

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 1 of 55

Garden Management System

4th Year Project Submission

Peter Colls

15th June 2023

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 2 of 55

Table of Contents
Executive Summary .. 4

To be completed by Dianne .. 6

Concept Drawing .. 6

Acknowledgements .. 7

Glossary of Terms ... 8

Introduction .. 9

Component Naming Standards ... 9

Project Concepts ... 10

Overview ... 10

1. Soil and Environment Sensor Unit/s (Sensor Unit) .. 10

2. Master Communication and Water Control Unit (Master Unit) .. 10

3. Phone Information and control system (Cloud Control Unit).. 11

Master Communication and Water Control Unit (Master Unit) ... 11

Power .. 11

Manage user preferences. .. 11

Phone Information display and control input system (Cloud Control Unit) .. 11

Design ... 12

ESP32 Microcontroller .. 12

Point to Point Communications .. 12

Overview of ESP-Now and its key features: ... 12

Scalability .. 12

Easy to Use ... 13

Minimum Maintenance .. 13

PCB Board Manufacturer and Assembly ... 13

PCB Board Development: .. 13

Component Assembly: .. 14

Garden Sensors Unit ... 14

Master Unit ... 14

Cloud Control Unit .. 14

Functions and Specifications .. 16

Sensor Unit ... 16

Enclosure box.. 16

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 3 of 55

PCB Board ... 16

Circuit Functions ... 16

Circuit Design .. 16

Software ... 17

Master Unit (Master Unit) .. 18

Enclosure box.. 18

PCB Boards .. 18

Circuit Functions ... 18

Circuit Design .. 19

Software ... 19

Cloud Control Unit .. 20

Enclosure box.. 20

PCB Board ... 20

Functions .. 20

Circuits .. 20

Software ... 20

Appendix:.. 21

Appendix 1 - Sensor Unit Software ... 22

Appendix 2 – Sensor Unit Circuit - 1 ... 28

Appendix 3 - Sensor Unit Circuit - 2 .. 29

Appendix 4 - Sensor Unit PCB Layout.. 30

Appendix 5 – Sensor Unit Bill of Materials (BOM) .. 31

Appendix 6 - Sensor Unit Enclosure Housing Box - 1 .. 32

Appendix 7 - Sensor Unit Enclosure Housing Box - 2 .. 33

Appendix 8 – Sensor Unit Battery Long Life Calc .. 34

Appendix 9 - Master Unit Circuit... 35

Appendix 10 – Master Unit Bottom PCB ... 36

Appendix 11 - Master Unit Top PCB .. 37

Appendix 12 – Master Unit Top Bill of Materials (BOM) ... 38

Appendix 13 – Master Unit Bottom Bill of Materials (BOM) ... 39

Appendix 14 – Master Unit Enclosure Layout ... 40

Appendix 15 – Master Unit Software .. 41

Appendix 16 – Master Unit Calculate ADC Voltage ... 47

Appendix 17 – Cloud Control Unit Software ... 49

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 4 of 55

Executive Summary

As part of the 4th year assessment, the scope of the project must include:

• RF wireless technology.

• Digital solutions.

• Micro and analogue electronics.

• Deliver a beneficial, well-designed product with marketing potential.

The Garden management system was selected as it addressed all the above criteria, and the scope could be
developed so that it was reasonably unique in the marketplace.

Throughout this document, each of the five components are discussed in detail, therefore, to assist the reader each
of the components will be referred as follows:

1. Sensor Unit.

2. Master Unit.

3. Cloud Control Unit.

4. Arduino Cloud.

5. Phone App

Sensor Unit

Data is collected by the sensors, including Sensor Id, soil and air temperature, soil moisture, and battery voltage. This

information is sent to the Cloud Control Unit. The system then receives the minimum soil moisture and water valve

data from the sensors. To ensure the minimum soil moisture level is maintained, water is supplied to a maximum of

eight garden sections through individual garden valves. Multiple sensors may be present in each garden section, but

only one water valve is permitted. Watering is only executed when the weather is dry and the moisture level in the

garden section drops below the minimal soil moisture level indicated by the Phone App.

Master Unit

The Unit regulating data flow between the Sensor and Phone App is the Master Unit. Its main function is distributing

the appropriate amount of water necessary to maintain optimal moisture levels. Additionally, it sends and receives

information from the Cloud Control Unit.

The Phone App operates the system, with the central control unit known as the Master Unit playing a crucial role in

managing the following functions: System Communications, which involves exchanging data between sensors,

collecting information such as sensor ID, soil and air temperature, soil moisture, and battery voltage.

The Phone App receives the garden control Values then transmits the collected information to the Cloud Control

Unit, where the Garden Watering Control Information is re-transmitted to the Mater Unit.

On receiving the minimum soil moisture level and watering duration for each Sensor Unit. The system asses the

moisture levels and if required the Master Unit will supply water to the garden via eight separate water valves

catering to the moisture needs of eight different garden sections. A single garden section can have multiple sensors,

but only one water valve.

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 5 of 55

Cloud Control Unit

The main purpose of this device is to establish a channel for data transmission between the Master Unit and the

Phone App. This allows for the transfer of soil sensor readings to the Phone and the exchange of garden watering

information to the Master Unit.

Arduino Cloud.

The Arduino IoT Cloud is a platform that allows anyone to create IoT projects, with a user-friendly interface, and an

all in one solution for configuration, writing code, uploading and visualization.

Phone App

You can use our Phone App to water up to eight different sections of your garden using separate water valves. Each

section can have multiple sensors, but only one water valve. The App will ensure that each section receives water

only, when necessary, to maintain the minimum soil moisture level. If it's raining or the section already has enough

moisture, the water valve won't turn on, preventing overwatering.

User preferences can be managed through the phone app. The User can input their Garden watering information

such as Unit Number, Valve Number, and Maximum Watering Duration. When modifications are made, the data is

automatically sent to the Master Unit.

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 6 of 55

To be completed by Dianne

Concept Drawing

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 7 of 55

Acknowledgements

The persons and companies below have been critical to the completion of this project, I offer my sincere thanks to
them all.

• John D. Lenk – Book “Simplified design of Micropower and Battery Circuits. Source of information for the Use
of the LT1300 power management system.

• Andre LaMothe – University Lecturer, significant help in all arears.

• The following YouTube sites have been invaluable for their advice with the coding of the ESP32 and a
number of components.

o Andreas Spiess
o Bill at the DroneBot Workshop
o Rui Santos at Random Nerd Tutorial
o Lee Wiggins

• Applications Used
o NI Multisim
o Ni Ultiboard
o KiCad

o Design Spark Mechanical CAD
o Arduino IDE
o Visual Source Code
o Arduino IOT Cloud

• Suppliers used and provided invaluable help on components and techniques.
o PCBWay
o JLCPCB – 3D Printing
o Digi Key
o Muser
o Ali Express
o Jaycar
o Battery World

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 8 of 55

Glossary of Terms

Analogue electronics. Non-Micro, e.g., Capacitors, resistors Diodes Etc

Arduino IOT Cloud Arduino Cloud site - The Internet of Things (IoT) describes the network
of physical objects

ADC Battery Volts ADC "Analogue Digital Conversion” A function used to convert electrical
voltage to a digital number

C++ A software language used for technical applications

Copper pour, vias Terms for PCB development processes

Deep-sleep function Putting the Microcontroller into sleep to save power

ESP32 microcontroller A brand of microcontroller (small computer for controlling devices)

Espressif Systems A Microcontroller production company

 IDE’s. An integrated development environment (IDE) is a software application
that helps programmers develop software code

I2C Pronounced " I square C" the name of a communications protocol

Net Names Nets are usually given a name that specifically states the purpose of
signals on that wire. For example, power nets might be labelled "VCC"
or "5V", while serial communication nets might be labelled "RX" or "TX".

NI Multisim, Ni Ultiboad and KiCad Names of application suppliers for Circuit schematic and PCB
development

On-Change” function Software function - When a Variable content change - take action.

Point-to-point network Wireless network to connect specific items together

PCB A printed circuit board

PCBWay PCB board production company

Panelisation PCB Panelisation is a technique through which small-size boards of a
single design are created and linked in the shape of the array in a single
board) to reduce the cost of quantity production runs.

RF wireless technology RF is a term used to describe Radio Frequency

Microelectronics. Micro - Microcontroller or IC Chips

Four-layer stackup The number of layers applied to a PCB board

Surface-mount (SMD) Surface mount device - very small electronic components

TFT display screen Small display screen used to display test data

TX and RX Transmit and Receive data signals

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 9 of 55

Introduction

The initial objectives for the scope of this project are to encompass:

• RF wireless technology.

• Digital solutions.

• Micro and analogue electronics.

• Deliver a beneficial, well-designed product with marketing potential.

With the above objectives in mind, I researched the following for consideration:

• Home communication system with several transmit / receiver units using several dedicated selectable
frequencies.

• Garden Management system that used wireless technology, multiple Sensors to control the watering
requirement and summarise the sensor information on a smart phone.

• Doorbell answering system that uses Wi-Fi to send visual and sound data to a smart phone.

My findings are as follows:

• The Home communication system was interesting and technically changeling, but the selection and use of
public available frequencies proved to be impractical.

• The Doorbell answering system was rejected due to the amount and wide selection of products currently on
the market.

