupt service routine (ISR) and later the

normal execution will resume once the CPU encounters MRET instruction.

Upon execution of MRET instruction, the CPU:

• copies the state of MPIE back into MIE, and subsequently clears MPIE. This means that if previously MPIE

was set, then, after MRET, MIE will be set, thereby enabling interrupts globally.

• jumps to the address stored in mepc and resumes execution.

It is possible to perform software assisted nesting of interrupts inside an ISR as explained in 9.5.3.

The below listed points outline the functional behavior of the controller:

• Only if an interrupt has non-zero priority, higher or equal to the value in the threshold register, will it be

Espressif Systems 104
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

reflected in INT_EIP_REG.

• If an interrupt is visible in INT_EIP_REG and has yet to be serviced, then it’s possible to mask it (and thereby

prevent the CPU from servicing it) by either lowering the value of its priority or increasing the global

threshold.

• If an interrupt, visible in INT_EIP_REG, is to be flushed (and prevented from being serviced at all), then it

must be disabled (and cleared if it is of edge type).

9.5.3 Suggested Operation

9.5.3.1 Latency Aspects

There is latency involved while configuring the Interrupt Controller.

In steady state operation, the Interrupt Controller has a fixed latency of 4 cycles. Steady state means that no

changes have been made to the Interrupt Controller registers recently. This implies that any interrupt that is

asserted to the controller will take exactly 4 cycles before the CPU starts processing the interrupt. This further

implies that CPU may execute up to 5 instructions before the preemption happens.

Whenever any of its registers are modified, the Interrupt Controller enters into transient state, which may take up

to 4 cycles for it to settle down into steady state again. During this transient state, the ordering of interrupts may

not be predictable, and therefore, a few safety measures need to be taken in software to avoid any

synchronization issues.

Also, it must be noted that the Interrupt Controller configuration registers lie in the APB address range, hence any

R/W access to these registers may take multiple cycles to complete.

In consideration of above mentioned characteristics, users are advised to follow the sequence described below,

whenever modifying any of the Interrupt Controller registers:

1. save the state of MIE and clear MIE to 0

2. read-modify-write one or more Interrupt Controller registers

3. execute FENCE instruction to wait for any pending write operations to complete

4. finally, restore the state of MIE

Due to its critical nature, it is recommended to disable interrupts globally (MIE=0) beforehand, whenever

configuring interrupt controller registers, and then restore MIE right after, as shown in the sequence above.

After execution of the sequence above, the Interrupt Controller will resume operation in steady state.

9.5.3.2 Configuration Procedure

By default, interrupts are disabled globally, since the reset value of MIE bit in mstatus is 0. Software must set

MIE=1 after initialization of the interrupt stack (including setting mtvec to the interrupt vector address) is

done.

During normal execution, if an interrupt n is to be enabled, the below sequence may be followed:

1. save the state of MIE and clear MIE to 0

2. depending upon the type of the interrupt (edge/level), set/unset the nth bit of INT_TYPE_REG

3. set the priority by writing a value to INT_PRIORITY_n_REG in range 1(lowest) to 15 (highest)

Espressif Systems 105
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

4. set the nth bit of INT_ENABLE_REG

5. execute FENCE instruction

6. restore the state of MIE

When one or more interrupts become pending, the CPU acknowledges (claims) the interrupt with the highest

priority and jumps to the trap vector address corresponding to the interrupt’s ID. Software implementation may

read mcause to infer the type of trap (mcause(31) is 1 for interrupts and 0 for exceptions) and then the ID of the

interrupt (mcause(4-0) gives ID of interrupt or exception). This inference may not be necessary if each entry in the

trap vector are jump instructions to different trap handlers. Ultimately, the trap handler(s) will redirect execution to

the appropriate ISR for this interrupt.

Upon entering into an ISR, software must toggle the nth bit of INT_CLEAR_REG if the interrupt is of edge type, or

clear the source of the interrupt if it is of level type.

Software may also update the value of INT_THRESH_REG and program MIE=1 for allowing higher priority

interrupts to preempt the current ISR (nesting), however, before doing so, all the state CSRs must be saved

(mepc, mstatus, mcause, etc.) since they will get overwritten due to occurrence of such an interrupt. Later, when

exiting the ISR, the values of these CSRs must be restored.

Finally, after the execution returns from the ISR back to the trap handler, MRET instruction is used to resume

normal execution.

