
Int. J Comp Sci. Emerging Tech Vol-2 No 4 August, 2011

476

Moving from AMBA AHB to AXI Bus in SoC

Designs: A Comparative Study
Priyanka Gandhani#1, Charu Patel*2

Electronics & Communication Department,Nirma University,AHMEDABAD, INDIA
*Electronics & Communication Department, CHARUSAT, CHANGA, INDIA

1 priyanka.3787@gmail.com

2 patelcharu1988@yahoo.co.in

Abstract—The ever increasing amount of logic that

can be placed onto a single silicon die is driving the

development of highly integrated SoC designs. Such

high computing power must be matched by

interconnect fabrics with adequate bandwidth and

efficiency. Traditional SoC interconnects, as

exemplified by AMBA AHB, are based upon low-

complexity shared buses, in an attempt to minimize

area overhead. Such architectures, however, are not

adequate to support the trend for SoC integration,

motivating the need for more scalable designs. This

paper describes the most important AMBA bus

architectures and how they evolved to accommodate

to the ever increasing complexity of SoC technology.

Index Terms— AMBA, AHB, AXI

1. Introduction

 Embedded system designers have a choice of using

a share or point-to-point bus in their designs. Typically,

an embedded design will have a general purpose

processor, cache, SDRAM, DMA port, and Bridge port

to a slower I/O bus, such as the Advanced Micro

controller Bus Architecture (AMBA) Advanced

Peripheral Bus (APB). In addition, there might be a port

to a DSP processor, or hardware accelerator, common

with the increased use of video in many applications. As

chip-level device geometries become smaller and

smaller, more and more functionality can be added

without the concomitant increase in power and cost per

die as seen in prior generations.

The Advanced Microcontroller Bus Architecture

(AMBA) was introduced by ARM Ltd 1996 and is

widely used as the on-chip bus in system on chip (SoC)

designs. AMBA is a registered trademark of ARM Ltd.

The first AMBA buses were Advanced System Bus

(ASB) and Advanced Peripheral Bus (APB). In its 2nd

version, AMBA 2, ARM added AMBA High-

performance Bus (AHB) that is a single clock-edge

protocol. In 2003, ARM introduced the 3rd generation,

AMBA 3, including AXI to reach even higher

performance interconnect and the Advanced Trace Bus

(ATB) as part of the Core Sight on-chip debug and trace

solution. These protocols are today the de-facto

standard for 32-bit embedded processors because they

are well documented and can be used without royalties.

 The paper has been organized as follows. The first

section contain the description of AHB protocol both

single layer and

 multilayer bus. Second section describes the 3rd

generation of

AMBA bus that is AXI. Third section shows the

migration from AHB to AXI based on different

parameters.

2. Advanced High Performance Bus (AHB)

2.1. Single layer AHB

 AHB supports single data access and various types

of burst accesses. Each transfer is defined by an address

and a data phase where the address phase of one

transfer occurs during the data phase of the previous

transfer. Underlying AHB is traditional bus architecture

with arbitration between multiple masters. The protocol

supports advanced features such as SPLIT and RETRY

signaling in cases where a slave is not able to respond

immediately. The master that had been granted the bus

will back off and other masters will get a turn.

2.2. Multilayer AHB

 Although traditional multiplexed multi-master

systems are still quite common, little over a decade ago

the ARM SoC world started shifting towards crossbar

switched interconnects, in the form of multi-layer

busses. This was a rather important initial step which

lead over time to some critical improvements. Each

layer of the bus is an independent single master AHB

system. Instead of a rather complex monolithic

multiplexing scheme, a multi-layer AHB bus

architecture with M masters and S slaves is structured

as M X 1:S multiplexers plus S X M:1 slave

multiplexers all connected to separate arbitration and

decoding logic.