• The Garden management system was selected as it addressed all the above criteria, and the scope could be
developed so that it was reasonably unique in the marketplace.

Component Naming Standards

The Garden Management System comprises of 5 primary components:

1. Soil and Environment Sensor Unit/s.

2. Master Communication and Water Control Unit.

3. Phone Information and control system.

4. The Arduino IOT Cloud.

5. The Phone Application.

Throughout this document, each of the above five components are discussed in detail, therefore, to assist the reader
each of the components will be referred as follows:

1. Soil and Environment Sensor Unit/s – Sensor Unit.

2. Master Communication and Water Control Unit – Master Unit.

3. Phone Information and control system – Cloud Control Unit.

4. The Arduino IOT Cloud – Arduino Cloud.

5. The Phone Application – Phone App

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 10 of 55

Project Concepts

Overview

The Garden Management System comprises of three sections:

1. Soil and Environment Sensor Unit/s (Sensor Unit) – The Sensor Units collect the primary information to

allow the watering system to maintain the correct moisture levels to promote healthy plant growth. The

principal characteristics are:

a. The independent sensor control units can be placed up to 320 meters (free line of sight) from the

Master unit.

b. A maximum of fifteen sensor units can be located throughout the garden. Each unit reads soil

moisture, ground, and air temperature, plus optionally, PH and Nitrogen levels.

c. The sensor units can be inserted into the ground to a depth of 15cm to obtain consistent

environmental readings.

d. To support battery life, the microcontroller is placed into a four-hour deep sleep cycle. On

completion of the Deep Sleep cycle, the microcontroller reads all the sensor information and

transfer the data to the Master Unit. Using the deep-sleep function in this manner yields a battery

life of one-year.

e. The Master Unit has been designed to manage the data transactions from a maximum of 30 Soil

Sensor Units; however, due to the limited space to display information on the phone, the practical

number of soil sensors is restricted to 15.

f. Each Sensor Unit measures the soil and air temperature, soil moisture, battery voltage on a 4-hour

cycle. The primary reason for this time cycle is to maintain a one-year battery life. The design has

included a set-up option to allow the user to customise the sensor unit for a preferred number of

soil sensor readings per day. This would be at the cost of Battery life.

g. The sensor units do not communicate directly with the Phone app and cannot astatine the User’s

requested minimal soil moisture levels. Therefore, the design provides a global minimum soil

moisture level. If the Soil moisture reading is less than the global minimum soil moisture level, then

the Sensor Unit will only sleep for 30 minutes and read/transmit the soil measurements once more

to prevent overwatering.

h. The design encompasses the ability to collect both PH and Nitrogen soil readings, but this feature

will not be available in the first production release.

2. Master Communication and Water Control Unit (Master Unit) – The Master Unit delivers the central

control functionality that manages the:

a. System Communications - Data communications between all the Sensors that collect the Sensor ID

number, soil and air temperature, soil moisture and battery voltage.

b. Updates Phone App - Transmits the received sensor information to the Cloud Control Unit.

c. Garden Watering Control information - Receives from the phone app. The minimum soil moisture

and watering time duration information for each Sensor Unit.

d. Watering of the Garden - To maintain the minimal soil moisture level. Water is applied to the garden

via eight separate water valves servicing the needs of eight garden sections. A single garden section

may have multiple sensors but only one water valve. If the soil moisture level is less than the

minimum soil moisture value, water is applied to address the minimum moisture level supplied by

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 11 of 55

the Phone App. Thus, if the weather is rainy, the garden moisture levels will be greater than the

minimal soil moisture levels, and watering will not occur.

e. The Master Unit has been designed to manage the data transactions from a maximum of 30 Soil

Sensor Units; however, due to the limited space to display information on the phone, the practical

number of soil sensors is restricted to 15.

3. Phone Information and control system (Cloud Control Unit) – The Cloud Control Unit establishes a point-

to-point network between the Master Unit and Phone Application. It transfers the latest soil sensor data

from the Master Unit to the Phone Application. It downloads the minimum soil moisture and control values

from the Phone Application to the Master Unit.

Master Communication and Water Control Unit (Master Unit)

The master Unit is designed to control the data flow between the Sensor Unit’s and the Phone App, and distribute

the correct amount of water to maintain the minimum moisture levels. Then send and receive information to and

from the Cloud Control Unit.

Power
Power is provided by a 12v 1.2 ah battery, charged by a 21v, 10W, 22cm X 30cm Solar Panel.

The Master Unit houses the battery charging circuit that maintains a full 12.7v charge. The 12v power rail drives the

relays, and water valves, and the 3.3v power rail for the ESP32 and microelectronics.

Manage user preferences.
The phone app allows the User to input the systems Garden watering information. Unit Number, Valve Number and

Maximum Watering Duration; and “on change” send the modified data to the Master Unit.

• Sensor control data.

o Minimum moisture level

o Related Water Valve No

• Garden Section data.

o Water Valve No

o Maximum watering time

The system can power up to eight water valves, with many Sensor Units that can relate to one water valve. The

Master Unit stores this information in permanent memory to use, to control, and minimise the water applied to the

garden sections, thereby avoiding overwatering.

Phone Information display and control input system (Cloud Control Unit)

The Cloud Control Unit forms the information conduit between the Master Unit and the Arduino IOT Cloud:

• The Cloud Control Unit uses a dedicated ESP32 microcontroller to connect the Master Unit to the Arduino

IOT Cloud. This enables the transmission of information between the Phone App and the Cloud Control Unit.

The ESP32 is located within the Master Unit enclosure and uses point-to-point and RS232 communications.

• The Arduino IOT Cloud uses Wi-Fi for data transmission and requires the User’s Wi-Fi Login Details.

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 12 of 55

Design

ESP32 Microcontroller

The ESP32 is a microcontroller with integrated Wi-Fi and dual-mode Bluetooth. includes a built-in antenna power

amplifier, low-noise receive amplifier, filters, and power-management modules. ESP32 was created and
developed by Espressif Systems, a Shanghai-based Chinese company.

The ESP32 microcontroller has been used within all modules of this project, due to its capacity, flexibility and
performance. C++ is used for all software via the Arduino and Visual Studio Code IDE’s.

Point to Point Communications

ESP-Now is a communication protocol developed by Espressif Systems. It is designed for efficient and low-
power communication between ESP32 devices without the need for a traditional Wi-Fi network infrastructure.

Overview of ESP-Now and its key features:

1. ESP-Now is primarily intended for local communication between ESP8266 and ESP32 devices within a

limited range, typically within a single building or small area, using line-of-sight transmission a distance
up to 320 meters can be considered reliable. ESP-Now enables direct device-to-device communication
without the need for an intermediate access point or router.

2. ESP-Now utilizes the 2.4 GHz ISM (Industrial, Scientific, and Medical) band to establish a point-to-point
or point-to-multipoint communication link. It employs the IEEE 802.11 Wi-Fi protocol as its foundation but
strips away most of the Wi-Fi stack to reduce overhead and improve efficiency.

3. One of the main advantages of ESP-Now is its ability to operate in low-power modes, making it suitable

for battery-powered devices and IoT applications. The protocol allows devices to quickly establish a
connection, transmit data, and then return to sleep mode, conserving power and extending battery life.

4. ESP-Now offers a simplified API, making it easy to implement and use for data transmission. It provides

a fast and reliable connection with minimal latency and overhead, allowing for efficient transmission of
small data packets to a maximum of 256 bytes.

5. ESP-Now provides basic data encryption to ensure secure communication between devices. It utilizes a

pre-shared key (PSK) for encrypting and decrypting the data packets, preventing unauthorized access to
the transmitted information.

6. ESP-Now is a versatile protocol that finds applications in scenarios such as home automation, sensor

networks, wireless sensor nodes, remote control systems, and other IoT projects where simple and low-

power communication between ESP devices is required.

Scalability

The Garden Management System is expandable by adding additional Sensor units or water valves. The system can
accommodate fifteen Sensor Units and eight water valves. The Sensor Units can be placed anywhere in the garden,
and multiple Sensor Units can control a single water valve.

https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Bluetooth

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 13 of 55

Easy to Use

Ease of use is a primary objective; unlike other garden watering systems, the user is not required to establish a
comprehensive watering schedule (What days to water, time of day and how long Etc.) The User enters the
minimum moisture levels and maximum watering duration via the Phone App. The Master Unit controls the gardens
watering requirement. No more modifying the watering schedule due to seasonal change or rainy days.

Minimum Maintenance
The only maintenance required, is to change the Sensor Unit 3 X AA batteries when indicated by the Phone system.

PCB Board Manufacturer and Assembly

My main goal is to create the PCB boards in the most efficient way possible, with a goal to produce them in large

quantities. To achieve this, I am focusing on using best practices in designing the schematic, developing the printed

circuit board (PCB), and assembling its components. Here are some essential factors and methods I am considering

for these processes:

PCB Board Development:
1. Schematic Design – The schematic demonstrates a well-defined design that accurately represents the

intended functionality and structure for the PCB. Components are presented in groups as per their

functionality with extensive use of Net Names for power and signal circuits. All components use standard

symbols, pinouts, and, where possible, the manufacture footprints as defined by the datasheets. PCB trace

specifications are included with the Net Name Specifications, and a comprehensive set of electronic rules

has been included.