Later, if the n interrupt is no longer needed and needs to be disabled, the following sequence may be

followed:

1. save the state of MIE and clear MIE to 0

2. check if the interrupt is pending in INT_EIP_REG

3. set/unset the nth bit of INT_ENABLE_REG

4. if the interrupt is of edge type and was found to be pending in step 2 above, nth bit of INT_CLEAR_REG

must be toggled, so that its pending status gets flushed

5. execute FENCE instruction

6. restore the state of MIE

Above is only a suggested scheme of operation. Actual software implementation may vary.

9.5.4 Register Summary

The addresses in this section are relative to Interrupt Controller base address provided in Table 3-4 in Chapter 3

System and Memory.

Name Description Address Access

INT_ENABLE_REG Enables assertion of interrupt to the CPU 0x0104 R/W

INT_TYPE_REG Specify interrupt type as level/edge 0x0108 R/W

INT_CLEAR_REG Write to clear “pulse” type interrupts 0x010C R/W

INT_EIP_REG External/peripheral interrupt pending status to CPU 0x0110 RO

INT_PRIORITY_1_REG Priority setting for interrupt ID=1 0x0118 R/W

INT_PRIORITY_2_REG Priority setting for interrupt ID=2 0x011C R/W

INT_PRIORITY_3_REG Priority setting for interrupt ID=3 0x0120 R/W

Espressif Systems 106
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Name Description Address Access

INT_PRIORITY_4_REG Priority setting for interrupt ID=4 0x0124 R/W

INT_PRIORITY_5_REG Priority setting for interrupt ID=5 0x0128 R/W

INT_PRIORITY_6_REG Priority setting for interrupt ID=6 0x012C R/W

INT_PRIORITY_7_REG Priority setting for interrupt ID=7 0x0130 R/W

INT_PRIORITY_8_REG Priority setting for interrupt ID=8 0x0134 R/W

INT_PRIORITY_9_REG Priority setting for interrupt ID=9 0x0138 R/W

INT_PRIORITY_10_REG Priority setting for interrupt ID=10 0x013C R/W

INT_PRIORITY_11_REG Priority setting for interrupt ID=11 0x0140 R/W

INT_PRIORITY_12_REG Priority setting for interrupt ID=12 0x0144 R/W

INT_PRIORITY_13_REG Priority setting for interrupt ID=13 0x0148 R/W

INT_PRIORITY_14_REG Priority setting for interrupt ID=14 0x014C R/W

INT_PRIORITY_15_REG Priority setting for interrupt ID=15 0x0150 R/W

INT_PRIORITY_16_REG Priority setting for interrupt ID=16 0x0154 R/W

INT_PRIORITY_17_REG Priority setting for interrupt ID=17 0x0158 R/W

INT_PRIORITY_18_REG Priority setting for interrupt ID=18 0x015C R/W

INT_PRIORITY_19_REG Priority setting for interrupt ID=19 0x0160 R/W

INT_PRIORITY_20_REG Priority setting for interrupt ID=20 0x0164 R/W

INT_PRIORITY_21_REG Priority setting for interrupt ID=21 0x0168 R/W

INT_PRIORITY_22_REG Priority setting for interrupt ID=22 0x016C R/W

INT_PRIORITY_23_REG Priority setting for interrupt ID=23 0x0170 R/W

INT_PRIORITY_24_REG Priority setting for interrupt ID=24 0x0174 R/W

INT_PRIORITY_25_REG Priority setting for interrupt ID=25 0x0178 R/W

INT_PRIORITY_26_REG Priority setting for interrupt ID=26 0x017C R/W

INT_PRIORITY_27_REG Priority setting for interrupt ID=27 0x0180 R/W

INT_PRIORITY_28_REG Priority setting for interrupt ID=28 0x0184 R/W

INT_PRIORITY_29_REG Priority setting for interrupt ID=29 0x0188 R/W

INT_PRIORITY_30_REG Priority setting for interrupt ID=30 0x018C R/W

INT_PRIORITY_31_REG Priority setting for interrupt ID=31 0x0190 R/W

INT_THRESH_REG Priority threshold setting for interrupt assertion to CPU 0x0194 R/W

9.5.5 Register Description

The addresses in this section are relative to Interrupt Controller base address provided in Table 3-4 in Chapter 3

System and Memory.