 Multiple masters can talk to multiple slaves

concurrently, as long as no two masters don't try to

access the same slave at the same time. Think of a

DMA controller moving data from a receiver into a

memory region, while the processor continues to

execute code in a different memory region. All

arbitration and protocol complexity moves into the

fabric. The interface implementation becomes simpler

as a number of unneeded signals, most notably

HGRANT and HBUSREQ, can be removed along with

their associated protocol. Although not a necessary

International Journal of Computer Science & Emerging Technologies
IJCSET, E-ISSN: 2044 - 6004
Copyright © ExcelingTech, Pub, UK (http://excelingtech.co.uk/)

mailto:1%20priyanka.3787@gmail.com
mailto:1.patelcharu1988@yahoo.co.in
http://excelingtech.co.uk/

Int. J Comp Sci. Emerging Tech Vol-2 No 4 August, 2011

477

consequence of the multi-layer architecture, getting rid

of the unpopular SPLIT and RETRY handshaking

mechanism was another advantage.

Figure 1.Multiplexed Bus

Figure 2 Multilayer Bus

3. Advanced Extensible Bus (AXI)

3.1. AXI3

 The AMBA 3 AXI protocol is targeted at high-

performance, high-frequency system designs and

includes a number of features that make it suitable for a

high-speed, submicron interconnect. The AMBA 3 AXI

protocol objectives: The AMBA 3 AXI specification

was created with the following objectives in mind to

ensure its suitability for the next generation of designs.

 Suitability for high-bandwidth and low-latency

designs

 To enable high-frequency operation without using

complex bridges

 Meet the interface requirements of a wide range of

components

 Suitability for memory controllers with high initial

access latency

 Provide flexibility in the implementation of

interconnect architectures

 Easily interface with existing AMBA technology

Features of the AMBA 3 AXI protocol include:

 Separate address/control and data phases

 Support for unaligned data transfers using byte

strobes

 Burst-based transactions with only start address

issued

 Separate read and write data channels to enable

low-cost direct memory access (DMA)

 Ability to issue multiple outstanding addresses

 Out-of-order transaction completion

 Easy addition of register stages to provide timing

closure

 Protocol includes optional extensions that cover

signaling for low-power operation

Advantages of the AMBA 3 AXI protocol include:

 Independently acknowledged address and data

channels

 Out-of-order completion of bursts

 Exclusive access (atomic transaction)

 System level cache support

 Access security support

 Unaligned address & byte strobe

 Static burst, which allows bursts to FIFO memory

 Low power mode

The AMBA 3 AXI architecture differs significantly

from previous AMBA protocols with the introduction of

channels. Each of the five independent channels

consists of a set of information signals and uses a

mechanism. The information source uses the VALID

signal to show when valid data or control information is

available on the channel. The destination uses the

READY signal to show when it can accept the data.

Both the read data channel and the write data channel

also include a LAST signal to indicate when the transfer

of the final data item within a transaction takes place.

Read and write transactions each have their own

address channel. The appropriate address channel

carries all of the required address and control

information for a transaction.

The Read data channel conveys both the read data

and any read response information from the slave back

to the master. The Read data channel includes the data

bus, which can be 8, 16, 32, 64, 128, 256, 512, or 1024

bits wide and a read response indicating the completion

status of the read transaction. The Write data channel

conveys the write data from the master to the slave. The

Write data channel includes the data bus, which can be

8, 16, 32, 64, 128, 256, 512, or 1024 bits wide, and one

byte lane strobe for every eight data bits, which

indicates which bytes of the data bus are valid. The

unaligned transfer support makes for a more efficient

use of the bus yielding higher performance, lower

latency and increased bandwidth operation.

 3.2. AXI4 and AXI4-Lite

AXI4 is the latest revision of the AXI protocol

described above. Functionality has been added and

several known issues in AXI3 have been addressed to

ensure that AMBA busses remain the dominant

standard in SoC connectivity. Some key points: The

maximum burst length has been increased from 16 to

256 transfers for certain types of bursts (INCR, non-

Int. J Comp Sci. Emerging Tech Vol-2 No 4 August, 2011

478

exclusive). Additional Quality-of-Service signaling has

been added, where the finer details of the interpretation

are implementation defined.