2. PCB Layout – Attention has been paid to component placement, trace routing, and signal integrity. To

reduce signal noise and improve the integrity, I have used a four-layer stackup for the primary controlling

circuits for both the Sensor and Master Units. Layers 1 and 4 hold the signal traces, with Layer 2 for the

ground plane and Layer 3 for the power planes.

3. PCB Production and Manufacturability - I have used NI Multisim, Ni Ultiboad and KiCad for the schematic and

PCB design. Design rule checks (DRC) are in line with PCBWay standards have been used to ensure

compliance with fabrication and assembly guidelines.

4. Panelisation – Consideration has been given to PCB Board Panelisation for the two smaller boards, the

Master Unit Bottom and the Ten micro–LED PCB’s.

5. Thermal Considerations - Thermal management uses Heat sinks, copper pour, vias, and thermal relief pads

to dissipate heat effectively.

6. EMI/EMC Design - I have used proven electromagnetic interference (EMI) and electromagnetic compatibility

(EMC) design practices by minimising signal traces lengths, good grounding techniques, and capacitor

filtration solutions to reduce noise and interference.

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 14 of 55

Component Assembly:
1. Initial Prototype system – The PCB Boards for the initial prototype have been manufactured by PCBWay and

assembled and tested by the author. PCB Boards for future production runs will be manufactured,
components assembled and tested by PCBWay.

2. Component Selection – All components are RoHS Compliant and purchased from Digi Key, Muser, Element
14 and Ali Express. Most are surface-mount (SMD) using standard packages 1206, 0806 etc.

3. Bill of Materials (BOM) - A complete and accurate BOM has been included for each System Unit

encompassing component schematic and PCB reference numbers, description specifications, manufacturer

and supplier part numbers, footprints, costs, and procurement sources. Refer Appendix X

Garden Sensors Unit

• The garden sensor unit is designed to undertake multiple categories of soil and environment readings:

1. Soil Moisture

2. Soil Temperature

3. Air Temperature

4. Battery voltage

5. Soil PH (optional)

6. Soil Nitrogen (optional)

• Provide a long-life battery power supply from three AA batteries.

• Use Wireless data communications.

• Robust construction - A custom-made enclosure is used to house the microcontroller, sensors, and

electronics. As most of the unit is buried in the soil, the enclosure must be waterproof and robust.

Master Unit

• The Master Unit manages the amount of water applied to the garden and provides the central control for
data transaction between the Sensor Units and the Phone Cloud system:

1. Received Soil and environment data from all sensor units.
2. Sends and receives information to the Cloud information Unit.
3. Manages all watering scenarios.
4. Power independent with the use of sola battery charging system.
5. Robust and weather resistant.
6. Small and easy to mount.

Cloud Control Unit
The Cloud information unit was designed to be as minimalistic as possible. It is housed with the Master Unit and
receives the 3.3v power supply; the TX and RX pins are used for the optional RS232 data transmission, and no other
IO pins are used. It is designed to use one of two data transmission options to transfer data to and from the Master
Unit:

1. Point to Point via ESP-Now. ESP-NOW is a wireless communication protocol defined by Espressif, which
enables the direct, quick, and low-power control of smart devices without the need for a router. ESP-NOW
can work with Wi-Fi and Bluetooth. It’s widely used for inter-processor communications.

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 15 of 55

2. RS232 is a serial communication standard that uses a short twisted-pair cable to transmit/receive data. As
the microcontrollers are on the same PCB board, short traces can connect the RX and TX pins, ensuring
reliable data communication.
The use of RS232 protocol within the design of this project is to allow for a future data transmission option,
that requires minimal software space and the non-requirement of large operational libraries; thus, providing
increased CPU space to drive the Phone app directly in the future.

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 16 of 55

Functions and Specifications

Sensor Unit

Enclosure box

• The Sensor Unit Box is specially crafted, and 3D printed using nylon material. It is created to be waterproof

as it will be buried to a depth of 150mm. The lid comes in two sections; the first is 120mm long and is fixed

permanently while the second is 50mm long and can be removed to change the batteries. Inside the box, are

all the necessary components such as sensors, PCB circuit board, microcontroller, and batteries. The sensors

and on/off switch are made waterproof by sealing them with silicon.

• Size: 201 x 96 x 35.

• PCB and battery stand 12mm high.

• Custom-made.

• 3D Printed.

• Power source: 3 X AA batteries.

• Material: Nylon.

PCB Board
The PCB Board provides the circuit for the sensors, microcontroller, and the power supply. A 14-pin header is

included to allow for a 3.5” TFT display screen to be used for diagnostics.

• Size: 100 x 70

• Layers: 4

Circuit Functions

• Wake-up and Test Switches – The switches are used to wake up the microcontroller from deep sleep and to

allow the software to switch on the logic to display the diagnostic information to the display screen.

• Ground Temp – The system uses a DS18B20 temperature sensor with a range of -55 – 125c.

• Soil Moisture – The system uses a STEMMA I2C Multiple Function Soil moisture and Air temperature Sensor.

• Air Temp – Refer above.

• Battery Voltage – Battery voltage is calculated by using an ADC (Analogue to Digital Conversion) circuit with

data sent to the microcontroller for processing.

Circuit Design

• 1-year battery life power supply – It has been determined that a 3 X AA battery can last for up to 348 days by

utilizing a microprocessor that goes into a deep sleep 4-hour cycle. With a battery capacity of 8,400 mAh, a

control circuit is implemented using the LT1300 Buck-Boost Switching Regulator. This circuit ensures a

constant 3.3v voltage supply from a battery voltage range of 4.7v to 1.8v with minimal overhead. -Refer Diag

- 8

• Ground Temp Sensor - DS18B20 temperature sensor powered by the 3.3v power rail and a single data signal

held high by a 4.7k resistor. -Refer Diag - 1

•

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 17 of 55

• I2C Moisture Sensor - STEMMA Multiple Function Soil moisture and Air temperature Sensor powered by the

3.3 power rail. Data is provided by an I2C transmission protocol to the Microcontroller. -Refer Diag - 11

• Air Temp Sensor- Refer above.

• ADC Battery Volts – The circuit provides two options to acquire the battery voltage: -Refer Diag – 12, 13,14

1. Via a voltage divider resistor circuit that passes the signal voltage to the built in ADC within the ESP32.

This solution, although straightforward, does not yield consistent voltage values.

2. Using a MCP3204 12 Bit Analog to Digital Converter, with a REF191GS 2.048v voltage reference, together

with a source voltage divider to send voltage information to the microcontroller will be efficient.

Although this circuit option is complex and costly, the result is a very accurate battery voltage reading.

Both options have been included with the PCB circuit design.

• Reverse voltage protection – If the User replaces the battery incorrectly. The circuit provides reverse voltage

protection to protect the microcontroller and components from damage. -Refer Diag - 15

• TFT 3.5 Screen for Testing – The circuit has all the traces to connect the TFT 3.5 Screen to the microcontroller

via a 14-pin header.

• On/Off Switch – A single pole switch connects or disconnects the primary battery voltage supply. -Refer Diag

- 12

• Wake-up Button – The microcontroller is programmed to receive an interrupt wake-up signal via a Tact

switch. -Refer Diag - 5

• Test Button – The microcontroller is programmed to receive a Test signal via a Tact switch. -Refer Diag - 9

Software
Except for the “Send Sensor data to Host Processor” the software features below follow the circuit descriptions

above. Therefore, to avoid duplication, I have included the software line reference numbers for each topic to allow

the reader to view the software code for their interest.

Send Sensor data to the host processor – All three microcontrollers (Sensor Unit, Unit and the Phone Information

display and control input system) use the Point-to-Point communication feature of the ESP32 known as ESP-Now.

Refer to “General Concepts” above.

After the 4-hour deep sleep cycle, the Sensor Unit system will wake up and read the soil moisture, soil and air

temperature and current battery voltage. Together with the Sensor Unit number, this data is sent to the Master Unit

using ESP-Now.

The Sensor Unit data is sent to the Master Unit for processing and transfer to the Cloud Control Unit.

For detailed Software information regarding the categories below – refer Appendix 1 – Sensor Unit Software

• Send Sensor Unit data to the host processor.

• Battery Volts.

• Ground Temp.

• I2C Moisture.

• Air Temp.

• 4 Hr. – Deep sleep cycle.

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 18 of 55

• Wake up interrupt function.

• Test software and live display data.

Master Unit (Master Unit)

Enclosure box
The box is a standard Polycarbonate Enclosure with Mounting Flange and clear lid from Jaycar part number HB6223.

The enclosure holds the 12v battery, PCB circuit board, two microcontrollers (Master and Cloud Control Units) and

water valve relays. The Aerial Socket and on/off switch are waterproofed by sealing with silicon.

The battery charging circuit displays the battery charge status via 10 colored LEDs which can be viewed through the

clear lid.

• Size: 170 x 120 x 90.

• Power source:

1. 1 X 12v 1.2 AH battery.

2. 1 x 21v 10W 22cm 30m Solar Panel.

PCB Boards
Two PCB Boards, stacked on top of each other and connected via a 10-pin header. Together, they provide the circuits

for the two microcontrollers, sola charging, power supply and water relays. A 14-pin header is included to allow for a

3.5” TFT display screen to be used for diagnostics.