Espressif Systems 107
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.15. INT_ENABLE_REG (0x0104)

IN
T_

ENABLE

0x00000000

31 1

(re
se

rve
d)

0

0

Reset

INT_ENABLE[n] Setting nth bit enables assertion of nth interrupt to the CPU. (R/W)

• 0: Disabled;
• 1: Enabled;

Register 9.16. INT_TYPE_REG (0x0108)

IN
T_

TY
PE

0x00000000

31 1

(re
se

rve
d)

0

0

Reset

INT_TYPE[n] Setting nth bit enables capturing the rising edge of nth interrupt. (R/W)

• 0: Level type (signal level detection);
• 1: Pulse type (rising edge detection);

Register 9.17. INT_CLEAR_REG (0x010C)

IN
T_

CLE
AR

0x00000000

31 1

(re
se

rve
d)

0

0

Reset

INT_CLEAR[n] Set nth bit to clear pending status of the nth interrupt. (R/W)

This is only useful for “pulse” type interrupts, since “level” type interrupts must be cleared at source.

Note that the set bit must be manually toggled back to 0 afterwards.

• 0: Don’t care;
• 1: Clear pending status;

Espressif Systems 108
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.18. INT_EIP_REG (0x0110)

IN
T_

EIP

0x00000000

31 1

(re
se

rve
d)

0

0

Reset

INT_EIP[n] Read nth bit to get the pending status of nth interrupt to CPU. (RO)

Only enabled and above threshold interrupts are reflected here.

• 0: Not pending
• 1: Pending

Register 9.19. INT_PRIORITY_n_REG (n: 1­31) (0x0114+4*n)

(re
se

rve
d)

0x00000000

31 4

IN
T_

PRIO
RITY

_n

0x0

3 0

Reset

INT_PRIORITY_n Writing a 4-bit value to nth register configures priority of nth interrupt. (R/W)

Note : Interrupts with 0 priority are masked regardless of threshold value.

Register 9.20. INT_THRESH_REG (0x0194)

(re
se

rve
d)

0x00000000

31 4

IN
T_

TH
RESH

0x0

3 0

Reset

INT_THRESH Writing a 4-bit value configures the global priority threshold for all interrupts. (R/W)

All interrupts with priority lower than the threshold are masked.

Note : Interrupts with 0 priority are masked regardless of threshold value.

Espressif Systems 109
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

9.6 Debug

9.6.1 Overview

This section describes how to debug and test software running on CPU core. Debug support is provided through

standard JTAG pins and complies to RISC-V External Debug Support Specification version 0.13.

Figure 9-2 below shows the main components of External Debug Support.

Figure 9­2. Debug System Overview

The user interacts with the Debug Host (eg. laptop), which is running a debugger (eg. gdb). The debugger

communicates with a Debug Translator (eg. OpenOCD, which may include a hardware driver) to communicate

with Debug Transport Hardware (eg. Olimex USB-JTAG adapter). The Debug Transport Hardware connects the

Debug Host to the ESP-RV Core’s Debug Transport Module (DTM) through standard JTAG interface. The DTM

provides access to the Debug Module (DM) using the Debug Module Interface (DMI).

The DM allows the debugger to halt the core. Abstract commands provide access to its GPRs (general purpose

registers). The Program Buffer allows the debugger to execute arbitrary code on the core, which allows access to

additional CPU core state. Alternatively, additional abstract commands can provide access to additional CPU

core state. ESP-RV core contains Trigger Module supporting 8 triggers. When trigger conditions are met, cores

will halt spontaneously and inform the debug module that they have halted.

System bus access block allows memory and peripheral register access without using RISC-V core.

Espressif Systems 110
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

9.6.2 Features

Basic debug functionality supports below features.

• Provides necessary information about the implementation to the debugger.

• Allows the CPU core to be halted and resumed.

• CPU core registers (including CSR’s) can be read/written by debugger.

• CPU can be debugged from the first instruction executed after reset.

• CPU core can be reset through debugger.

• CPU can be halted on software breakpoint (planted breakpoint instruction).

• Hardware single-stepping.

• Execute arbitrary instructions in the halted CPU by means of the program buffer. 16-word program buffer is

supported.

• System bus access is supported through word aligned address access.

• Supports eight Hardware Triggers (can be used as breakpoints/watchpoints) as described in Section 9.7.

9.6.3 Functional Description

As mentioned earlier, Debug Scheme conforms to RISC-V External Debug Support Specification version 0.13.

Please refer the specs for functional operation details.

9.6.4 Register Summary

Below is the list of Debug CSR’s supported by ESP-RV core.

Name Description Address Access

dcsr Debug Control and Status 0x7B0 R/W

dpc Debug PC 0x7B1 R/W

dscratch0 Debug Scratch Register 0 0x7B2 R/W

dscratch1 Debug Scratch Register 1 0x7B3 R/W

.

All the debug module registers are implemented in conformance to RISC-V External Debug Support Specification

version 0.13. Please refer it for more details.