AXI4 defines address regions for slaves, which

allows implementations of memory perspectives on the

bus level. No doubt this will be used at some point in

the future to break the 4GB address boundary. Some

ordering requirements and transfer dependencies have

been refined, as have the meanings of the cache policy

signals AxCACHE. Abstract memory types as defined

by ARMv6/v7 architectures and multicore architectures

are much better represented by these changes.

Implementation-defined per-channel sideband signals

are now officially supported as AxUSER. Legacy

(AHB) locked transfers are no longer supported. The

entire concept that a master can request exclusive access

to the entire bus doesn't fit within the idea of a switched

interconnect. The one-and-only ARM instruction

causing this signal to be asserted is no longer supported

in the v7 architectures.

A rather significant change seems to be the banning

of write interleaving, which could help improve the

system throughput. In practice, removing write

interleaving from this part of the AMBA standard

makes certain aspects of the AXI protocol easier to

handle. Write interleaving is hardly used by regular

masters but can be used by fabrics that gather streams

from different sources. With the new AXI4-Stream

protocol (see below), write interleaving is still available

for fabrics. As described so far the focus of AXI has

been on high-performance data transfer, but what about

the low-end - hardware registers, configuration, etc?

With good old APB there is an established, robust

interface, which received an upgrade in AMBA3

extending it with slave response signaling (PERROR,

PREADY), a feature that was missed dearly by

designers.

The issue with APB is the bridge. In a traditional

system, including AMBA3, one or more of the slaves

are bridges between the main system protocol (AHB,

AXI) and APB. The intention was that with many small

peripherals on a "real" bus including the multi-layer

variant, the fan-out of multidrop signals (HWDATA,

HADDR in AHB) would be too high. A typical bridge

supports up to sixteen slaves, which are assigned

fragments of the address region occupied by the bridge

itself so that all APB peripherals connected to this

bridge are in one contiguous address region.

In modern interconnects, you may find built-in 1:1

bridges which connect between system bus and a single

APB slave, enabling higher flexibility. Still a bridge

though. AXI4-Lite addresses this last issue by defining

certain restrictions that would allow a slave to be

connected directly to an AXI fabric. In AXI4-Lite, you

might say that AXI gets "dumbed" down to a few basic

transaction types. The burst length is fixed to one data

transfer, transfers are non-cacheable and non-

bufferable, exclusive access is not allowed and access

width must always be the same as data bus width. This

is supposed to make the interface design simple enough

to be implemented quickly in custom IP.

3.3. AX14 Stream

The new AXI4-Stream protocol was designed for

streaming data to destinations that are not memory

mapped internally. Display controllers, transmitters, but

also routing fabrics are among the target applications

for this new protocol. Building upon the proven simple

AXI channel handshake AXI4-Stream is essentially an

AXI write data channel with additional control signals

and a slightly modified protocol. The burst (packet)

length is not restricted and the number of bytes of the

data signals TDATA can be an arbitrary integer

including zero.

4. Migration From AHB To AXI

 With modern Systems on Chip including multi-

core clusters, additional DSP, graphics controllers and

other sophisticated peripherals, the system fabric poses

a critical performance bottleneck. The AHB protocol,

even in its multi-layer configuration cannot keep up

with the demands of today's SoC. The reasons for this

include:

1. AHB is transfer-oriented. With each transfer, an

address will be submitted and a single data item will be

written to or read from the selected slave. All transfers

will be initiated by the master. If the slave cannot

respond immediately to a transfer request the master

will be stalled. Each master can have only one

outstanding transaction.

2. Sequential accesses (bursts) consist of consecutive

transfers which indicate their relationship by asserting

HTRANS/HBURST accordingly.

3. Although AHB systems are multiplexed and thus

have independent read and write data buses, they cannot

operate in full-duplex mode.