• Board 1 size: 87mm X 87mm 4 Layer

• Board 2 size: 110mm X 60mm 2 Layer

Circuit Functions

• Receive soil data from Sensor Units – On a 4-hour cycle the Sensor Unit reads the soil moisture, soil and air

temperature and battery voltage, then collate the data for point-to-point transmission to the Master Unit

using ESP-Now. On receiving the new Sensor Unit information, the Master unit will undertake two actions:

1. Implement watering requirements – Via the Sensor reference number, use the soil moisture and control

data saved in permanent memory, compare the latest soil moisture reading with the minimum value. If

the new value is lower, activate the watering system based on the sensor watering parameters.

2. Send soil sensor data to the Cloud Control Unit – Send the new soil sensor information to the Cloud

Control Unit using ESP-Now point-to-point data transmission.

• Receive soil moisture and control information from the Cloud Control Unit – To configure the soil moisture

and control data for each Soil Sensor Unit (up to 15), the User can utilise the Phone App. The information is

saved permanently within the app and can be modified as the User needs. The information is referenced by

Soil unit number with the values as follows:

➢ Minimum moisture value – used to trigger the water valve.

➢ Maximum water time – Sets the maximum watering period.

➢ Water Valve number – the water valve number associated with this sensor No. If

watering is required, this valve is turned on.

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 19 of 55

If the User modifies any of the above values. The software triggers an “On-Change” function, where the

Cloud Control Unit transmits the changed values to the Master Unit. On receiving the data packet, the

Master Unit will update the values in permanent memory.

• Battery Voltage – Battery voltage is calculated by using an ADC (Analogue to Digital Conversion) circuit with

data sent to the microcontroller for processing.

Circuit Design

• Battery Charger – The battery charging circuit monitors the battery voltage and, as it approaches 12v, then

turns on the charge supply to apply 14.4 volts to the battery, slowly reducing to 13.3 volts as the battery

becomes fully charged. The source voltage is generated by a 21v 10W 22cm 30m Solar Panel connected to

an LM338 voltage regulator. Then monitored by LM3915 dot LED display, as the battery voltage approaches

the charge voltage an BC557 PNP transistor will go to reverse bias shutting down the charge voltage and

ending the charging cycle. -Refer Diag - 1

• Power supply – The Master Unit uses two voltage power planes, 12v for the relay circuits and 3.3v for the

microcontrollers and ICs. The 12v is supplied from the battery, and the 3.3v are provided jointly by the

LM29405 5v and MIC29310 3.3v 1A Low Dropout Regulators. -Refer Diag - 2

• Relay Circuit – Controlling the eight relays is a MCP23017 I2C 16 channel extender driving a ULN2003V12 7-

Channel Relay and Inductive 12v Load Sink Driver, that turns on / off the OJE-SH-112LM 12v Miniature PCB

Relays. -Refer Diag - 5

• On/Off Switch - A simple single pole switch connects or disconnects the 12v battery voltage supply. -Refer

Diag - 6

• ADC Battery Volts - The circuit provides two options to acquire the battery voltage:

1. Using a resistor voltage divider, pass the signal voltage to the built-in ADC within the ESP32. This

solution, although straightforward, does not yield consistent voltage values.

2. An efficient and highly accurate battery voltage value can be obtained by combining an MCP3204 12 Bit

Analog to Digital Converter, with a REF191S 2.048v voltage reference and a source voltage divider.

Although this circuit option is complex and costly, the result is very beneficial.

Both options are included within the PCB design.

• Reverse voltage protection – If the User replaces the battery incorrectly. The circuit provides reverse voltage

protection to protect the microcontroller and components from damage.

• TFT 3.5 Screen for Testing – The circuit has all the traces to connect the TFT 3.5 Screen to the microcontroller

via a 14-pin header. -Refer Diag - 8

• Test Button – The microcontroller is programmed to receive a Test signal via a Tact switch. -Refer Diag - 3

Software
The software features below follow the circuit descriptions above. Therefore, to avoid duplication, I have included

the software line reference numbers for each topic to allow the reader to view the software code for their interest.

For detailed Software information regarding the categories below – refer Appendix 15 – Master Unit Software

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 20 of 55

• Receive soil data from Sensor Unit

• Send Soil data to Phone Cloud System

• Receive water Management data from the Phone system.

• Relay Circuit

• Water Management

• Battery Volts.

• Test software and live display data.

Cloud Control Unit

 Enclosure box

• The ESP32 microprocessor that controls the Cloud Control Unit housed within the Master Enclosure.

PCB Board

• Size: included within the Master Unit PCB

Functions
The primary function is to provide a data transmission conduit between the Master Unit and the Cloud Phone App,

passing soil sensor readings to the Phone and receiving and sending garden watering information to the Master Unit.

• Receive sensor data from the Sensor Unit.

• Send Sensor data to iPhone Cloud.

• Receive minimum Soil Moisture set level from iPhone.

• Transmit minimum soil moisture to Master Unit.

Circuits
The Cloud Control Unit does not require a typical PCB circuit to operate, as it utilises the ESP32 microcontroller with

two TX and RX wired connections and 3.3v power from the Master Unit power supply.

• ESP32 Microcontroller – housed within the Master Unit Enclosure.

• RS232 TX and RX data – Used for future data transmission to/from the Master Unit.

• Power – 3.3v from the Power Supply.

Software

For detailed Software information regarding the categories below – refer Appendix 17 – Cloud Control Unit Software

• Get sensor and battery voltage from Master Unit.

• Connect iPhone cloud and send sensor data.

• Connect to the Master unit and send moisture set data.

• Test software and live display data.

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 21 of 55

Appendix:

The List of Appendices are as follows:

Appendix 1 - Sensor Unit Software

Appendix 2 - Sensor Unit Circuit – 1

Appendix 3 - Sensor Unit Circuit – 2

Appendix 4 - Sensor Unit PCB Layout

Appendix 5 - Sensor Unit Bill of Materials (BOM)

Appendix 6 - Sensor Unit Enclosure Housing Box - 1

Appendix 7 - Sensor Unit Enclosure Housing Box - 2

Appendix 8 - Sensor Unit Battery Long Life Calc

Appendix 9 - Master Unit Circuit

Appendix 10 - Master Unit Bottom PCB

Appendix 11- Master Unit Top PCB

Appendix 12 - Master Unit Top BOM

Appendix 13 - Master Unit Top BOM

Appendix 14 - Master Unit Enclosure Layout

Appendix 15 - Master Unit Software

Appendix 16 - Calculate ADC Voltage Software

Appendix 17 - Cloud Control Unit Software

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 22 of 55

Appendix 1 - Sensor Unit Software

Soil Sensor System
1 //****** Soil_Ground _Modual V03 *******

2 //

3 // ***** Software for the Slave Moduals *******

4 //

5

6 //Library for Moisture Sensor

7 #include "Adafruit_seesaw.h"

8
9 //Library for Ground Temp

10 #include <OneWire.h>

11 #include <DS18B20_INT.h> // Library for Ground Yemp Probe

12
13 //Library for Screen

14 #include <SPI.h>

15 #include <TFT_eSPI.h> // ESP32 TFT library

16
17 //Library for ESP-Now

18 #include <esp_now.h>

19 #include <WiFi.h>

20
21 // ESP Now Channel

22 //#define CHANNEL 1

23
24 //Set up Sensor Info

25 Adafruit_seesaw ss;

26 #define ONE_WIRE_BUS 5 // Ground Temp Probe DS18B20 on pin 5

27 OneWire oneWire(ONE_WIRE_BUS);

28 DS18B20_INT sensor(&oneWire);

29
30 //Set up Screen Info

31 TFT_eSPI tft = TFT_eSPI(); // Invoke custom TFT library

32 uint16_t bg = TFT_BLACK; // Set foreground and Background Colours

33 uint16_t fg = TFT_WHITE;

34
35 // ******** Set up ESP-Now Info *******

36
37 // Variables for Send data

38 const int Slave_No = 1; // Slave ESP32 number 1

39 int Air_Temp;

40 int Ground_Temp;

41 float Moisture_Value;

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 23 of 55

42 float Battery_Volts;

43

44 // MAC Address of responder/ Master - ESP32 number 1

45 // C4:DD:57:5E:26:54

46 //uint8_t broadcastAddress[] = {0xC4, 0xDD, 0x57, 0xSE, 0x26, 0x54}; // Master MAC Address

47
48 // MAC Address of responder/ Master - ESP32 number 2

49 // C4:DD:57:5E:2C:98

50 //uint8_t broadcastAddress[] = {0xC4, 0xDD, 0x57, 0x5E, 0x2C, 0x98}; // Master MAC Address

51
52 // MAC Address of responder/ Master - ESP32 number 3

53 // C4:DD:57:5E:2A:38

54 uint8_t broadcastAddress[] = {0xC4, 0xDD, 0x57, 0x5E, 0x2A, 0x38}; // Master MAC Address

55
56 // MAC Address of responder/ Master - ESP32 number 4

57 // 84:0D:8E:E6:C2:A0

58 //uint8_t broadcastAddress[] = {0x84, 0x0D, 0x8E, 0xE6, 0xC2, 0xA0}; // Master MAC Address

59

60 // Define a data structure

61 typedef struct struct_message {

62 char a[32];

63 int Send_Slave_No;