9.6.5 Register Description

Below are the details of Debug CSR’s supported by ESP-RV core

Espressif Systems 111
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.21. dcsr (0x7B0)

xd
eb

ug
ve

r

4

31 28

res
er

ve
d

0

27 16

eb
rea

km

0

15

res
er

ve
d

0

14 13

eb
rea

ku

0

12

res
er

ve
d

0

11

sto
pc

ou
nt

0

10

sto
pt

im
e

0

9

ca
us

e

0

8 6

res
er

ve
d

0

5 3

ste
p

0

2

pr
v

0

1 0

Reset

xdebugver Debug version. (RO)

• 4: External debug support exists

ebreakm When 1, ebreak instructions in Machine Mode enter Debug Mode. (R/W)

ebreaku When 1, ebreak instructions in User/Application Mode enter Debug Mode. (R/W)

stopcount This bit is not implemented. Debugger will always read this bit as 0. (RO)

stoptime This feature is not implemented. Debugger will always read this bit as 0. (RO)

cause Explains why Debug Mode was entered. When there are multiple reasons to enter Debug

Mode in a single cycle, the cause with the highest priority number is the one written.

1. An ebreak instruction was executed. (priority 3)
2. The Trigger Module caused a halt. (priority 4)
3. haltreq was set. (priority 2)
4. The CPU core single stepped because step was set. (priority 1)

Other values are reserved for future use. (RO)

step When set and not in Debug Mode, the core will only execute a single instruction and then enter

Debug Mode. Interrupts are enabled* when this bit is set. If the instruction does not complete due

to an exception, the core will immediately enter Debug Mode before executing the trap handler,

with appropriate exception registers set. (R/W)

prv Contains the privilege level the core was operating in when Debug Mode was entered. A debugger

can change this value to change the core’s privilege level when exiting Debug Mode. Only 0x3

(machine mode) and 0x0(user mode) are supported.

*Note: Different from RISC-V Debug specification 0.13

Register 9.22. dpc (0x7B1)

dp
c

0

31 0

Reset

dpc Upon entry to debug mode, dpc is written with the virtual address of the instruction that encoun-

tered the exception. When resuming, the CPU core’s PC is updated to the virtual address stored

in dpc. A debugger may write dpc to change where the CPU resumes. (R/W)

Espressif Systems 112
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.23. dscratch0 (0x7B2)

ds
cr

atc
h0

0

31 0

Reset

dscratch0 Used by Debug Module internally. (R/W)

Register 9.24. dscratch1 (0x7B3)

ds
cr

atc
h1

0

31 0

Reset

dscratch1 Used by Debug Module internally. (R/W)

Espressif Systems 113
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

9.7 Hardware Trigger

9.7.1 Features

Hardware Trigger module provides breakpoint and watchpoint capability for debugging. It includes the following

features:

• 8 independent trigger units

• each unit can be configured for matching the address of program counter or load-store accesses

• can preempt execution by causing breakpoint exception

• can halt execution and transfer control to debugger

• support NAPOT (naturally aligned power of two) address encoding

9.7.2 Functional Description

The Hardware Trigger module provides four CSRs, which are listed under register summary section. Among

these, tdata1 and tdata2 are abstract CSRs, which means they are shadow registers for accessing internal

registers for each of the eight trigger units, one at a time.

To choose a particular trigger unit write the index (0-7) of that unit into tselect CSR. When tselect is written with a

valid index, the abstract CSRs tdata1 and tdata2 are automatically mapped to reflect internal registers of that

trigger unit. Each trigger unit has two internal registers, namely mcontrol and maddress, which are mapped to

tdata1 and tdata2, respectively.

Writing larger than allowed indexes to tselect will clip the written value to the largest valid index, which can be

read back. This property may be used for enumerating the number of available triggers during initialization or

when using a debugger.

Since software or debugger may need to know the type of the selected trigger to correctly interpret tdata1 and

tdata2, the 4 bits (31-28) of tdata1 encodes the type of the selected trigger. This type field is read-only and always

provides a value of 0x2 for every trigger, which stands for match type trigger, hence, it is inferred that tdata1 and

tdata2 are to be interpreted as mcontrol and maddress. The information regarding other possible values can be

found in the RISC-V Debug Specification v0.13, but this trigger module only supports type 0x2.

Once a trigger unit has been chosen by writing its index to tselect, it will become possible to configure it by setting

the appropriate bits in mcontrol CSR (tdata1) and writing the target address to maddress CSR (tdata2).