 An AXI interface consists of up to five channels

which can operate largely independently of each other.

Each channel uses the same trivial handshaking

between source and destination (master or slave,

depending on channel direction), which simplifies the

interface design.

 Unlike AHB concept is not an afterthought but is the

central focus of the protocol design. In AXI3 all

transactions are bursts of lengths between 1 and 16. The

addition of byte enable signals for the data bus supports

unaligned memory accesses and store merging.

 The communication between master and slave is

transaction-oriented, where each transaction consists of

address, data, and response transfers on their

corresponding channels. Apart from rather liberal

ordering rules there is no strict protocol-enforced timing

relation between individual phases of a transaction.

Instead every transfer identifies itself as part of a

specific transaction by its transaction ID tag.

Transactions may complete out-of-order and transfers

belonging to different transactions may be interleaved.

Thanks to the ID that every transfer carries, out-of-order

transactions can be sorted out at the destination.

Int. J Comp Sci. Emerging Tech Vol-2, No 4 August, 2011

479

Figure 3.AXI channel handshake

 Figure 4. AXI write burst

This flexibility requires all components in an AXI

system to agree on certain parameters, such as write

acceptance capability, read data reordering depth and

many others. Due to the vast number of signals that

make up a read/write AXI connection, routing a large

AXI fabric could be thought of as rather challenging.

However, the independent channels in an AXI fabric

make it possible to choose a different routing

structure depending on the expected data volume on

that channel. Given a situation where the majority of

transactions will transfer more than one data item,

data channels should be routed via crossbar so that

different streams can be processed at the same time.

Address and response channels experience rather

lower traffic and could perhaps be multiplexed. Some

experts consider it an advantage to provide AXI only

at the interface level, while a special packetized

routing protocol is used inside the fabric, a so called

Network-on-Chip.

 The AHB is a single-channel, shared bus. The AXI

is a multi-channel, read/write optimized bus. Each

bus master, or requesting bus port, connects to the

single-channel shared bus in the AHB, while each

AXI bus master connects to a Read address channel,

Read data channel, Write address channel, Write data

channel, and Write response channel. The primary

throughput channels for the AXI are the Read/Write

data channels, while the address, response channels

are to improve pipelining of multiple requests.

Assume there are four masters on each bus going to

three slaves. The four master ports might include

microprocessor, Direct Memory Access (DMA),

DSP, USB. The three slaves might include on-chip

RAM, off-chip SDRAM, and an APB bus bridge.

 To approximate the bandwidth of the two busses,

one must count the number of read/write channels of

the AXI Bus – six for three bus slaves. This suggests

that the AHB Bus should support some multiple of

bus width and/or speed to match the data throughput.

The System Model can vary these combinations with

simple parameter changes, however, the AHB bus

speed was assumed to be double the AXI Bus, and

two times the width. This will make the comparison

of the two busses more realistic.

 To evaluate the efficiency of both busses,

different burst sizes were selected; small, medium,

and large. Small equates to the width of the AHB

Bus, medium equates to two AHB Bus transfers, and

large equates to four AHB bus transfers.

 If the AXI is a 64 bit bus running at 200 MHz,

then the AHB will be a 128 bit bus running at 400

MHz. The burst sizes will be: small (16 Bytes),

medium (32 Bytes), and large (64 Bytes).

5. Conclusion

Over the years AMBA has continued to provide

state-of-the-art solutions for SoC interconnects. With

the relatively recent addition of the AXI4 protocol

family ARM maintains a competitive advantage in

the field of high-performance SoC, while at the same

time AHB-Lite is still available for less demanding

architectures.

References

[1] AMBA specification ,version 2.0

[2] AMBA AXI protocol specification ,version

2.0

[3] Deepak Shankar. “Comparing AMBA AHB To

AXI Bus Using System Modeling”, February

2010

[4] Marcus Harnisch “Migrating From AHB To

AXI Based SOC Design”, 2010