64 int Send_Air_Temp;

65 float Send_Moisture_Value;

66 int Send_Ground_Temp;

67 float Send_Battery_Volts;

68 } struct_message;

69

70 // Create a structured object

71 struct_message myData;

72

73 // Peer info

74 esp_now_peer_info_t peerInfo;

75

76 // Callback function called when data is sent

77 void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {

78 Serial.print("\r\nLast Packet Send Status:\t");

79 Serial.println(status == ESP_NOW_SEND_SUCCESS ? "Delivery Success" : "Delivery Fail");

80 // Success to Screen

81 // tft.fillRect(5, 200, 420, 30, bg);

82 // tft.setCursor(5, 200);

83 //tft.print(status == ESP_NOW_SEND_SUCCESS ? "Delivery Success" : "Delivery Fail");

84
85 }

86
87 void setup() {

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 24 of 55

88 Serial.begin(115200);

89 Serial.print("DS18B20_INT_LIB_VERSION: ");

90 Serial.println(DS18B20_INT_LIB_VERSION);

91
92 // Set ESP32 as a Wi-Fi Station

93 WiFi.mode(WIFI_STA);

94

95 // Initilize ESP-NOW

96 if (esp_now_init() != ESP_OK) {

97 Serial.println("Error initializing ESP-NOW");

98 return;

99 }

100 // Register the send callback

101 esp_now_register_send_cb(OnDataSent);

102

103 // Register peer (The Master)

104 memcpy(peerInfo.peer_addr, broadcastAddress, 6);

105 peerInfo.channel = 0;

106 peerInfo.encrypt = false;

107

108 // Add peer

109 if (esp_now_add_peer(&peerInfo) != ESP_OK){

110 Serial.println("Failed to add peer");

111 return;

112 }

113
114 // *** Set up Mosfet to turn on 3.3v circuit ***

115 int Mosfet = 13; // Mosfet switch pin no.

116 pinMode(Mosfet, OUTPUT);

117 digitalWrite(Mosfet, HIGH); // Turn on Mosfet Switch

118
119

120 // Setup the TFT

121 tft.begin();

122 tft.setRotation(1);

123 tft.setTextColor(fg, bg);

124 tft.fillScreen(bg);

125 tft.setCursor(2, 0);

126 // Set the font colour to be yellow with no background, set to font 7

127 tft.setTextColor(TFT_YELLOW); tft.setTextFont(4);

128
129 if (sensor.begin() == false)

130 {

131 Serial.println("ground Temp not connected!");

132 }

133

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 25 of 55

134 // Constant for Dry Sensor

135 const int DryValue = 413;

136 // Constant for Wet Sensor

137 const int WetValue = 1015;

138
139 // Variables for Soil Moisture

140 int SoilMoistureValue;

141 int SoilMoisturePercent;

142
143 Serial.println("seesaw Soil Sensor example!");

144

145 if (!ss.begin(0x36)) {

146 Serial.println("ERROR! seesaw not found");

147 while(1) delay(1);

148 } else {

149 Serial.print("seesaw started! version: ");

150 Serial.println(ss.getVersion(), HEX);

151 }

152 }

153
154 void loop() {

155

156 //Variables for I2C Moisture and Temp Sensor (MS-1, J4)

157 float tempC = ss.getTemp(); // Get the air temp from the I2C sensor

158 uint16_t capread = ss.touchRead(0); //?????

159 int SoilMoistureValue;

160 int SoilMoisturePercent;

161 const int DryValue = 413;

162 // Constant for Wet Sensor

163 const int WetValue = 1015;

164
165 // **** Battery Volts ****

166 int ADC_Pin = 36; // ADC Pin - Battery voltage divided to 1v for ADC

167 float xloop = (99.0 * xloop + analogRead(ADC_Pin)) / 100.0;

168 float yvolt = (xloop * 4095.0 / 9.396)/1000; //4.5v

169

170
171 //Processor Number

172 Serial.print("Procesor No: ");

173 Serial.println(Slave_No);

174
175
176 // ********* Get Soil Moisture and Air Temp From I2C Sensor (J4)

177 //

178 SoilMoisturePercent = map(capread, DryValue, WetValue, 0, 100);

179

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 26 of 55

180 //Keep Values between 0 and 100%

181 SoilMoisturePercent = constrain (SoilMoisturePercent, 0, 100);

182 Air_Temp = tempC; //Air Temp

183 Serial.print("Air Temperature: "); Serial.print(Air_Temp); Serial.println("*C");

184

185 Moisture_Value = (SoilMoisturePercent);

186 Serial.print("Soil Moisture%: "); Serial.print(Moisture_Value);Serial.println("% ");

187 //

188
189 //Get Ground Temp

190 sensor.requestTemperatures();

191 while (!sensor.isConversionComplete()); // (BLOCKING!!) wait until sensor is ready

192 Serial.print("Ground Temp: ");

193 Ground_Temp = (sensor.getTempC())+3;

194 Serial.println(Ground_Temp); // New line

195
196 // Battery Volts

197 Battery_Volts = yvolt;

198 Serial.print("Battery Volts: ");

199 Serial.println(Battery_Volts);

200
201 // ************ Format structured data for sending to ESP_Now Master *************

202 strcpy(myData.a, "Sending Processor No 1");

203 myData.Send_Slave_No = Slave_No;

204 myData.Send_Air_Temp = Air_Temp;

205 myData.Send_Moisture_Value = 62.3;

206 //myData.Send_Moisture_Value = Moisture_Value;

207 myData.Send_Ground_Temp = 39;

208 //myData.Send_Ground_Temp = Ground_Temp;

209 myData.Send_Battery_Volts = 99.9;

210 //myData.Send_Battery_Volts = Battery_Volts;

211

212 // Send message via ESP-NOW

213 esp_err_t result = esp_now_send(broadcastAddress, (uint8_t *) &myData, sizeof(myData));

214

215 if (result == ESP_OK) {

216 Serial.println("Sending confirmed");

217 Serial.println(myData.Send_Slave_No);

218 Serial.println(myData.Send_Air_Temp);

219 Serial.println(myData.Send_Moisture_Value);

220 Serial.println(myData.Send_Ground_Temp);

221 Serial.println(myData.Send_Battery_Volts);

222

223 }

224 else {

225 Serial.println("Sending error");

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 27 of 55

226 }

227

228 //tft.fillScreen(bg);

229 tft.setCursor(0, 0);

230
231 // Print Slave No

232 tft.fillRect(5, 50, 420, 30, bg);

233 tft.setCursor(5, 50);

234 tft.print("Slave No: ");

235 tft.print(Slave_No);

236

237 // Print Air Temp

238 tft.fillRect(5, 80, 420, 30, bg);

239 tft.setCursor(5, 80);

240 tft.print("Air Temperature: ");

241 tft.print(Air_Temp);

242

243 // Print Input Moisture

244 tft.fillRect(5, 120, 420, 30, bg);

245 tft.setCursor(5, 120);

246 tft.print("Soil Moisture%: ");

247 tft.print(Moisture_Value);

248 tft.println(" %");

249
250 // Print Ground Temp

251 tft.fillRect(5, 160, 420, 30, bg);

252 tft.setCursor(5, 160);

253 tft.print("Ground Temp: ");

254 tft.println(Ground_Temp);

255
256 // Battery Volts

257 tft.fillRect(5, 180, 420, 30, bg);

258 tft.setCursor(5, 180);

259 tft.print("Battery Volts ");

260 tft.print(Battery_Volts);

261
262

263 delay(3000);

264 }

265 // End Loop

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 28 of 55

Appendix 2 – Sensor Unit Circuit - 1

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 29 of 55

Appendix 3 - Sensor Unit Circuit - 2

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 30 of 55

Appendix 4 - Sensor Unit PCB Layout

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 31 of 55

Appendix 5 – Sensor Unit Bill of Materials (BOM)

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 32 of 55

Appendix 6 - Sensor Unit Enclosure Housing Box - 1

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 33 of 55

Appendix 7 - Sensor Unit Enclosure Housing Box - 2

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 34 of 55

Appendix 8 – Sensor Unit Battery Long Life Calc

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 35 of 55

Appendix 9 - Master Unit Circuit

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 36 of 55

Appendix 10 – Master Unit Bottom PCB

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 37 of 55

Appendix 11 - Master Unit Top PCB

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 38 of 55

Appendix 12 – Master Unit Top Bill of Materials (BOM)