Each trigger unit can be configured to either cause breakpoint exception or enter debug mode, by writing to the

action bit of mcontrol. This bit can only be written from debugger, thus by default a trigger, if enabled, will cause

breakpoint exception.

mcontrol for each trigger unit has a hit bit which may be read, after CPU halts or enters exception, to find out if

this was the trigger unit that fired. This bit is set as soon as the corresponding trigger fires, but it has to be

manually cleared before resuming operation. Although, failing to clear it doesn’t affect normal execution in any

way.

Each trigger unit only supports match on address, although this address could either be that of a load/store

access or the virtual address of an instruction. The address and size of a region are specified by writing to

maddress (tdata2) CSR for the selected trigger unit. Larger than 1 byte region sizes are specified through NAPOT

(naturally aligned power of two) encoding (see Table 9-6) and enabled by setting match bit in mcontrol. Note that

Espressif Systems 114
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

for NAPOT encoded addresses, by definition, the start address is constrained to be aligned to (i.e. an integer

multiple of) the region size.

Table 9­6. NAPOT encoding for maddress

maddress(31-0) Start Address Size (bytes)

aaa...aaaaaaaaa0 aaa...aaaaaaaaa0 2

aaa...aaaaaaaa01 aaa...aaaaaaaa00 4

aaa...aaaaaaa011 aaa...aaaaaaa000 8

aaa...aaaaaa0111 aaa...aaaaaa0000 16

....

a01...1111111111 a00...0000000000 231

tcontrol CSR is common to all trigger units. It is used for preventing triggers from causing repeated exceptions in

machine-mode while execution is happening inside a trap handler. This also disables breakpoint exceptions

inside ISRs by default, although, it is possible to manually enable this right before entering an ISR, for debugging

purposes. This CSR is not relevant if a trigger is configured to enter debug mode.

9.7.3 Trigger Execution Flow

When hart is halted and enters debug mode due to the firing of a trigger (action = 1):

• dpc is set to current PC (in decode stage)

• cause field in dcsr is set to 2, which means halt due to trigger

• hit bit is set to 1, corresponding to the trigger(s) which fired

When hart goes into trap due to the firing of a trigger (action = 0) :

• mepc is set to current PC (in decode stage)

• mcause is set to 3, which means breakpoint exception

• mpte is set to the value in mte right before trap

• mte is set to 0

• hit bit is set to 1, corresponding to the trigger(s) which fired

Note : If two different triggers fire at the same time, one with action = 0 and another with action = 1, then hart is

halted and enters debug mode.

9.7.4 Register Summary

Below is a list of Trigger Module CSRs supported by the CPU. These are only accessible from

machine-mode.

Name Description Address Access

tselect Trigger Select Register 0x7A0 R/W

tdata1 Trigger Abstract Data 1 0x7A1 R/W

tdata2 Trigger Abstract Data 2 0x7A2 R/W

tcontrol Global Trigger Control 0x7A5 R/W

Espressif Systems 115
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

9.7.5 Register Description

Register 9.25. tselect (0x7A0)

(re
se

rve
d)

0x00000000

31 3

tse
lec

t

0x0

2 0

Reset

tselect Index (0-7) of the selected trigger unit. (R/W)

Register 9.26. tdata1 (0x7A1)

typ
e

0x2

31 28

dm
od

e

0

27

da
ta

0x3e00000

26 0

Reset

type Type of trigger. (RO)

This field is reserved since only match type (0x2) triggers are supported.

dmode This is set to 1 if a trigger is being used by the debugger. (R/W *)

• 0: Both Debug and M-mode can write the tdata1 and tdata2 registers at the selected tselect.
• 1: Only Debug Mode can write the tdata1 and tdata2 registers at the selected tselect. Writes

from other modes are ignored.

* Note : Only writable from debug mode.

data Abstract tdata1 content. (R/W)

This will always be interpreted as fields of mcontrol since only match type (0x2) triggers are sup-

ported.

Register 9.27. tdata2 (0x7A2)

td
ata

2

0x00000000

31 0

Reset

tdata2 Abstract tdata2 content. (R/W)

This will always be interpreted as maddress since only match type (0x2) triggers are supported.

Espressif Systems 116
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.28. tcontrol (0x7A5)

(re
se

rve
d)

0x000000

31 8

m
pt

e

0

7

(re
se

rve
d)

0x00

6 1

m
te

0

0

Reset

mpte Machine mode previous trigger enable bit. (R/W)

• When CPU is taking a machine mode trap, the value of mte is automatically pushed into this.
• When CPU is executing MRET, its value is popped back into mte, so this becomes 0.

mte Machine mode trigger enable bit. (R/W)

• When CPU is taking a machine mode trap, its value is automatically pushed into mpte, so this

becomes 0 and triggers with action=0 are disabled globally.
• When CPU is executing MRET, the value of mpte is automatically popped back into this.