Master Unit Top BOM

Loc References Value Footprint Quantity

1
C6, C8, C10,
C11

100nF C_1206_3216Metric 4

2 C1 100uF C_1206_3216Metric_Pad1.33x1.80mm_HandSolder 1

3 C2 33uf Tan CAPPC7343X430N 1

4 C3 0.33uF C_1206_3216Metric 1

5 C4 22Uf CP_Radial_Tantal_D5.0mm_P5.00mm 1

6 C5 TPSD107M010R0100 CP_EIA-7343-20_Kemet-V_Pad2.25x2.55mm_HandSolder 1

7 C7 TPSD107M010R0100 CAPPM7343X310N 1

8
R1, R2, R5,
R13

10k R_Axial_DIN0207_L6.3mm_D2.5mm_P7.62mm_Horizontal 4

9 R7, R14, R17 2k R_Axial_DIN0207_L6.3mm_D2.5mm_P7.62mm_Horizontal 3

10 R10, R11, R12 1k R_Axial_DIN0207_L6.3mm_D2.5mm_P7.62mm_Horizontal 3

11 R6, R16 1k R_1206_3216Metric 2

12 R3 10k R_Axial_DIN0204_L3.6mm_D1.6mm_P7.62mm_Horizontal 1

13 R4 120R R_Axial_DIN0207_L6.3mm_D2.5mm_P7.62mm_Horizontal 1

14 R8 1M R_1206_3216Metric 1

15 R9 2M2 R_Axial_DIN0207_L6.3mm_D2.5mm_P7.62mm_Horizontal 1

16 R18 10k R_1206_3216Metric 1

17 R19 909R R_1206_3216Metric 1

18 L1 1269AS-H-100N=P2 INDC2520X100N 1

19 D2, D5 1N5817 D_DO-41_SOD81_P10.16mm_Horizontal 2

20 D1 1N4007 D_DO-41_SOD81_P10.16mm_Horizontal 1

21 D3 1N4148 D_DO-35_SOD27_P7.62mm_Horizontal 1

22 U1 LT1300CN8 SOIC-8_3.9x4.9mm_P1.27mm 1

23 U2 LM3915N-1 DIP795W25P254L2337H533Q18B 1

24 U3 ESP32-DEVKITC-32D MODULE_ESP32-DEVKITC-32D 1

25 U4 LM338 TO-220-3_Vertical 1

26 U9 LM78M05_TO220 TO-220-3_Vertical 1

27 H1, H2, H3, H4 Mounting Hole MountingHole_2.5mm_Pad_TopBottom 4

28 JP1, JP2, JP3 Jumper_2_Bridged R_1206_3216Metric 3

29 Q1, Q2 BC547 TO-92_Inline 2

30 S1, S2 TL6330AF200Q SW_TL6330AF200Q 2

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 39 of 55

31 Q3 BC557 TO-92_Inline 1

32 VR1 3361P-1-103GLF TRIM_3361P-1-103GLF 1

33 J2, J2, J7 Conn_01x10 PinHeader_1x10_P2.54mm_Vertical 3

34 J1, J5 Screw_Terminal_01x02
TerminalBlock_Phoenix_PT-1,5-2-3.5-
H_1x02_P3.50mm_Horizontal

2

35 J3 Conn_01x14 PinHeader_1x14_P2.54mm_Vertical 1

36 J4 1935161
TerminalBlock_Phoenix_PT-1,5-2-3.5-
H_1x02_P3.50mm_Horizontal

1

37 J8 Conn_01x01 PinHeader_1x01_P2.54mm_Vertical 1

38 J9 Cut off LED PinHeader_1x02_P2.54mm_Vertical 1

Appendix 13 – Master Unit Bottom Bill of Materials (BOM)

Master Unit Bottom BOM

LOC References Value Footprint Quantity

1 C9 100nF C_1206_3216Metric 1

2 R15 1k R_1206_3216Metric 1

3
D7, D8, D9, D10, D11,
D12 ES3B-E3/9AT D_SMA_Hand soldering 6

4 U5 ULN2003V12PWR SOP65P640X120-16N 1

5 U6 MCP23017_SO SOIC-28W_7.5x17.9mm_P1.27mm 1

6 K1, K2, K3, K4, K5, K6 ADW11 Relay_18.1 x 10.10 PWC _THT 6

7 H2, H2, H3, H3, H4 Mounting Hole MountingHole_2.5mm_Pad_TopBottom 5

9 J2 Conn_01x10 PinHeader_1x10_P2.54mm_Vertical 1

10 J6 Screw_Terminal_01x16
TerminalBlock_Phoenix_PT-1,5-16-3.5-
H_1x16_P3.50mm_Horizontal

1

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 40 of 55

Appendix 14 – Master Unit Enclosure Layout

The sealed enclosure is waterproof and provides two mounting flanges. the lid is made of a clear
Polycarbonate material allowing the User to observe the ten LED lights that represent the battery
charge state.

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 41 of 55

Appendix 15 – Master Unit Software

Receiver Master - Multiple Slaves-v03

1 //Receiver Master - Multiple Slaves-v03

2 /*

3 Master Code:

4 - Receives sensor data from all slaves

5 - Sends sensor data to ESP32-2 (Cloud Processor) to update the phone app

6 - Receives moisture set data from a phone app and stored in permanent memory

7 - Get and send battery volt info

8 - Test slave moisture values with saved set data and turn on the water if required

9 - Manage and control Test and data print logic

10
11 - Note: Due to the size and complexity of the Master code, a separate ESP processor is used

12 to interface with Arduino Cloud - refer above

13

14 ***** Technical help from: ******

15 DroneBot Workshop 2022 https://dronebotworkshop.com

16 Rui Santos - Random Nerd Tutorials - http://RandomNerdTutorials.com

17 */

18

19 // Include required libraries

20 #include <WiFi.h> // WiFi Library

21 #include <esp_now.h> //ESP-Now Comms Library

22
23 //

24 //Library for Screen

25 #include <SPI.h>

26 #include <TFT_eSPI.h> // ESP32 TFT library

27

28 //Set up Screen Info

29 TFT_eSPI tft = TFT_eSPI(); // Invoke custom TFT library

30 uint16_t bg = TFT_BLACK; // Set foreground and Background Colours

31 uint16_t fg = TFT_WHITE;

32
33

34 // Set working Variables

35 float Send_Moisture_Value;

36 int Send_Ground_Temp;

37 int Received_Data = 0;

38
39 // Variable to store if sending data was successful

40 String success;

41

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 42 of 55

42

43 // MAC Address of Cloud Processor - ESP32 number 2

44 // C4:DD:57:5E:2C:98

45 uint8_t broadcastAddress[] = {0xC4, 0xDD, 0x57, 0x5E, 0x2C, 0x98}; // Master MAC Address

46
47 // Define Cloud data Send structure

48 typedef struct struct_send_message {

49 char a[32];

50 int Send_Slave_No;

51 int Send_Air_Temp;

52 float Send_Moisture_Value;

53 int Send_Ground_Temp;

54 float Send_Battery_Volts;

55 float Send_Master_Volts;

56 } struct_send_message;

57
58 // Create structured data sent object for Cloud

59 struct_send_message mySendData;

60
61 //Serial.println(" My Send Data Set");

62

63 // Define Slave Receive data structure

64 typedef struct struct_receive_message {

65 char a[32];

66 int Receive_Slave_No;

67 int Receive_Air_Temp;

68 float Receive_Moisture_Value;

69 int Receive_Ground_Temp;

70 float Receive_Battery_Volts;

71 } struct_receive_message;

72

73 // Create structured recevied data object from Slaves

74 struct_receive_message myReceiveData;

75
76 // Set up Peer Info Holder for Registration

77 esp_now_peer_info_t peerInfo;

78
79 // Callback when data is sent

80 void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {

81 Serial.print("\r\nLast Packet Send Status:\t");

82 Serial.println(status == ESP_NOW_SEND_SUCCESS ? "Delivery Success" : "Delivery Fail");

83 if (status ==0){

84 success = "Delivery Success :)";

85 }

86 else{

87 success = "Delivery Fail :(";

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 43 of 55

88 }

89 }

90
91

92 // Callback function

93 void OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len)

94 {

95 // Get incoming data

96 memcpy(&myReceiveData, incomingData, sizeof(myReceiveData));

97
98 // Received dats from Slave - Now send the Info to Cloud

99
100 Received_Data = 1; // Send to Cloud Flag

101

102 // Print to Serial Monitor

103 Serial.print("Len "); Serial.println(len);

104 //Serial.println(struct_message myData);

105 Serial.println(myReceiveData.a);

106

107 Serial.print("Processor No ");

108 Serial.println(myReceiveData.Receive_Slave_No);

109

110 Serial.print("Air Temp ");

111 Serial.println(myReceiveData.Receive_Air_Temp);

112
113 Serial.print("Moisture Value ");

114 Serial.println(myReceiveData.Receive_Moisture_Value);

115
116 Serial.print("Ground Temp ");

117 Serial.println(myReceiveData.Receive_Ground_Temp);

118

119 Serial.print("Battery Volts ");

120 Serial.println(myReceiveData.Receive_Battery_Volts);

121
122 //tft.fillScreen(bg);

123 tft.setCursor(0, 0);

124
125 // Print processor number

126 tft.fillRect(5, 50, 420, 30, bg);

127 tft.setCursor(5, 50);

128 tft.print("Processor number ");

129 tft.print(myReceiveData.Receive_Slave_No);

130

131 // Print Air Temp

132 tft.fillRect(5, 80, 420, 30, bg);

133 tft.setCursor(5, 80);

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 44 of 55

134 tft.print("Air Temperature: ");

135 tft.print(myReceiveData.Receive_Air_Temp);

136

137 // Print Input Moisture

138 tft.fillRect(5, 120, 420, 30, bg);

139 tft.setCursor(5, 120);

140 tft.print("Soil Moisture%: ");

141 tft.print(myReceiveData.Receive_Moisture_Value);

142 tft.println(" %");

143

144 // Print Ground Temp

145 tft.fillRect(5, 160, 420, 30, bg);

146 tft.setCursor(5, 160);

147 tft.print("Ground Temp: ");