Espressif Systems 117
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.29. mcontrol (0x7A1)

(re
se

rve
d)

0x2

31 28

dm
od

e

0

27

(re
se

rve
d)

0x1f

26 21

hit

0

20

(re
se

rve
d)

0

19 16

ac
tio

n

0

15 12

(re
se

rve
d)

0

11

m
atc

h

0

10 7

m

0

6

(re
se

rve
d)

0

5 4

u

0

3

ex
ec

ut
e

0

2

sto
re

0

1

loa
d

0

0

Reset

dmode Same as dmode in tdata1.

hit This is found to be 1 if the selected trigger had fired previously. (R/W)

This bit is to be cleared manually.

action Write this for configuring the selected trigger to perform one of the available actions when firing.

(R/W)

Valid options are:

• 0x0: cause breakpoint exception.
• 0x1: enter debug mode (only valid when dmode = 1)

Note : Writing an invalid value will set this to the default value 0x0.

match Write this for configuring the selected trigger to perform one of the available matching opera-

tions on a data/instruction address. (R/W) Valid options are:

• 0x0: exact byte match, i.e. address corresponding to one of the bytes in an access must

match the value of maddress exactly.
• 0x1: NAPOT match, i.e. at least one of the bytes of an access must lie in the NAPOT region

specified in maddress.

Note : Writing a larger value will clip it to the largest possible value 0x1.

m Set this for enabling selected trigger to operate in machine mode. (R/W)

u Set this for enabling selected trigger to operate in user mode. (R/W)

execute Set this for configuring the selected trigger to fire right before an instruction with matching

virtual address is executed by the CPU. (R/W)

store Set this for configuring the selected trigger to fire right before a store operation with matching

data address is executed by the CPU. (R/W)

load Set this for configuring the selected trigger to fire right before a load operation with matching

data address is executed by the CPU. (R/W)

Espressif Systems 118
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

Register 9.30. maddress (0x7A2)

m
ad

dr
es

s

0x00000000

31 0

Reset

maddress Address used by the selected trigger when performing match operation. (R/W)

This is decoded as NAPOT when match=1 in mcontrol.

Espressif Systems 119
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

9.8 Memory Protection

9.8.1 Overview

The CPU core includes a physical memory protection unit, which can be used by software to set memory access

privileges (read, write and execute permissions) for required memory regions. However it is not fully compliant to

the Physical Memory Protection (PMP) description specified in RISC­V Instruction Set Manual, Volume II:

Privileged Architecture, Version 1.10. Details of existing non-conformance are provided in next section.

For detailed understanding of the RISC-V PMP concept, please refer to RISC-V Instruction Set Manual, Volume II:

Privileged Architecture, Version 1.10.

9.8.2 Features

The PMP unit can be used to restrict access to physical memory. It supports 16 regions and a minimum

granularity of 4 bytes. Below are the current non-conformance with PMP description from RISC-V Privilege

specifications:

• Static priority i.e. overlapping regions are not supported

• Maximum supported NAPOT range is 1 GB

As per RISC-V Privilege specifications, PMP entries should be statically prioritized and the lowest-numbered PMP

entry that matches any address byte of an access will determine whether that access succeeds or fails. This

means, when any address matches more than one PMP entry i.e. overlapping regions among different PMP

entries, lowest number PMP entry will decide whether such address access will succeed or fail.

However, RISC-V CPU PMP unit in ESP32-C3 does not implement static priority. So, software should make sure

that all enabled PMP entries are programmed with unique regions i.e. without any region overlap among them. If

software still tries to program multiple PMP entries with overlapping region having contradicting permissions, then

access will succeed if it matches at least one of enabled PMP entries. An exception will be generated, if access

matches none of the enabled PMP entries.

9.8.3 Functional Description

Software can program the PMP unit’s configuration and address registers in order to contain faults and support

secure execution. PMP CSR’s can only be programmed in machine-mode. Once enabled, write, read and

execute permission checks are applied to all the accesses in user-mode as per programmed values of enabled

16 pmpcfgX and pmpaddrX registers (refer Register Summary).

By default, PMP grants permission to all accesses in machine-mode and revokes permission of all access in

user-mode. This implies that it is mandatory to program address range and valid permissions in pmpcfg and

pmpaddr registers (refer Register Summary) for any valid access to pass through in user-mode. However, it is not

required for machine-mode as PMP permits all accesses to go through by deafult. In cases where PMP checks

are also required in machine-mode, software can set the lock bit of required PMP entry to enable permission

checks on it. Once lock bit is set, it can only be cleared through CPU reset.

When any instruction is being fetched from memory region without execute permissions, exception is generated

at processor level and exception cause is set as instruction access fault in mcause CSR. Similarly, any load/store

access without valid read/write permissions, will result in exception generation with mcause updated as load

access and store access fault respectively. In case of load/store access faults, violating address is captured in

mtval CSR.

Espressif Systems 120
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

9 ESP-RISC-V CPU

9.8.4 Register Summary

Below is a list of PMP CSRs supported by the CPU. These are only accessible from machine-mode.

Name Description Address Access

pmpcfg0 Physical memory protection configuration. 0x3A0 R/W

pmpcfg1 Physical memory protection configuration. 0x3A1 R/W

pmpcfg2 Physical memory protection configuration. 0x3A2 R/W

pmpcfg3 Physical memory protection configuration. 0x3A3 R/W

pmpaddr0 Physical memory protection address register. 0x3B0 R/W

pmpaddr1 Physical memory protection address register. 0x3B1 R/W

pmpaddr2 Physical memory protection address register. 0x3B2 R/W

pmpaddr3 Physical memory protection address register. 0x3B3 R/W

pmpaddr4 Physical memory protection address register. 0x3B4 R/W

pmpaddr5 Physical memory protection address register. 0x3B5 R/W

pmpaddr6 Physical memory protection address register. 0x3B6 R/W

pmpaddr7 Physical memory protection address register. 0x3B7 R/W

pmpaddr8 Physical memory protection address register. 0x3B8 R/W

pmpaddr9 Physical memory protection address register. 0x3B9 R/W

pmpaddr10 Physical memory protection address register. 0x3BA R/W

pmpaddr11 Physical memory protection address register. 0x3BB R/W

pmpaddr12 Physical memory protection address register. 0x3BC R/W

pmpaddr13 Physical memory protection address register. 0x3BD R/W

pmpaddr14 Physical memory protection address register. 0x3BE R/W

pmpaddr15 Physical memory protection address register. 0x3BF R/W

9.8.5 Register Description

PMP unit implements all pmpcfg0-3 and pmpaddr0-15 CSRs as defined in RISC­V Instruction Set Manual

Volume II: Privileged Architecture, Version 1.10.

Espressif Systems 121
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

Glossary

Glossary

Abbreviations for Peripherals

AES AES (Advanced Encryption Standard) Accelerator

BOOTCTRL Chip Boot Control

DS Digital Signature

DMA DMA (Direct Memory Access) Controller

eFuse eFuse Controller

HMAC HMAC (Hash-based Message Authentication Code) Accelerator

I2C I2C (Inter-Integrated Circuit) Controller

I2S I2S (Inter-IC Sound) Controller

LEDC LED Control PWM (Pulse Width Modulation)

MCPWM Motor Control PWM (Pulse Width Modulation)

PCNT Pulse Count Controller

RMT Remote Control Peripheral

RNG Random Number Generator

RSA RSA (Rivest Shamir Adleman) Accelerator

SDHOST SD/MMC Host Controller

SHA SHA (Secure Hash Algorithm) Accelerator

SPI SPI (Serial Peripheral Interface) Controller

SYSTIMER System Timer

TIMG Timer Group

TWAI Two-wire Automotive Interface

UART UART (Universal Asynchronous Receiver-Transmitter) Controller

ULP Coprocessor Ultra-low-power Coprocessor

USB OTG USB On-The-Go

WDT Watchdog Timers

Abbreviations for Registers

ISO Isolation. When a module is power down, its output pins will be stuck in unknown

state (some middle voltage). ”ISO” registers will control to isolate its output pins

to be a determined value, so it will not affect the status of other working modules

which are not power down.

NMI Non-maskable interrupt.

REG Register.

R/W Read/write. Software can read and write to these bits.

RO Read-only. Software can only read these bits.

SYSREG System Registers

WO Write-only. Software can only write to these bits.

Espressif Systems 122
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

Revision History

Revision History

Date Version Release notes

2021-04-08 V0.1 Preliminary release

Espressif Systems 123
Submit Documentation Feedback

ESP32-C3 TRM (Pre-release v0.1)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5086§ions=&version=0.1

PRELIM
IN

ARY

www.espressif.com

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY’S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO
WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-
INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information
in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any
intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a
registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property
of their respective owners, and are hereby acknowledged.