148 tft.println(myReceiveData.Receive_Ground_Temp);

149
150 // Battery Volts

151 tft.fillRect(5, 180, 420, 30, bg);

152 tft.setCursor(5, 180);

153 tft.print("Battery Volts ");

154 tft.print(myReceiveData.Receive_Battery_Volts);

155
156 Serial.println(" Received Info");

157
158 delay(1000);

159
160 }

161

162 void setup() {

163
164 // Set up Serial Monitor

165 Serial.begin(115200);

166
167
168 // Setup the TFT

169 tft.begin();

170 tft.setRotation(1);

171 tft.setTextColor(fg, bg);

172 tft.fillScreen(bg);

173 tft.setCursor(2, 0);

174 // Set the font colour to be yellow with no background, set to font 7

175 tft.setTextColor(TFT_YELLOW); tft.setTextFont(4);

176
177
178 // Start ESP32 in Station mode

179 WiFi.mode(WIFI_STA);

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 45 of 55

180

181 // Initalize ESP-NOW

182 if (esp_now_init() != 0) {

183 Serial.println("Error initializing ESP-NOW");

184 return;

185 }

186

187 // Register the send callback

188 esp_now_register_send_cb(OnDataSent);

189

190 // Register peer (The Cloud Master)

191 memcpy(peerInfo.peer_addr, broadcastAddress, 6);

192 peerInfo.channel = 0;

193 peerInfo.encrypt = false;

194

195 // Add peer

196 if (esp_now_add_peer(&peerInfo) != ESP_OK){

197 Serial.println("Failed to add peer");

198 return;

199 }

200
201 Serial.println(" Set up Peer");

202

203 // Register Receive callback function

204 esp_now_register_recv_cb(OnDataRecv);

205
206 }

207

208 void loop() {

209
210
211 // **** Battery Volts ****

212 int ADC_Pin = 36; // ADC Pin - Battery voltage divided to 1v for ADC

213 float xloop = (99.0 * xloop + analogRead(ADC_Pin)) / 100.0;

214 float yvolt = ((xloop * 4095.0 / 354.5)/10.0); //13.27v

215
216 // Test for New Valid Data to Send

217 if(Received_Data>0){

218

219 // Set values to send

220 strcpy(mySendData.a, "Sending New Slave Info");

221 mySendData.Send_Slave_No = myReceiveData.Receive_Slave_No;

222 mySendData.Send_Air_Temp = myReceiveData.Receive_Air_Temp;

223 mySendData.Send_Moisture_Value = myReceiveData.Receive_Air_Temp;

224 mySendData.Send_Ground_Temp = myReceiveData.Receive_Ground_Temp;

225 mySendData.Send_Battery_Volts = myReceiveData.Receive_Battery_Volts;

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 46 of 55

226 mySendData.Send_Master_Volts = yvolt;

227
228 // Send message via ESP-NOW

229
 esp_err_t result = esp_now_send(broadcastAddress, (uint8_t *) &mySendData,
sizeof(mySendData));

230

231 if (result == ESP_OK) {

232 Serial.println("Sent with success");

233 }

234 else {

235 Serial.println("Error sending the data");

236 }

237 }

238
239 delay(2000);

240
241 }

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 47 of 55

Appendix 16 – Master Unit Calculate ADC Voltage

1
2 //

3 // Dfine ADC data

4 //

5 float voltage0 = 0; // Set inital voltage

6 float voltage1 = 0;

7 float voltage2 = 0;

8 float voltage3 = 0;

9 int Channel = 0; // define channel to zero

10 const int adcChipSelectPin = 26; // set pin 26 as the chip select for the ADC

11

12 //

13 //Init Code for DAC

14 //

15 // Set Constants

16 const int dacChipSelectPin = 25; // set pin 25 as the chip select for the DAC:

17

18 // Used for reading DT signal- VA = Volts CA = Current

19 const int PinVB = 32;

20 const int PinCB = 39;

21
22 //

23 // Set up values for ADC

24 //

25 // set the ChipSelectPins high initially:

26 pinMode (adcChipSelectPin, OUTPUT);

27 digitalWrite(adcChipSelectPin, HIGH);

28

29

30 SPI.begin();

31 SPI.setBitOrder(MSBFIRST); // Not strictly needed but just to be sure.

32 SPI.setDataMode(SPI_MODE0); // Not strictly needed but just to be sure.

33 //Set SPI clock divider to 16, therfore a 1 MhZ signal

34 // due to the maximum frequency of the ADC.

35 SPI.setClockDivider(SPI_CLOCK_DIV16);

36

37
// Function to set the DAC, Accepts the Value to be sent and the cannel of the DAC to be
used.

38 void setDac(int value, int channel)

39 {

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 48 of 55

40
 byte dacRegister = 0b00110000; // Sets default DAC registers B00110000,
1st bit choses DAC, A=0 B=1, 2nd Bit bypasses input Buffer, 3rd bit sets output gain to 1x,
4th bit controls active low shutdown. LSB are insignifigant here.

41
 int dacSecondaryByteMask = 0b0000000011111111; // Isolates the last 8 bits of the 12
bit value, B0000000011111111.

42
 byte dacPrimaryByte = (value >> 8) | dacRegister; //Value is a maximum 12 Bit value, it
is shifted to the right by 8 bytes to get the first 4 MSB out of the value for entry into th
Primary Byte, then ORed with the dacRegister

43
 byte dacSecondaryByte = value & dacSecondaryByteMask; // compares the 12 bit value to
isolate the 8 LSB and reduce it to a single byte.

44 // Sets the MSB in the primaryByte to determine the DAC to be set, DAC A=0, DAC B=1

45 switch (channel)

46 {

47 case 0:

48 dacPrimaryByte &= ~(1 << 7);

49 break;

50 case 1:

51 dacPrimaryByte |= (1 << 7);

52 }

53 noInterrupts(); // disable interupts to prepare to send data to the DAC

54 digitalWrite(dacChipSelectPin,LOW); // take the Chip Select pin low to select the DAC:

55 SPI.transfer(dacPrimaryByte); // send in the Primary Byte:

56 SPI.transfer(dacSecondaryByte);// send in the Secondary Byte

57 digitalWrite(dacChipSelectPin,HIGH);// take the Chip Select pin high to de-select the DAC:

58 //Serial.println("send dac info");

59 interrupts(); // Enable interupts

60 }

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 49 of 55

Appendix 17 – Cloud Control Unit Software

1
2 //

3 // Ardunio_Cloud_v03 (iPhone IOT Display System)

4 //

5 #include <WiFi.h> // WiFi Lib

6 #include <esp_now.h> //ESP-Now Comms Library

7
8 //Library for Screen

9 #include <SPI.h>

10 #include <TFT_eSPI.h> // ESP32 TFT library

11
12
13
14

15 // Include required libraries

16
17 // Sketch generated by the Arduino IoT Cloud Thing "Untitled"

18 //https://create.arduino.cc/cloud/things/89368119-2d69-4799-ae86-536e1f9432e5

19
20 //Arduino IoT Cloud Variables description

21

22
 //The following variables are automatically generated and updated when changes are made to the
Thing

23
24 float cloud_Master_Volts;

25 float cloud_Moisture_1;

26 float cloud_Moisture_10;

27 float cloud_Moisture_2;

28 float cloud_Moisture_3;

29 float cloud_Moisture_4;

30 float cloud_Moisture_5;

31 float cloud_Moisture_6;

32 float cloud_Moisture_7;

33 float cloud_Moisture_8;

34 float cloud_Moisture_9;

35 float cloud_Set_Moisture_1;

36 float cloud_Set_Moisture_10;

37 float cloud_Set_Moisture_2;

38 float cloud_Set_Moisture_3;

39 float cloud_Set_Moisture_4;

40 float cloud_Set_Moisture_5;

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 50 of 55

41 float cloud_Set_Moisture_6;

42 float cloud_Set_Moisture_7;

43 float cloud_Set_Moisture_8;

44 float cloud_Set_Moisture_9;

45 float cloud_Slave_Volts_1;

46 float cloud_Slave_Volts_10;

47 float cloud_Slave_Volts_2;

48 float cloud_Slave_Volts_3;

49 float cloud_Slave_Volts_4;

50 float cloud_Slave_Volts_5;

51 float cloud_Slave_Volts_6;

52 float cloud_Slave_Volts_7;

53 float cloud_Slave_Volts_8;

54 float cloud_Slave_Volts_9;

55 int cloud_Air_Temp_1;

56 int cloud_Air_Temp_10;

57 int cloud_Air_Temp_2;

58 int cloud_Air_Temp_3;

59 int cloud_Air_Temp_4;

60 int cloud_Air_Temp_5;

61 int cloud_Air_Temp_6;

62 int cloud_Air_Temp_7;

63 int cloud_Air_Temp_8;

64 int cloud_Air_Temp_9;

65 int cloud_Ground_Temp_1;

66 int cloud_Ground_Temp_10;

67 int cloud_Ground_Temp_2;

68 int cloud_Ground_Temp_3;

69 int cloud_Ground_Temp_4;

70 int cloud_Ground_Temp_5;

71 int cloud_Ground_Temp_6;

72 int cloud_Ground_Temp_7;

73 int cloud_Ground_Temp_8;

74 int cloud_Ground_Temp_9;

75 int cloud_Slave_No_1;

76 int cloud_Slave_No_10;

77 int cloud_Slave_No_2;

78 int cloud_Slave_No_3;

79 int cloud_Slave_No_4;

80 int cloud_Slave_No_5;

81 int cloud_Slave_No_6;

82 int cloud_Slave_No_7;

83 int cloud_Slave_No_8;

84 int cloud_Slave_No_9;

85
86 //Variables which are marked as READ/WRITE in the Cloud Thing will also have functions

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 51 of 55

87 //which are called when their values are changed from the Dashboard.

88 //These functions are generated with the Thing and added at the end of this sketch.

89
90
91 //#include "thingProperties.h"

92
93 int Slave_No;

94 int Received_Message = 0;

95
96 //Set up Screen Info

97 TFT_eSPI tft = TFT_eSPI(); // Invoke custom TFT library

98 uint16_t bg = TFT_BLACK; // Set foreground and Background Colours

99 uint16_t fg = TFT_WHITE;

100

101

102 ///

103 // Define data structure

104 typedef struct struct_message {

105 char a[32];

106 int Receive_Slave_No;

107 int Receive_Air_Temp;

108 float Receive_Moisture_Value;

109 int Receive_Ground_Temp;

110 float Receive_Battery_Volts;

111 float Receive_Master_Volts;

112 } struct_message;

113
114 // Create structured data object

115 struct_message myData;

116

117 // Callback function

118 void OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len)

119
120 {

121 // Get incoming data

122 memcpy(&myData, incomingData, sizeof(myData));

123

124 //tft.fillScreen(bg);

125 tft.setCursor(0, 0);

126
127 // Print Slave No

128 tft.fillRect(5, 50, 420, 30, bg);

129 tft.setCursor(5, 50);

130 tft.print("Incomming Data: ");

131 //tft.print(Slave_No);

132

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 52 of 55

133

134 Slave_No = myData.Receive_Slave_No;

135

136 switch (Slave_No) {

137

138 case 1:

139 //Garden Sensor equals 1

140 cloud_Slave_No_1 = myData.Receive_Slave_No;

141 cloud_Air_Temp_1 = myData.Receive_Air_Temp;

142 cloud_Moisture_1 = myData.Receive_Moisture_Value;

143 cloud_Ground_Temp_1 = myData.Receive_Ground_Temp;

144 cloud_Slave_Volts_1 = myData.Receive_Battery_Volts;

145 cloud_Master_Volts = myData.Receive_Master_Volts;

146 Received_Message = 1; // set received message true

147 break;

148

149 case 2:

150 //Garden Sensor equals 2

151 cloud_Slave_No_2 = myData.Receive_Slave_No;

152 cloud_Air_Temp_2 = myData.Receive_Air_Temp;

153 cloud_Moisture_2 = myData.Receive_Moisture_Value;

154 cloud_Ground_Temp_2 = myData.Receive_Ground_Temp;

155 cloud_Slave_Volts_2 = myData.Receive_Battery_Volts;

156 cloud_Master_Volts = myData.Receive_Master_Volts;

157 Received_Message = 1; // set received message true

158 break;

159

160 case 3:

161 //Garden Sensor equals 3

162 cloud_Slave_No_3 = myData.Receive_Slave_No;

163 cloud_Air_Temp_3 = myData.Receive_Air_Temp;

164 cloud_Moisture_3 = myData.Receive_Moisture_Value;

165 cloud_Ground_Temp_3 = myData.Receive_Ground_Temp;

166 cloud_Slave_Volts_3 = myData.Receive_Battery_Volts;

167 cloud_Master_Volts = myData.Receive_Master_Volts;

168 Received_Message = 1; // set received message true

169 break;

170

171 case 4:

172 //Garden Sensor equals 4

173 cloud_Slave_No_4 = myData.Receive_Slave_No;

174 cloud_Air_Temp_4 = myData.Receive_Air_Temp;

175 cloud_Moisture_4 = myData.Receive_Moisture_Value;

176 cloud_Ground_Temp_4 = myData.Receive_Ground_Temp;

177 cloud_Slave_Volts_4 = myData.Receive_Battery_Volts;

178 cloud_Master_Volts = myData.Receive_Master_Volts;

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 53 of 55

179 Received_Message = 1; // set received message true

180 break;

181

182 case 5:

183 //Garden Sensor equals 5

184 cloud_Slave_No_5 = myData.Receive_Slave_No;

185 cloud_Air_Temp_5 = myData.Receive_Air_Temp;

186 cloud_Moisture_5 = myData.Receive_Moisture_Value;

187 cloud_Ground_Temp_5 = myData.Receive_Ground_Temp;

188 cloud_Slave_Volts_5 = myData.Receive_Battery_Volts;

189 cloud_Master_Volts = myData.Receive_Master_Volts;

190 Received_Message = 1; // set received message true

191 break;

192

193 case 6:

194 //Garden Sensor equals 6

195 cloud_Slave_No_6 = myData.Receive_Slave_No;

196 cloud_Air_Temp_6 = myData.Receive_Air_Temp;

197 cloud_Moisture_6 = myData.Receive_Moisture_Value;

198 cloud_Ground_Temp_6 = myData.Receive_Ground_Temp;

199 cloud_Slave_Volts_6 = myData.Receive_Battery_Volts;

200 cloud_Master_Volts = myData.Receive_Master_Volts;

201 Received_Message = 1; // set received message true

202 break;

203

204 case 7:

205 //Garden Sensor equals 7

206 cloud_Slave_No_7 = myData.Receive_Slave_No;

207 cloud_Air_Temp_7 = myData.Receive_Air_Temp;

208 cloud_Moisture_7 = myData.Receive_Moisture_Value;

209 cloud_Ground_Temp_7 = myData.Receive_Ground_Temp;

210 cloud_Slave_Volts_7 = myData.Receive_Battery_Volts;

211 cloud_Master_Volts = myData.Receive_Master_Volts;

212 Received_Message = 1; // set received message true

213 break;

214

215 case 8:

216 //Garden Sensor equals 8

217 cloud_Slave_No_8 = myData.Receive_Slave_No;

218 cloud_Air_Temp_8 = myData.Receive_Air_Temp;

219 cloud_Moisture_8 = myData.Receive_Moisture_Value;

220 cloud_Ground_Temp_8 = myData.Receive_Ground_Temp;

221 cloud_Slave_Volts_8 = myData.Receive_Battery_Volts;

222 cloud_Master_Volts = myData.Receive_Master_Volts;

223 Received_Message = 1; // set received message true

224 break;

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 54 of 55

225

226 case 9:

227 //Garden Sensor equals 9

228 cloud_Slave_No_9 = myData.Receive_Slave_No;

229 cloud_Air_Temp_9 = myData.Receive_Air_Temp;

230 cloud_Moisture_9 = myData.Receive_Moisture_Value;

231 cloud_Ground_Temp_9 = myData.Receive_Ground_Temp;

232 cloud_Slave_Volts_9 = myData.Receive_Battery_Volts;

233 cloud_Master_Volts = myData.Receive_Master_Volts;

234 Received_Message = 1; // set received message true

235 break;

236

237 case 10:

238 //Garden Sensor equals 10

239 cloud_Slave_No_10 = myData.Receive_Slave_No;

240 cloud_Air_Temp_10 = myData.Receive_Air_Temp;

241 cloud_Moisture_10 = myData.Receive_Moisture_Value;

242 cloud_Ground_Temp_10 = myData.Receive_Ground_Temp;

243 cloud_Slave_Volts_10 = myData.Receive_Battery_Volts;

244 cloud_Master_Volts = myData.Receive_Master_Volts;

245 Received_Message = 1; // set received message true

246 break;

247

248 }

249

250

251 }

252

253 void setup() {

254 ////

255 // Initialize serial and wait for port to open:

256 Serial.begin(9600);

257 // This delay gives the chance to wait for a Serial Monitor without blocking if none is found

258

259 // Setup the TFT

260 tft.begin();

261 tft.setRotation(1);

262 tft.setTextColor(fg, bg);

263 tft.fillScreen(bg);

264 tft.setCursor(2, 0);

265 // Set the font colour to be yellow with no background, set to font 7

266 tft.setTextColor(TFT_YELLOW); tft.setTextFont(4);

267

268

269 // Print Slave No

270 tft.fillRect(5, 50, 420, 30, bg);

Peter Colls –
End of 4th Year Project Submission Garden Management System Page 55 of 55

271 tft.setCursor(5, 50);

272 tft.print("Set Up Data: ");

273 //tft.print(Slave_No);

274

275

276 delay(1500);

277
278 // Defined in thingProperties.h

279 //initProperties();

280
281 // Connect to Arduino IoT Cloud

282 //ArduinoCloud.begin(ArduinoIoTPreferredConnection);

283

284 /*

285 The following function allows you to obtain more information

286 related to the state of network and IoT Cloud connection and errors

287 the higher number the more granular information you’ll get.

288 The default is 0 (only errors).

289 Maximum is 4

290 */

291 //setDebugMessageLevel(2);

292 // ArduinoCloud.printDebugInfo();

293 }

294
295 void loop() {

296

297 //if(Received_Message >0) {

298 //ArduinoCloud.update();

299 // Received_Message = 0;

300 //}

301 // Your code here

302

303

304 }