Copyright © 2021 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.

https://www.espressif.com/

	1 Reset and Clock
	1.1 Reset
	1.1.1 Overview
	1.1.2 Architectural Overview
	1.1.3 Features
	1.1.4 Functional Description

	1.2 Clock
	1.2.1 Overview
	1.2.2 Architectural Overview
	1.2.3 Features
	1.2.4 Functional Description

	2 Random Number Generator
	2.1 Introduction
	2.2 Features
	2.3 Functional Description
	2.4 Programming Procedure
	2.5 Register Summary
	2.6 Register

	3 System and Memory
	3.1 Overview
	3.2 Features
	3.3 Functional Description
	3.3.1 Address Mapping
	3.3.2 Internal Memory
	3.3.3 External Memory
	3.3.4 GDMA Address Space
	3.3.5 Modules/Peripherals

	4 IO MUX and GPIO Matrix (GPIO, IO_MUX)
	4.1 Overview
	4.2 Features
	4.3 Architectural Overview
	4.4 Peripheral Input via GPIO Matrix
	4.4.1 Overview
	4.4.2 Signal Synchronization
	4.4.3 Functional Description
	4.4.4 Simple GPIO Input

	4.5 Peripheral Output via GPIO Matrix
	4.5.1 Overview
	4.5.2 Functional Description
	4.5.3 Simple GPIO Output
	4.5.4 Sigma Delta Modulated Output (SDM)

	4.6 Direct Input and Output via IO MUX
	4.6.1 Overview
	4.6.2 Functional Description

	4.7 Analog Functions of GPIO Pins
	4.8 Pin Hold Feature
	4.9 Power Supplies and Management of GPIO Pins
	4.9.1 Power Supplies of GPIO Pins
	4.9.2 Power Supply Management

	4.10 Peripheral Signal List
	4.11 IO MUX Functions List
	4.12 Analog Functions List
	4.13 Register Summary
	4.13.1 GPIO Matrix Register Summary
	4.13.2 IO MUX Register Summary
	4.13.3 SDM Register Summary

	4.14 Registers
	4.14.1 GPIO Matrix Registers
	4.14.2 IO MUX Registers
	4.14.3 SDM Output Registers

	5 SHA Accelerator
	5.1 Introduction
	5.2 Features
	5.3 Working Modes
	5.4 Function Description
	5.4.1 Preprocessing
	5.4.2 Hash Task Process
	5.4.3 Message Digest
	5.4.4 Interrupt

	5.5 Register Summary
	5.6 Registers

	6 AES Accelerator
	6.1 Introduction
	6.2 Features
	6.3 AES Working Modes
	6.4 Typical AES Working Mode
	6.4.1 Key, Plaintext, and Ciphertext
	6.4.2 Endianness
	6.4.3 Operation Process

	6.5 DMA-AES Working Mode
	6.5.1 Key, Plaintext, and Ciphertext
	6.5.2 Endianness
	6.5.3 Standard Incrementing Function
	6.5.4 Block Number
	6.5.5 Initialization Vector
	6.5.6 Block Operation Process

	6.6 Memory Summary
	6.7 Register Summary
	6.8 Registers

	7 RSA Accelerator
	7.1 Introduction
	7.2 Features
	7.3 Functional Description
	7.3.1 Large Number Modular Exponentiation
	7.3.2 Large Number Modular Multiplication
	7.3.3 Large Number Multiplication
	7.3.4 Options for Acceleration

	7.4 Memory Summary
	7.5 Register Summary
	7.6 Registers

	8 Chip Boot Control
	8.1 Overview
	8.2 Boot Mode Control
	8.3 ROM Code Printing Control
	8.4 JTAG Signals Source Control
	8.5 USB Serial/JTAG Controller

	9 ESP-RISC-V CPU
	9.1 Overview
	9.2 Features
	9.3 Address Map
	9.4 Configuration and Status Registers (CSRs)
	9.4.1 Register Summary
	9.4.2 Register Description

	9.5 Interrupt Controller
	9.5.1 Features
	9.5.2 Functional Description
	9.5.3 Suggested Operation
	9.5.4 Register Summary
	9.5.5 Register Description

	9.6 Debug
	9.6.1 Overview
	9.6.2 Features
	9.6.3 Functional Description
	9.6.4 Register Summary
	9.6.5 Register Description

	9.7 Hardware Trigger
	9.7.1 Features
	9.7.2 Functional Description
	9.7.3 Trigger Execution Flow
	9.7.4 Register Summary
	9.7.5 Register Description

	9.8 Memory Protection
	9.8.1 Overview
	9.8.2 Features
	9.8.3 Functional Description
	9.8.4 Register Summary
	9.8.5 Register Description

	Glossary
	Abbreviations for Peripherals
	Abbreviations for Registers

	Revision History

